Extracellular matrix remodelling and matrix metalloproteinases in the liver

  • Bruno Clément
Part of the Progress in Inflammation Research book series (PIR)


A variety of exogenous and endogenous agents, e.g., toxic compounds, drugs, pathogens, are responsible for acute and liver injuries which may lead to inflammation and fibrosis and impair hepatocyte functions. In inflamed and fibrotic livers, extracellular matrix remodelling is a complex mechanism of synthesis and degradation of matrix components, namely collagens, non-collagenous glycoproteins and proteoglycans. Fibrolysis is the result of the activation of proteases, among them matrix metalloproteinases, which cleave matrix components and release (poly)-peptide modules with specific biological activities. The dynamic turnover of extracellular matrix is regulated by cytokines and other soluble factors. Depicting these mechanisms opens the path to the identification of biomarkers and targeted drugs for the reversion of inflamed/fibrotic scar towards a normal architecture and the restoration of normal liver functions.


Liver Fibrosis Hepatic Stellate Cell Discoidin Domain Receptor Fibroblast Activation Protein Extracellular Matrix Remodelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guo J, Friedman SL (2007) Hepatic fibrogenesis. Semin Liver Dis 27: 413–426PubMedCrossRefGoogle Scholar
  2. 2.
    Clement B, Levavasseur F, Loreal O, Lietard J, L’Helgoualc’h A, Guillouzo A (1993). Role of hepatocytes and Ito cells in the synthesis and deposition of extracellular matrix. In: C Surrenti, A Casini, S Milani, M Pinzani (eds): Fat-storing cells and liver fibrosis. Kluwer Academic Publishers, Dordrecht, 13–22Google Scholar
  3. 3.
    Benyon RC, Arthur MJ (2001) Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 21: 373–384PubMedCrossRefGoogle Scholar
  4. 4.
    Magness ST, Bataller R, Yang L, Brenner DA (2004) A dual reporter gene transgenic mouse demonstrates heterogeneity in hepatic fibrogenic cell populations. Hepatology 40: 1151–1159PubMedCrossRefGoogle Scholar
  5. 5.
    Rescan PY, Loreal O, Hassell JR, Yamada Y, Guillouzo A, Clement B (1993) Distribution and origin of the basement membrane comportent perlecan in rat liver and primary hepatocyte culture. Am J Pathol 142: 199–209PubMedGoogle Scholar
  6. 6.
    Musso O, Rehn M, Saarela J, Theret N, Lietard J, Hintikka E, Lotrian D, Campion JP, Pihlajaniemi T, Clement B (1998) Collagen XVIII is localized in sinusoids and basement membranes and expressed by hepatocytes and activated stellate cells in fibrotic human liver. Hepatology 28: 98–107PubMedCrossRefGoogle Scholar
  7. 7.
    Clement B, Grimaud JA, Campion JP, Deugnier Y, Guillouzo A (1986) Cell types involved in the production of collagen and fibronectin in normal and fibrotic human liver. Hepatology 6: 225–234PubMedCrossRefGoogle Scholar
  8. 8.
    Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282: 23337–23347PubMedCrossRefGoogle Scholar
  9. 9.
    Roberston H, Kirby JA, Yip WW, Jones DE, Burt AD (2007) Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 45: 977–981CrossRefGoogle Scholar
  10. 10.
    Iredale JP (1997) Tissue inhibitors of metalloproteinases in liver fibrosis. Int J Biochem Cell Biol 29: 43–54PubMedCrossRefGoogle Scholar
  11. 11.
    Aimes RT, Quigley JP (1995) Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4-and 1/4-length fragments. J Biol Chem 270: 5872–5876PubMedCrossRefGoogle Scholar
  12. 12.
    Elsharkawy AM, Oakley F, Mann DA (2005) The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 10: 927–939PubMedCrossRefGoogle Scholar
  13. 13.
    Musso O, Theret N, Campion JP, Turlin B, Milani S, Grappone C, Clement B (1997) In situ detection of matrix metalloproteinase-2 (MMP2) and the metalloproteinase inhibitor TIMP2 transcripts in primary hepatocellular carcinomas and in liver metastasis. J Hepatol 26: 593–605PubMedCrossRefGoogle Scholar
  14. 14.
