Skip to main content

MMP roles in the initiation and progression of cardiac remodeling leading to congestive heart failure

  • Chapter
Matrix Metalloproteinases in Tissue Remodelling and Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Cardiac remodeling is induced by a multitude of stimuli, including myocardial infarction, pressure and/or volume overload, and genetics; and involves matrix metalloproteinases (MMPs) every step of the way [1]. While cardiac remodeling is initially a compensatory response, the transition to adverse remodeling frequently culminates in the development of congestive heart failure (CHF), and CHF is a significant contributor to cardiovascular morbidity and mortality rates. This chapter will define cardiac remodeling, describe MMP-dependent mechanisms that stimulate the remodeling process, and explore future directions and therapeutic potentials in terms of MMP inhibition. We will focus on the primary diseases that stimulate cardiac remodeling in humans, namely myocardial infarction and hypertension. Understanding how cardiac remodeling evolves from an initially beneficial mechanism to a maladaptive event and how MMPs influence these stages will potentially provide us with markers to predict adverse events in the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling — concepts and clinical implications: a consensus paper from an International Forum on Cardiac Remodeling. J Am Coll Cardiol 35: 569–582

    PubMed  CAS  Google Scholar 

  2. Pfeffer JM, Pfeffer MA, Fletcher PJ, Braunwald E (1991) Progressive ventricular remodeling in rat with myocardial infarction. Am J Physiol 260: H1406–H1414

    PubMed  CAS  Google Scholar 

  3. Pfeffer MA, Braunwald E (1990) Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation 81: 1161–1172

    PubMed  CAS  Google Scholar 

  4. Cohn JN, Ferrari R, Sharpe N (2000) Cardiac remodeling — concepts and clinical implications: a consensus paper from an international forum on cardiac remodeling. J Am College Cardiol 35: 569–582

    CAS  Google Scholar 

  5. Ren G (2003) Inflammatory mechanisms in myocardial infarction. Curr Drug Targets — Inflammation & Allergy 2: 242–256

    CAS  Google Scholar 

  6. Frangogiannis NG, Smith CW, Entman ML (2002) The inflammatory response in myocardial infarction. Cardiovasc Res 53: 31–47

    PubMed  CAS  Google Scholar 

  7. Lindsey ML (2004) MMP induction and inhibition in myocardial infarction. Heart Fail Rev 9: 7–19

    PubMed  CAS  Google Scholar 

  8. Kurrelmeyer K, Kalra D, Bozkurt B, Wang F, Dibbs Z, Seta Y, Baumgarten G, Engle D, Sivasubramanian N, Mann DL (1998) Cardiac remodeling as a consequence and cause of progressive heart failure. Clin Cardiol 21: I14–I19

    PubMed  CAS  Google Scholar 

  9. Janicki JS, Brower GL, Gardner JD, Chancey AL, Stewart Jr JA (2004) The dynamic interaction between matrix metalloproteinase activity and adverse myocardial remodeling. Heart Fail Rev 9: 33–42

    PubMed  CAS  Google Scholar 

  10. Yan AT, Yan RT, Liu PP (2005) Narrative review: pharmacotherapy for chronic heart failure: evidence from recent clinical trials. Ann Intern Med 142: 132–145

    PubMed  CAS  Google Scholar 

  11. Azevedo CF, Cheng S, Lima JA (2005) Cardiac imaging to identify patients at risk for developing heart failure after myocardial infarction. Curr Heart Fail Rep 2: 183–188

    PubMed  Google Scholar 

  12. Mann DL (1999) Mechanisms and models in heart failure: a combinatorial approach. Circulation 100: 999–1008

    PubMed  CAS  Google Scholar 

  13. Manso AM, Elsherif L, Kang S-M, Ross RS (2006) Integrins, membrane-type matrix metalloproteinases and ADAMs: Potential implications for cardiac remodeling. Cardiovasc Res 69: 574–584

    PubMed  CAS  Google Scholar 

  14. Brew K, Dinakarpandian D, Nagase H (2000) Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta 1477: 267–283

    PubMed  CAS  Google Scholar 

  15. Cavusoglu E, Ruwende C, Chopra V, Yanamadala S, Eng C, Clark LT, Pinsky DJ, Marmur JD (2006) Tissue inhibitor of metalloproteinase-1 (TIMP-1) is an independent predictor of all-cause mortality, cardiac mortality, and myocardial infarction. Am Heart J 151: 1101.e1101–1101.e1108

    Google Scholar 

  16. Leco KJ, Apte SS, Taniguchi GT, Hawkes SP, Khokha R, Schultz GA, Edwards DR (1997) Murine tissue inhibitor of metalloproteinase-4 (Timp-4): cDNA isolation and expression in adult mouse tissues. FEBS Letters 401: 213–217

