Skip to main content

Abstract

Cystic fibrosis (CF) is the most frequent hereditary lethal disease in Caucasians. It is the consequence of a mutation in a chloride channel called CFTR. This defective channel leads to viscous secretions in all exocrine glands and therefore destruction and fibrosis of these organs. The main point of CF is the lung disease with inflammation and infection leading towards remodelling. There are only symptomatic treatments. Matrix metalloproteinases (MMPs) play several roles in CF development. Indeed, MMPs are involved in the regulation of CFTR channel. The alveolar levels of MMPs in CF patients are increased compared to controls with active form and lead to an imbalance between proteases and anti-proteases. MMPs are enhanced in sputum and plasma in severe CF patients. MMPs also have a role in regeneration of human CF airway surface epithelium and differentiation. MMPs could also interfere with the aerosolised medication. Together, these data exhibit the major role of MMPs in CF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinton PM (1999) Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 79(1 Suppl): S3–S22

    PubMed  CAS  Google Scholar 

  2. Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, al-Awqati Q (1991) Defective acidification of intracellular organelles in cystic fibrosis. Nature 352(6330): 70–73

    Article  PubMed  CAS  Google Scholar 

  3. Hasegawa H, Skach W, Baker O, Calayag MC, Lingappa V, Verkman AS (1992) A multifunctional aqueous channel formed by CFTR. Science 258(5087): 1477–1479

    Article  PubMed  CAS  Google Scholar 

  4. Loussouarn G, Demolombe S, Mohammad-Panah R, Escande D, Baro I (1996) Expression of CFTR controls cAMP-dependent activation of epithelial K+ currents. Am J Physiol 271(5 Pt 1): C1565–C1573

    PubMed  CAS  Google Scholar 

  5. Pilewski JM, Frizzell RA (1999) Role of CFTR in airway disease. Physiol Rev 79(1 Suppl): S215–S255

    PubMed  CAS  Google Scholar 

  6. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) CFTR as a cAMP-dependent regulator of sodium channels. Science 269(5225): 847–850

    Article  PubMed  CAS  Google Scholar 

  7. Brasfield D, Hicks G, Soong S, Tiller RE (1979) The chest roentgenogram in cystic fibrosis: a new scoring system. Pediatrics 63(1): 24–29

    PubMed  CAS  Google Scholar 

  8. Brasfield D, Hicks G, Soong S, Peters J, Tiller R (1980) Evaluation of scoring system of the chest radiograph in cystic fibrosis: a collaborative study. AJR Am J Roentgenol 134(6): 1195–1198

    PubMed  CAS  Google Scholar 

  9. Shwachman H, Kulczycki LL (1958) Long-term study of one hundred five patients with cystic fibrosis; studies made over a five-to fourteen-year period. AMA J Dis Child 96(1): 6–15

    PubMed  CAS  Google Scholar 

  10. Comeau AM, Accurso FJ, White TB, Campbell PW III, Hoffman G, Parad RB, Wilfond BS, Rosenfeld M, Sontag MK, Massie J et al (2007) Guidelines for implementation of cystic fibrosis newborn screening programs: Cystic Fibrosis Foundation workshop report. Pediatrics 119(2): e495–e518

    Article  PubMed  Google Scholar 

  11. Wagener JS, Headley AA (2003) Cystic fibrosis: current trends in respiratory care. Respir Care 48(3): 234–245

    PubMed  Google Scholar 

  12. Littlewood JM, Wolfe SP, Conway SP (2006) Diagnosis and treatment of intestinal malabsorption in cystic fibrosis. Pediatr Pulmonol 41(1): 35–49

    Article  PubMed  Google Scholar 

  13. Derelle J (2003) Airway inflammation in cystic fibrosis. Rev Prat 53(2): 141–144

    PubMed  Google Scholar 

  14. Khan TZ, Wagener JS, Bost T, Martinez J, Accurso FJ, Riches DW (1995) Early pulmonary inflammation in infants with cystic fibrosis. Am J Respir Crit Care Med 151(4): 1075–1082