    Milani S, Herbst H, Schuppan D, Grappone C, Pellegrini G, Pinzani M, Casini A, Calabro A, Ciancio G, Stefanini F et al (1994) Differential expression of matrix-metalloproteinase-1 and-2 genes in normal and fibrotic human liver. Am J Pathol 144: 528–537PubMedGoogle Scholar
  15. 15.
    Theret N, Musso O, L’Helgoualc’h A, Campion JP, Clement B (1998) Differential expression and origin of membrane-type 1 and 2 matrix metalloproteinases (MTMMPs) in association with MMP2 activation in injured human livers. Am J Pathol 153: 945–954PubMedGoogle Scholar
  16. 16.
    Theret N, Lehti K, Musso O, Clement B (1999) MMP2 activation by collagen I and concanavalin A in cultured human hepatic stellate cells. Hepatology 30: 462–468PubMedCrossRefGoogle Scholar
  17. 17.
    Loreal O, Levavasseur F, Fromaget C, Gros D, Guillouzo A, Clement B (1993) Cooperation of Ito cells and hepatocytes in the deposition of an extracellular matrix in vitro. Am J Pathol 143: 538–544PubMedGoogle Scholar
  18. 18.
    Le Pabic H, Bonnier D, Wewer UM, Coutand A, Musso O, Baffet G, Clement B, Theret N (2003) ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling. Hepatology 37: 1056–1066PubMedCrossRefGoogle Scholar
  19. 19.
    Kesteloot F, Desmoulière A, Leclercq I, Thiry M, Arrese JE, Prockop DJ, Lapière CM, Nusgens BV, Colige A (2007) ADAM metallopeptidase with thrombospondin type 1 motif 2 inactivation reduces the extent and stability of carbon tetrachloride-induced hepatic fibrosis in mice. Hepatology 46: 1620–1631PubMedCrossRefGoogle Scholar
  20. 20.
    Wolfsberg TG, Primakoff P, Mykes DG, White JM (1995) ADAM, a novel family of membrane proteins containing A Disintegrin And Metalloprotease domain: multifunctionnl functions in cell-cell and cell-matrix interactions. J Cell Biol 131: 275–278PubMedCrossRefGoogle Scholar
  21. 21.
    Flannery CR (2006) MMPs and ADAMTSs: functional studies. Front Biosci 11: 544–569PubMedCrossRefGoogle Scholar
  22. 22.
    Mori S, Tanaka M, Nanba D, Nishiwaki E, Ishiguro H, Higashiyama S, Matsuura N (2003) PACSIN3 binds ADAM12/meltrin alpha and up-regulates ectodomain shedding of heparin-binding epidermal growth factor-like growth factor. J Biol Chem 278: 46029–46034PubMedCrossRefGoogle Scholar
  23. 23.
    Le Pabic H, L’Helgoualc’h, Coutand A, Wewer UM, Baffet G, Clement B, Theret N (2005) Involvement of the serine/threonine p70S6 kinase in TGF-β1-induced ADAM12 expression in activated human hepatic stellate cells. J Hepatol 43: 1038–1044PubMedCrossRefGoogle Scholar
  24. 24.
    Gressner AM (2002) Roles of TGF-beta in hepatic fibrosis. Front Biosci 7: 793–807CrossRefGoogle Scholar
  25. 25.
    Knittel T, Fellmer P, Ramadori G (1996) Gene expression and regulation of plasminogen activator type 1 in hepatic stellate cells of rat liver. Gastroenterology 111: 745–754PubMedCrossRefGoogle Scholar
  26. 26.
    Vinas O, Bataller R, Sancho-Bru P, Ginès P, Berenguer C, Enrich C, Nicolás JM, Ercilla G, Gallart T, Vives J et al (2003) Human hepatic stellate cells show features of antigenpresenting cells and stimulate lymphocyte proliferation. Hepatology 38: 919–929PubMedGoogle Scholar
  27. 27.
    Corey EJ, Niwa N, Falck JR, Mioskowski C, Arai Y, Marfat A (1980) Recent studies on the chemical synthesis of eicosanoids. Adv Prostaglandin Thromboxane Res 6: 19–25PubMedGoogle Scholar
  28. 28.
    Decker K (1985) Eicosanoids, signal molecules of liver cells. Sem Liver Dis 5: 175–190CrossRefGoogle Scholar
  29. 29.