    PubMed  CAS  Google Scholar 

  17. Liu YE, Wang M, Greene J, Su J, Ullrich S, Li H, Sheng S, Alwxander P, Sang QA, Shi YE (1997) Preparation and characterization of recombinant tissue inhibitor of metalloproteinase 4 (TIMP-4). J Biol Chem 272:20479–20483

    PubMed  CAS  Google Scholar 

  18. Murphy G, Cockett MI, Stephens PE, Smith BJ, Docherty AJP (1987) Stromelysin is an activator of procollagenase. Biochem J 248: 265–268

    PubMed  CAS  Google Scholar 

  19. Cao J, Drews M, Lee HM, Conner C, Bahou WF, Zucker S (1998) The propeptide domain of membrane type 1 matrix metalloproteinase is required for binding of tissue inhibitor of metalloproteinases and for activation of pro-gelatinase A. J Biol Chem 273: 34745–34752

    PubMed  CAS  Google Scholar 

  20. Cowell S, Knquper V, Stewart ML, D’Ortho M-P, Stanton H, Hembry RM, Lopez-Otin C, Reynolds JJ, Murphy G (1998) Induction of matrix metalloproteinase activation cascades based on membrane-type 1 matrix metalloproteinase: associated activation of gelatinase A, gelatinase B and collagenase 3. Biochem J 331: 453–458

    PubMed  CAS  Google Scholar 

  21. Janowska-Wieczorek A, Marquez LA, Nabholtz JM, Cabuhat ML, Montano J, Chang H, Rozmus J, Russell JA, Edwards DR, Turner AR (1999) Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane. Blood 93: 3379–3390

    PubMed  CAS  Google Scholar 

  22. Ries C, Petrides PE (1995) Cytokine regulation of matrix metalloproteinase activity and its regulatory dysfunction in disease. Biol Chem Hoppe Seyler 376: 345–355

    PubMed  CAS  Google Scholar 

  23. Mauviel A (1993) Cytokine regulation of metalloproteinase gene expression. J Cell Biochem 53: 288–295

    PubMed  CAS  Google Scholar 

  24. Benbow U, Brinckerhoff CE (1997) The AP-1 Site and MMP gene regulation: what is all the fuss about? Matrix Biol 15: 519–526

    PubMed  CAS  Google Scholar 

  25. Sternlicht M, Werb Z (2001) How matrix metalloproteinases regulate cell behavior Annu Rev Cell Dev Biol 17: 463–516

    PubMed  CAS  Google Scholar 

  26. Van den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, Jacobsen C, Moestrup SK, Fry S, Royle L, Wormald MR et al (2006) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281: 18626–18637

    PubMed  Google Scholar 

  27. Sawicki G, Leon H, Sawicka J, Sariahmetoglu M, Schulze CJ, Scott PG, Szczesna-Cordary D, Schulz R (2005) Degradation of myosin light chain in isolated rat hearts subjected to ischemia-reperfusion injury: a new intracellular target for matrix metalloproteinase-2. Circulation 112: 544–552

    PubMed  CAS  Google Scholar 

  28. Velasco G, Pendas AM, Fueyo A, Knauper V, Murphy G, Lopez-Otin C (1999) Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J Biol Chem 274: 4570–4576

    PubMed  CAS  Google Scholar 

  29. Egeblad M, Werb Z (2002) New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2: 163–176

    Google Scholar 

  30. Vu TH, Werb Z (2000) Matrix metalloproteinases: effectors of development and normal physiology. Genes Dev 14: 2123–2133

    PubMed  CAS  Google Scholar 

  31. Nelson AR, Fingleton B, Rothenberg ML, Matrisian LM (2000) Matrix metalloproteinases: biologic activity and clinical implications. J Clin Oncol 18: 1135–1149

    PubMed  CAS  Google Scholar 

  32. Romanic AM, Burns-Kurtis CL, Gout B, Berrebi-Bertrand I, Ohlstein EH (2001) Matrix metalloproteinase expression in cardiac myocytes following myocardial infarction in the rabbit. Life Sci 68: 799–814

    PubMed  CAS  Google Scholar 

  33. Gaertner R, Jacob M-P, Prunier F, Angles-Cano E, Mercadier J-J, Michel J-B (2005) The plasminogen-MMP system is more activated in the scar than in viable myocardium 3 months post-MI in the rat. J Mol Cell Cardiol 38: 193–204

    PubMed  CAS  Google Scholar 

  34. Overall CM, Tam EM, Kappelhoff R, Connor A, Ewart T, Morrison CJ, Puente X, Lopez-Otin C, Seth A (2004) Protease degradomics: mass spectrometry discovery of protease substrates and the CLIP-CHIP, a dedicated DNA microarray of all human proteases and inhibitors. Biol Chem 385: 493–504

    PubMed  CAS  Google Scholar 

  35. Hashimoto G, Inoki I, Fujii Y, Aoki T, Ikeda E, Okada Y (2002) Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J Biol Chem 277: 36288–36295