    PubMed  CAS  Google Scholar 

  15. De Rose V (2002) Mechanisms and markers of airway inflammation in cystic fibrosis. Eur Respir J 19(2): 333–340

    Article  PubMed  Google Scholar 

  16. Birrer P, McElvaney NG, Rudeberg A, Sommer CW, Liechti-Gallati S, Kraemer R, Hubbard R, Crystal RG (1994) Protease-antiprotease imbalance in the lungs of children with cystic fibrosis. Am J Respir Crit Care Med 150(1): 207–213

    PubMed  CAS  Google Scholar 

  17. Infeld MD (1997) Cell-matrix interactions in gland development in the lung. Exp Lung Res 23(2): 161–169

    Article  PubMed  CAS  Google Scholar 

  18. Duszyk M, Shu Y, Sawicki G, Radomski A, Man SF, Radomski MW (1999) Inhibition of matrix metalloproteinase MMP-2 activates chloride current in human airway epithelial cells. Can J Physiol Pharmacol 77(7): 529–535

    Article  PubMed  CAS  Google Scholar 

  19. Ratjen F, Hartog CM, Paul K, Wermelt J, Braun J (2002) Matrix metalloproteases in BAL fluid of patients with cystic fibrosis and their modulation by treatment with dornase alpha. Thorax 57(11): 930–934

    Article  PubMed  CAS  Google Scholar 

  20. Delacourt C, Le BM, d’Ortho MP, Doit C, Scheinmann P, Navarro J, Harf A, Hartmann DJ, Lafuma C (1995) Imbalance between 95 kDa type IV collagenase and tissue inhibitor of metalloproteinases in sputum of patients with cystic fibrosis. Am J Respir Crit Care Med 152(2): 765–774

    PubMed  CAS  Google Scholar 

  21. Gaggar A, Li Y, Weathington N, Winkler M, Kong M, Jackson P, Blalock JE, Clancy J (2007) Matrix metalloprotease-9 dysregulation in lower airway secretions of cystic fibrosis patients. Am J Physiol Lung Cell Mol Physiol 293: L96–L104

    Article  PubMed  CAS  Google Scholar 

  22. Power C, O’Connor CM, MacFarlane D, O’Mahoney S, Gaffney K, Hayes J, FitzGerald MX (1994) Neutrophil collagenase in sputum from patients with cystic fibrosis. Am J Respir Crit Care Med 150(3): 818–822

    PubMed  CAS  Google Scholar 

  23. Sagel SD, Kapsner RK, Osberg I (2005) Induced sputum matrix metalloproteinase-9 correlates with lung function and airway inflammation in children with cystic fibrosis. Pediatr Pulmonol 39(3): 224–232

    Article  PubMed  Google Scholar 

  24. Jouneau S, Leveiller G, Desrues B, Lagente V, Martin-Chouly C (2005) Increased EMMPRIN and MT1-MMP levels in the plasma of the stable adult patients with cystic fibrosis. Eur Respir J 26(Suppl 49): 404s

    Google Scholar 

  25. Puchelle E, Le SP, Hajj R, Coraux C (2006) Regeneration of injured airway epithelium. Ann Pharm Fr 64(2): 107–113

    PubMed  CAS  Google Scholar 

  26. Hajj R, Lesimple P, Nawrocki-Raby B, Birembaut P, Puchelle E, Coraux C (2007) Human airway surface epithelial regeneration is delayed and abnormal in cystic fibrosis. J Pathol 211(3): 340–350

    Article  PubMed  CAS  Google Scholar 

  27. Attucci S, Gauthier A, Korkmaz B, Delepine P, Martino MF, Saudubray F, Diot P, Gauthier F (2006) EPI-hNE4, a proteolysis-resistant inhibitor of human neutrophil elastase and potential anti-inflammatory drug for treating cystic fibrosis. J Pharmacol Exp Ther 318(2): 803–809

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Jouneau, S. et al. (2008). Role of matrix metalloproteinases (MMPs) in cystic fibrosis. In: Lagente, V., Boichot, E. (eds) Matrix Metalloproteinases in Tissue Remodelling and Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8585-9_5

Download citation

Publish with us

Policies and ethics