    Ichiyama T, Kajimoto M, Hasegawa M, Hashimoto K, Matsubara T, Furukawa S (2007) Cysteinyl leukotrienes enhance tumour necrosis factor-alpha-induced matrix metalloproteinase-9 in human monocytes/macrophages. Clin Exp Allergy 37: 608–614PubMedCrossRefGoogle Scholar
  30. 30.
    Schenk S, Quaranta V (2003) Tales from the cryptic sites of the extracellular matrix. Trends Cell Biol 13: 366–375PubMedCrossRefGoogle Scholar
  31. 31.
    Davis GE, Bayless KJ, Davis MJ, Meininger GA (2000) Regulation of tissue injury responses by the exposure of matricryptic sites within extracellular matrix molecules. Am J Pathol 156: 1489–1498PubMedGoogle Scholar
  32. 32.
    Vogel W, Gish GD, Alves F, Pawson T (1997) The discoidin domain receptor domain receptor tyrosine kinases are activated by collagen. Mol Cell 1: 13–23PubMedCrossRefGoogle Scholar
  33. 33.
    Chelberg MK, McCarthy JB, Skubitz AP, Furcht LT, Tsilibary EC (1990) Characterization of a synthetic peptide from type IV collagen that promotes melanoma cell adhesion, spreading, and motility. J Cell Biol 111: 261–270PubMedCrossRefGoogle Scholar
  34. 34.
    Rehn M, Pihlajaniemi T (1994) Alpha 1(XVIII), a collagen chain with frequent interruptions in the collagenous sequence, a distinct tissue distribution and homology with type XV collagen (1994) Proc Natl Acad Sci USA 91: 4234–4238PubMedCrossRefGoogle Scholar
  35. 35.
    Muragaki Y, Timmons S, Griffith CM, Oh SP, Fadel B, Quertermous T, Olsen BR (1995) Mouse Col18a1 is expressed in a tissue-specific manner as three alternative variants and is localized in basement membrane zones. Proc Natl Acad Sci USA 92: 8763–8767PubMedCrossRefGoogle Scholar
  36. 36.
    Saarela J, Rehn M, Oikarinen A, Autio-Harmainen H, Pihlajaniemi T (1998) The short and long forms of type XVIII collagen show clear tissue specificities in their expression and location in basement membrane zones in humans. Am J Pathol 153: 611–626PubMedGoogle Scholar
  37. 37.
    Lietard J, Theret N, Rehn M, Musso O, L’Helgoualc’h A, Dargere D, Pihlajaniemi T, Clement B (2000) The promoter of the long variant of collagen XVIII, the precursor of endostatin, contains liver-specific regulatory elements. Hepatology 32: 1377–1385PubMedCrossRefGoogle Scholar
  38. 38.
    Musso O, Theret N, Heljasvaara R, Rehn M, Turlin B, Campion JP, Pihlajaniemi T, Clement B (2001) Tumor hepatocytes and basement membrane-producing cells specifically express two different forms of the endostatin precursor, collagen XVIII, in human liver cancers. Hepatology 33: 868–876PubMedCrossRefGoogle Scholar
  39. 39.
    Musso O, Rehn M, Theret N, Turlin B, Bioulac-Sage P, Lotrian D, Campion JP, Pihlajaniemi T, Clement B (2001) Tumor progression is associated with a significant decrease in the expression of the endostatin precursor collagen XVIII in human hepatocellular carcinomas. Cancer Res 61: 45–49PubMedGoogle Scholar
  40. 40.
    Quelard D, Lavergne E, Hendaoui I, Elamaa H, Tiirola U, Heljasvaara R, Pihlajaniemi T, Clement B, Musso O (2008) A cryptic Frizzled module in cell-surface collagen 18 inhibits Wnt/β-catenin signaling. PLoS One 3: e1878PubMedCrossRefGoogle Scholar
  41. 41.
    Kong HJ, Mooney DJ (2007) Micoenvironmental regulation of biomacromolecular therapies. Nat Rev Drug Discov 6: 455–463PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Bruno Clément
    • 1
  1. 1.INSERM, U-620, Detoxication and Tissue Repair UnitUniversity of Rennes IRennesFrance

Personalised recommendations