    PubMed  CAS  Google Scholar 

  36. Yu Q, Stamenkovic I (2000) Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev 14: 163–176

    PubMed  Google Scholar 

  37. Manabe I, Shindo T, Nagai R (2002) Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res 91: 1103–1113

    PubMed  CAS  Google Scholar 

  38. Ivkovic S, Yoon BS, Popoff SN, Safadi FF, Libuda DE, Stephenson RC, Daluiski A, Lyons KM (2003) Connective tissue growth factor coordinates chondrogenesis and angiogenesis during skeletal development. Development 130: 2779–2791

    PubMed  CAS  Google Scholar 

  39. Kondo S, Kubota S, Shimo T, Nishida T, Yosimichi G, Eguchi T, Sugahara T, Takigawa M (2002) Connective tissue growth factor increased by hypoxia may initiate angiogenesis in collaboration with matrix metalloproteinases. Carcinogenesis 23: 769–776

    PubMed  CAS  Google Scholar 

  40. Chen C-C, Chen N, Lau LF (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. J Biol Chem 276: 10443–10452

    PubMed  CAS  Google Scholar 

  41. Shi-wen X, Stanton LA, Kennedy L, Pala D, Chen Y, Howat SL, Renzoni EA, Carter DE, Bou-Gharios G, Stratton RJ et al (2006) CCN2 is necessary for adhesive responses to transforming growth factor-beta1 in embryonic fibroblasts. J Biol Chem 281: 10715–10726

    PubMed  Google Scholar 

  42. Chaponnier C, Gabbiani G (2004) Pathological situations characterized by altered actin isoform expression. J Pathol 204: 386–395

    PubMed  CAS  Google Scholar 

  43. Rosado A, Lamas GA (1997) Left ventricular remodeling: clinical significance and therapy. Basic Res Cardiol 92: 66–68

    PubMed  CAS  Google Scholar 

  44. Janicki JS, Brower GL, Henegar JR, Wang L (1995) Ventricular remodeling in heart failure: the role of myocardial collagen. Adv Exp Med Biol 382: 239–245

    PubMed  CAS  Google Scholar 

  45. Yousef ZR, Redwood SR, Marber MS (2000) Postinfarction left ventricular remodeling: a pathophysiological and therapeutic review. Cardiovasc Drugs Ther 14: 243–252

    PubMed  CAS  Google Scholar 

  46. Dietz R, Osterziel KJ, Willenbrock R, Gulba DC, von Harsdorf R (1999) Ventricular remodeling after acute myocardial infarction. Thromb Haemost 82(Suppl 1): 73–75

    PubMed  Google Scholar 

  47. Weber KT, Sun Y, Ratajska A, Cleutjens JPM, Tyagi SC (1995) Structural remodeling of the myocardium in ischemic and hypertensive heart disease. In: NS Dhalla, RE Beamish, N Takeda, M Nagano (eds): The Failing Heart. Lippincott-Raven Publishers, Philadelphia, 163–185

    Google Scholar 

  48. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76: 44–51

    PubMed  CAS  Google Scholar 

  49. Gaudron P, Kugler I, Hu K, Bauer W, Eilles C, Ertl G (2001) Time course of cardiac structural, functional and electrical changes in asymptomatic patients after myocardial infarction: their inter-relation and prognostic impact. J Am Coll Cardiol 38: 33–40

    PubMed  CAS  Google Scholar 

  50. Migrino RQ, Young JB, Ellis SG, White HD, Lundergan CF, Miller DP, Granger CB, Ross AM, Califf RM, Topol EJ (1997) End-systolic volume index at 90 to 180 minutes into reperfusion therapy for acute myocardial infarction is a strong predictor of early and late mortality. The Global Utilization of Streptokinase and t-PA for Occluded Coronary Arteries (GUSTO)-I Angiographic Investigators. Circulation 96: 116–121

    PubMed  CAS  Google Scholar 

  51. Solomon SD, Pfeffer MA (1997) The decreasing incidence of left ventricular remodeling following myocardial infarction. Basic Res Cardiol 92: 61–65

    PubMed  CAS  Google Scholar 

  52. Bolognese L, Cerisano G (1999) Early predictors of left ventricular remodeling after acute myocardial infarction. Am Heart J 138: 79–83

    Google Scholar 

  53. Sutton MSJ, Pfeffer MA, Moye L, Plappert T, Rouleau JL, Lamas G, Rouleau J, Parker JO, Arnold MO, Sussex B et al (1997) Cardiovascular death and left ventricular remodeling two years after myocardial infarction: baseline predictors and impact of long-term use of captopril: information from the survival and ventricular enlargement (SAVE) trial. Circulation 96: 3294–3299

    Google Scholar 

  54. Solomon SD, Sutton MSJ, Lamas GA, Plappert T, Rouleau JL, Skali H, Moye L, Braunwald E, Pfeffer MA, for the Survival and Ventricular Enlargement (SAVE) Investigators (2002) Ventricular remodeling does not accompany the development of heart failure in diabetic patients after myocardial infarction. Circulation 106: 1251–1255

    PubMed  Google Scholar 

  55. Lavine SJ (2003) Prediction of heart failure post myocardial infarction: comparison of ejection fraction, transmitral filling parameters, and the index of myocardial performance. Echocardiography 20: 691–701

    PubMed  Google Scholar 

  56. Hellermann JP, Jacobsen SJ, Redfield MM, Reeder GS, Weston SA, Roger VL (2005) Heart failure after myocardial infarction: clinical presentation and survival. Eur J Heart Fail 7: 119–125

    PubMed  Google Scholar 

  57. Hellermann JP, Goraya TY, Jacobsen SJ, Weston SA, Reeder GS, Gersh BJ, Redfield MM, Rodeheffer RJ, Yawn BP, Roger VL (2003) Incidence of heart failure after myocardial infarction: is it changing over time? Am J Epidemiol 157: 1101–1107

    PubMed  Google Scholar 

  58. Lewis EF, Moye LA, Rouleau JL, Sacks FM, Arnold JM, Warnica JW, Flaker GC, Braunwald E, Pfeffer MA (2003) Predictors of late development of heart failure in stable survivors of myocardial infarction: the CARE study. J Am Coll Cardiol 42: 1446–1453

    PubMed  Google Scholar 

  59. Levy WC, Mozaffarian D, Linker DT, Sutradhar SC, Anker SD, Cropp AB, Anand I, Maggioni A, Burton P, Sullivan MD et al (2006) The Seattle heart failure model: prediction of survival in heart failure. Circulation 113: 1424–1433

    PubMed  Google Scholar 

  60. Anavekar NS, McMurray JJV, Velazquez EJ, Solomon SD, Kober L, Rouleau J-L, White HD, Nordlander R, Maggioni A, Dickstein K et al (2004) Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 351: 1285–1295

    PubMed  CAS  Google Scholar 

  61. Vanhoutte D, Schellings M, Pinto Y, Heymans S (2006) Relevance of matrix metalloproteinases and their inhibitors after myocardial infarction: A temporal and spatial window. Cardiovasc Res 69: 604–613

    PubMed  CAS  Google Scholar 

  62. Cleutjens JPM, Kandala JC, Guarda E, Guntaka RV, Weber KT (1995) Regulation of collagen degradation in the rat myocardium after infarction. J Mol Cell Cardiol 27: 1281–1292

    PubMed  CAS  Google Scholar 

  63. Wilson EM, Moainie SL, Baskin JM, Lowry AS, Deschamps AM, Mukherjee R, Guy TS, St John-Sutton MG, Gorman JH, III, Edmunds LH Jr et al (2003) Region-and type-specific induction of matrix metalloproteinases in post-myocardial infarction remodeling. Circulation 107: 2857–2863

    PubMed  CAS  Google Scholar 

  64. Peterson JT, Li H, Dillon L, Bryant JW (2000) Evolution of matrix metalloprotease and tissue inhibitor expression during heart failure progression in the infarcted rat. Cardiovasc Res 46: 307–315

    PubMed  CAS  Google Scholar 

  65. Herzog E, Gu A, Kohmoto T, Burkhoff D, Hochman JS (1998) Early activation of metalloproteinases after experimental myocardial infarction occurs in infarct and noninfarct zones. Cardiovasc Pathol 7: 307–312

    CAS  Google Scholar 

  66. Tao Z-Y, Cavasin MA, Yang F, Liu Y-H, Yang X-P (2004) Temporal changes in matrix metalloproteinase expression and inflammatory response associated with cardiac rupture after myocardial infarction in mice. Life Sciences 74: 1561–1572

    PubMed  CAS  Google Scholar 

  67. Lindsey ML, Escobar GP, Mukherjee R, Goshorn DK, Sheats NJ, Bruce JA, Mains IM, Hendrick JK, Hewett KW, Gourdie RG et al (2006) Matrix metalloproteinase-7 affects connexin-43 levels, electrical conduction, and survival after myocardial infarction. Circulation 113: 2919–2928

    PubMed  CAS  Google Scholar 

  68. Lindsey M, Wedin K, Brown MD, Keller C, Evans AJ, Smolen J, Burns AR, Rossen RD, Michael L, Entman M (2001) Matrix-dependent mechanism of neutrophil-mediated release and activation of matrix metalloproteinase 9 in myocardial ischemia/reperfusion. Circulation 103: 2181–2187

    PubMed  CAS  Google Scholar 

  69. Wagner DR, Delagardelle C, Ernens I, Rouy D, Vaillant M, Beissel J (2006) Matrix metalloproteinase-9 is a marker of heart failure after acute myocardial infarction. J Cardiac Failure 12: 66–72

    CAS  Google Scholar 

  70. Creemers EE, Cleutjens JP, Smits JF, Daemen MJ (2001) Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ Res 89: 201–210

    PubMed  CAS  Google Scholar 

  71. Lindsey ML, Gannon J, Aikawa M, Schoen FJ, Rabkin E, Lopresti-Morrow L, Crawford J, Black S, Libby P, Mitchell PG et al (2002) Selective matrix metalloproteinase inhibition reduces left ventricular remodeling but does not inhibit angiogenesis after myocardial infarction. Circulation 105: 753–758

    PubMed  CAS  Google Scholar 

  72. Peterson JT, Hallak H, Johnson L, Li H, O’Brien PM, Sliskovic DR, Bocan TMA, Coker ML, Etoh T, Spinale FG (2001) Matrix metalloproteinase inhibition attenuates left ventricular remodeling and dysfunction in a rat model of progressive heart failure. Circulation 103: 2303–2309

    PubMed  CAS  Google Scholar 

  73. Mukherjee R, Brinsa TA, Dowdy KB, Scott AA, Baskin JM, Deschamps AM, Lowry AS, Escobar GP, Lucas DG, Yarbrough WM et al (2003) Myocardial infarct expansion and matrix metalloproteinase inhibition. Circulation 107: 618–625

    PubMed  CAS  Google Scholar 

  74. Yarbrough WM, Mukherjee R, Escobar GP, Mingoia JT, Sample JA, Hendrick JW, Dowdy KB, McLean JE, Lowry AS, O’Neill TP et al (2003) Selective targeting and timing of matrix metalloproteinase inhibition in post-myocardial infarction remodeling. Circulation 108: 1753–1759

    PubMed  CAS  Google Scholar 

  75. Villarreal FJ, Griffin M, Omens J, Dillmann W, Nguyen J, Covell J (2003) Early shortterm treatment with doxycycline modulates postinfarction left ventricular remodeling. Circulation 108: 1487–1492

    PubMed  CAS  Google Scholar 

  76. Rohde LE, Ducharme A, Arroyo LH, Aikawa M, Sukhova GH, Lopez-Anaya A, McClure KF, Mitchell PG, Libby P, Lee RT (1999) Matrix metalloproteinase inhibition attenuates early left ventricular enlargement after experimental myocardial infarction in mice. Circulation 15: 3063–3070

    Google Scholar 

  77. Janssens S, Lijnen HR (2006) What has been learned about the cardiovascular effects of matrix metalloproteinases from mouse models? Cardiovasc Res 69: 585–594

    PubMed  CAS  Google Scholar 

  78. Creemers EEJM, Davis JN, Parkhurst AM, Leenders P, Dowdy KB, Hapke E, Hauet AM, Escobar PG, Cleutjens JPM, Smits JFM et al (2003) Deficiency of TIMP-1 exacerbates LV remodeling after myocardial infarction in mice. Am J Physiol Heart Circ Physiol 284: H364–371

    PubMed  CAS  Google Scholar 

  79. Hudson MP, Armstrong PW, Ruzyllo W, Brum J, Cusmano L, Krzeski P, Lyon R, Quinones M, Theroux P, Sydlowski D et al (2006) Effects of selective matrix metalloproteinase inhibitor (PG-116800) to prevent ventricular remodeling after myocardial infarction: results of the PREMIER (Prevention of Myocardial Infarction Early Remodeling) trial. J Am College Cardiol 48: 15–20

    CAS  Google Scholar 

  80. Wakatsuki T, Schlessinger J, Elson EL (2004) The biochemical response of the heart to hypertension and exercise. Trends Biochem Sci 29: 609–617

    PubMed  CAS  Google Scholar 

  81. Tsotetsi OJ, Woodiwiss AJ, Netjhardt M, Qubu D, Brooksbank R, Norton GR (2001) Attenuation of cardiac failure, dilatation, damage, and detrimental interstitial remodeling without regression of hypertrophy in hypertensive rats. Hypertension 38: 846–851

    PubMed  CAS  Google Scholar 

  82. Kass DA (2002) Age-related changes in venticular-arterial coupling: pathophysiologic implications. Heart Fail Rev 7: 51–62

    PubMed  Google Scholar 

  83. Pepe S, Lakatta EG (2005) Aging hearts and vessels: Masters of adaptation and survival. Cardiovasc Res 66: 190–193

    PubMed  CAS  Google Scholar 

  84. Gerlach RF, Demacq C, Jung K, Tanus-Santos JE (2007) Rapid separation of serum does not avoid artificially higher matrix metalloproteinase (MMP)-9 levels in serum versus plasma. Clin Biochem 40: 119–123

    PubMed  CAS  Google Scholar 

  85. Thrailkill K, Cockrell G, Simpson P, Moreau C, Fowlkes J, Bunn RC (2006) Physiological matrix metalloproteinase (MMP) concentrations: comparison of serum and plasma specimens. Clin Chem Lab Med 44: 503–504

    PubMed  CAS  Google Scholar 

  86. Yasmin, Wallace S, McEniery CM, Dakham Z, Pusalkar P, Maki-Petaja K, Ashby MJ, Cockcroft JR, Wilkinson IB (2005) Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol 25: 372

    PubMed  CAS  Google Scholar 

  87. Li H, Simon H, Bocan TMA, Peterson JT (2000) MMP/TIMP expression in spontaneously hypertensive heart failure rats: the effect of ACE-and MMP-inhibition. Cardiovasc Res 46: 298–306

    PubMed  CAS  Google Scholar 

  88. Iwanaga Y, Aoyama T, Kihara Y, Onozawa Y, Yoneda T, Sasayama S (2002) Excessive activation of matrix metalloproteinases coincides with left ventricular remodeling during transition from hypertrophy to heart failure in hypertensive rats. J Am Coll Cardiol 39: 1384–1391

    PubMed  CAS  Google Scholar 

  89. Shah BH, Catt KJ (2004) Matrix metalloproteinase-dependent EGF receptor activation in hypertension and left ventricular hypertrophy. Trends Endocrin Metab 15: 241–243

    CAS  Google Scholar 

  90. Laviades C, Varo N, Fernandez J, Mayor G, Gil MJ, Monreal I, Diez J (1998) Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circulation 98: 535–540

    PubMed  CAS  Google Scholar 

  91. Heymans S, Lupu F, Terclavers S, Vanwetswinkel B, Herbert J-M, Baker A, Collen D, Carmeliet P, Moons L (2005) Loss or inhibition of uPA or MMP-9 attenuates LV remodeling and dysfunction after acute pressure overload in mice. Am J Pathol 166: 15–25

    PubMed  CAS  Google Scholar 

  92. Lee RT (2001) Matrix metalloproteinase inhibition and the prevention of heart failure. Trends Cardiovasc Med 11: 202–205

    PubMed  CAS  Google Scholar 

  93. Coker ML, Thomas CV, Clair MJ, Hendrick JW, Kromback RS, Galis ZS, Spinale FG (1998) Myocardial matrix metalloproteinase activity and abundance with congestive heart failure. Am J Physiol Heart Circ Physiol 274: H1516–H1523

    CAS  Google Scholar 

  94. Wilson EM, Gunasinghe HR, Coker ML, Sprunger P, Lee-Jackson D, Bozkurt B, Deswal A, Mann DL, Spinale FG (2002) Plasma matrix metalloproteinase and inhibitor profiles in patients with heart failure. J Card Fail 8: 390–398

    PubMed  CAS  Google Scholar 

  95. Fedak PWM, Altamentova SM, Weisel RD, Nili N, Ohno N, Verma S, Lee T-YJ, Kiani C, Mickle DAG, Strauss BH et al (2003) Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3. Am J Physiol Heart Circ Physiol 284: H626–634

    PubMed  CAS  Google Scholar 

  96. Corda S, Samuel JL, Rappaport L (2000) Extracellular matrix and growth factors during heart growth. Heart Failure Rev 5: 119–130

    CAS  Google Scholar 

  97. Sun Y, Weber KT (1998) Cardiac remodeling by fibrous tissue: role of local factors and circulating hormones. Ann Med 30: 3–8

    PubMed  CAS  Google Scholar 

  98. Camelliti P, Borg TK, Kohl P (2005) Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65: 40–51

    PubMed  CAS  Google Scholar 

  99. Hsueh WA, Law RE, Do YS (1998) Integrins, adhesion, and cardiac remodeling. Hypertension 31: 176–180

    PubMed  CAS  Google Scholar 

  100. Brilla CG, Maisch B, Zhou G, Weber KT (1995) Hormonal regulation of cardiac fibroblast function. Eur Heart J 16: 45–50

    PubMed  CAS  Google Scholar 

  101. Bujak M, Frangogiannis NG The role of TGF-[beta] signaling in myocardial infarction and cardiac remodeling. Cardiovasc Res 74(2): 184–195

    Google Scholar 

  102. Stawowy P, Margeta C, Kallisch H, Seidah NG, Chretien M, Fleck E, Graf K (2004) Regulation of matrix metalloproteinase MT1-MMP/MMP-2 in cardiac fibroblasts by TGF-beta1 involves furin-convertase. Cardiovasc Res 63: 87–97

    PubMed  CAS  Google Scholar 

  103. Gurantz D, Cowling RT, Villarreal FJ, Greenberg BH (1999) Tumor Necrosis Factor-{alpha} upregulates angiotensin ii type 1 receptors on cardiac fibroblasts. Circ Res 85: 272–279

    PubMed  CAS  Google Scholar 

  104. Kusuyama T, Yoshiyama M, Omura T, Nishiya D, Enomoto S, Matsumoto R, Izumi Y, Akioka K, Takeuchi K, Iwao H et al (2005) Angiotensin blockade inhibits osteopontin expression in non-infarcted myocardium after myocardial infarction. J Pharmacol Sci 98: 283–289

    PubMed  CAS  Google Scholar 

  105. Zhou X, Tan FK, Guo X, Wallis D, Milewicz DM, Xue S, Arnett FC (2005) Small interfering RNA inhibition of SPARC attenuates the profibrotic effect of transforming growth factor beta1 in cultured normal human fibroblasts. Arthritis Rheum 52: 257–261

    PubMed  CAS  Google Scholar 

  106. Schellings MWM, Pinto YM, Heymans S (2004) Matricellular proteins in the heart: possible role during stress and remodeling. Cardiovasc Res 64: 24–31

    PubMed  CAS  Google Scholar 

  107. Bradshaw AD, Puolakkainen P, Dasgupta J, Davidson JM, Wight TN, Helene Sage E (2003) SPARC-null mice display abnormalities in the dermis characterized by decreased collagen fibril diameter and reduced tensile strength. J Invest Dermatol 120: 949–955

    PubMed  CAS  Google Scholar 

  108. Sasaki T, Gohring W, Mann K, Maurer P, Hohenester E, Knauper V, Murphy G, Timpl R (1997) Limited cleavage of extracellular matrix protein BM-40 by matrix metalloproteinases increases its affinity for collagens. J Biol Chem 272: 9237–9243

    PubMed  CAS  Google Scholar 

  109. Sage EH, Reed M, Funk SE, Truong T, Steadele M, Puolakkainen P, Maurice DH, Bassuk JA (2003) Cleavage of the matricellular protein SPARC by matrix metalloproteinase 3 produces polypeptides that influence angiogenesis. J Biol Chem 278: 37849–37857

    PubMed  CAS  Google Scholar 

  110. Cohn JN, Levine B, Olivari MT, Garberg V, Lura D, Francis GS, Simon AB, Rector T (1984) Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. N Engl J Med 311: 819–823

    PubMed  CAS  Google Scholar 

  111. Dixon IMC, Reid NL, Ju H (1997) Angiotensin II and TGF-β in the development of cardiac fibrosis, myocyte hypertrophy, and heart failure. Heart Failure Reviews 2: 107–116

    CAS  Google Scholar 

  112. Kirchengast M, Klaus M (1999) Endothelin-1 and endothelin receptor antagonists in cardiovascular remodeling. Proc Soc Experimental Biol Med 221: 312–325

    CAS  Google Scholar 

  113. Zannad F, Alla F, Dousset B, Perez A, Pitt B (2000) Limitation of excessive extracellular matrix turnover may contribute to survival benefit of spironolactone therapy in patients with congestive heart failure: insights from the randomized aldactone evaluation study (RALES). Rales Investigators. Circulation 102: 2700–2706

    PubMed  CAS  Google Scholar 

  114. Rauchhaus M, Doehner W, Francis DP, Davos C, Kemp M, Liebenthal C, Niebauer J, Hooper J, Volk HD, Coats AJ et al (2000) Plasma cytokine parameters and mortality in patients with chronic heart failure. Circulation 102: 3060–3067

    PubMed  CAS  Google Scholar 

  115. Fichtlscherer S, Rossig L, Breuer S, Vasa M, Dimmeler S, Zeiher AM (2001) Tumor necrosis factor antagonism with etanercept improves systemic endothelial vasoreactivity in patients with advanced heart failure. Circulation 104: 3023–3025

    PubMed  CAS  Google Scholar 

  116. Tsuruda T, Costello-Boerrigter LC, Burnett JC Jr (2004) Matrix metalloproteinases: pathways of induction by bioactive molecules. Heart Fail Rev 9: 53–61

    PubMed  CAS  Google Scholar 

  117. McMurray JJ (2004) Angiotensin inhibition in heart failure. J Renin Angiotensin Aldosterone Syst 5(Suppl 1): S17–22

    PubMed  CAS  Google Scholar 

  118. Opie LH, Commerford PJ, Gersh BJ, Pfeffer MA (2006) Controversies in ventricular remodelling. Lancet 367: 356–367

    PubMed  Google Scholar 

  119. Pfeffer MA (1994) Mechanistic lessons from the SAVE Study. Survival and ventricular enlargement. Am J Hypertens 7: 106S–111S

    PubMed  CAS  Google Scholar 

  120. Peng H, Carretero OA, Vuljaj N, Liao T-D, Motivala A, Peterson EL, Rhaleb N-E (2005) Angiotensin-converting enzyme inhibitors: a new mechanism of action. Circulation 112: 2436–2445

    PubMed  CAS  Google Scholar 

  121. Tsuruda T, Boerrigter G, Huntley BK, Noser JA, Cataliotti A, Costello-Boerrigter LC, Chen HH, Burnett JC Jr (2002) Brain natriuretic peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res 91: 1127–1134

    PubMed  CAS  Google Scholar 

  122. Shimizu N, Yoshiyama M, Omura T, Hanatani A, Kim S, Takeuchi K, Iwao H, Yoshikawa J (1998) Activation of mitogen-activated protein kinases and activator protein-1 in myocardial infarction in rats. Cardiovasc Res 38: 116–124

    PubMed  CAS  Google Scholar 

  123. Dhein S, Polontchouk L, Salameh A, Haefliger J-A (2002) Pharmacological modulation and differential regulation of the cardiac gap junction proteins connexin 43 and connexin 40. Biology of the Cell 94: 409–422

    PubMed  CAS  Google Scholar 

  124. Bouzegrhane F, Thibault G (2002) Is angiotensin II a proliferative factor of cardiac fibroblasts? Cardiovasc Res 53: 304–312

    PubMed  CAS  Google Scholar 

  125. Campbell SE, Janicki JS, Weber KT (1995) Temporal differences in fibroblast proliferation and phenotype expression in response to chronic administration of angiotensin ii or aldosterone. J Mol Cell Cardiol 27: 1545–1560

    PubMed  CAS  Google Scholar 

  126. Sawyer DB, Siwik DA, Xiao L, Pimentel DR, Singh K, Colucci WS (2002) Role of oxidative stress in myocardial hypertrophy and failure. J Mol Cell Cardiol 34: 379–388

    PubMed  CAS  Google Scholar 

  127. Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH et al (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11: 376–381

    PubMed  CAS  Google Scholar 

  128. Sentman M-L, Granstrom M, Jakobson H, Reaume A, Basu S, Marklund SL (2006) Phenotypes of mice lacking extracellular superoxide dismutase and copper-and zinccontaining superoxide dismutase. J Biol Chem 281: 6904–6909

    PubMed  CAS  Google Scholar 

  129. Siwik DA, Pagano PJ, Colucci WS (2001) Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am J Physiol Cell Physiol 280: C53–60

    PubMed  CAS  Google Scholar 

  130. Reunanen N, Li S-P, Ahonen M, Foschi M, Han J, Kahari V-M (2002) Activation of p38alpha MAPK enhances collagenase-1 (matrix metalloproteinase (MMP)-1) and stromelysin-1 (MMP-3) expression by mRNA stabilization. J Biol Chem 277: 32360–32368

    PubMed  CAS  Google Scholar 

  131. Cohn JN (1997) Overview of the treatment of heart failure. Am J Cardiol 80: 2L–6L

    PubMed  CAS  Google Scholar 

  132. Dalton WS, Friend SH (2006) Cancer biomarkers — an invitation to the table. Science 312: 1165–1168

    PubMed  CAS  Google Scholar 

  133. Pfeffer MA (1998) ACE inhibitors in acute myocardial infarction. Circulation 97(22): 2192–2194

    PubMed  CAS  Google Scholar 

  134. Pfeffer MA, Pfeffer JM, Steinberg C, Finn P (1985) Survival after an experimental myocardial infarction: beneficial effects of long-term therapy with captopril. Circulation 72: 406–412

    PubMed  CAS  Google Scholar 

  135. Reinhardt D, Sigusch HH, Hensse J, Tyagi SC, Korfer R, Figulla HR (2002) Cardiac remodelling in end stage heart failure: upregulation of matrix metalloproteinase (MMP) irrespective of the underlying disease, and evidence for a direct inhibitory effect of ACE inhibitors on MMP. Heart 88: 525–530

    PubMed  CAS  Google Scholar 

  136. Lindsey ML, Spinale FG (2005) Targeting matrix remodeling in cardiac hypertrophy and heart failure. Drug Discovery Today: Therapeutic Strategies 2: 253–258

    Google Scholar 

  137. Lindsey ML (2006) Novel strategies to delineate matrix metalloproteinase (MMP)-substrate relationships and identify targets to block MMP activity. Mini Rev Med Chem 6: 1243–1248

    PubMed  CAS  Google Scholar 

  138. Peterson JT (2006) The importance of estimating the therapeutic index in the development of matrix metalloproteinase inhibitors. Cardiovasc Res 69: 677–687

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Lin, J., Lindsey, M.L. (2008). MMP roles in the initiation and progression of cardiac remodeling leading to congestive heart failure. In: Lagente, V., Boichot, E. (eds) Matrix Metalloproteinases in Tissue Remodelling and Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8585-9_7

Download citation

Publish with us

Policies and ethics