Skip to main content

Part of the book series: Progress in Inflammation Research ((PIR))

Abstract

Lung fibrosis is the final result of a large variety of stimuli including systemic and autoimmune reactions, exposure to organic and inorganic particles, drugs, and radiation. Independent of etiology, the fibrotic response in the lung can be visualized as a dynamic and highly integrated cellular response to persistent injury and may be related to a damage-triggered inflammatory response or to an aberrant epithelial or endothelial reaction. In any case, the key cellular mediator is the myofibroblast, which when activated is the major effector of the lung remodeling. Several matrix metalloproteases (MMPs) have been shown to participate in this pathological process. These enzymes play an essential but complex role in several interrelated processes that take place in the pathogenesis of lung fibrosis including extracellular matrix remodeling, basement membrane disruption, epithelial apoptosis, cell migration, and angiogenesis. This review will focus on the role of MMPs in the development of lung fibrosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ryu JH, Daniels CE, Hartman TE, Yi ES (2007) Diagnosis of interstitial lung diseases. Mayo Clin Proc 82: 976–986

    PubMed  Google Scholar 

  2. Green FH (2002) Overview of pulmonary fibrosis. Chest 122(6 Suppl): 334S–339S

    Article  PubMed  Google Scholar 

  3. Pardo A, Selman M (2002) Molecular mechanisms of pulmonary fibrosis. Front Biosci 7: d1743–1761

    Article  PubMed  CAS  Google Scholar 

  4. Selman M, King TE, Pardo A (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134: 136–151

    PubMed  CAS  Google Scholar 

  5. Luzina IG, Todd NW, Iacono AT, Atamas SP (2008) Roles of T lymphocytes in pulmonary fibrosis. J Leukoc Biol 83: 237–244

    Article  PubMed  CAS  Google Scholar 

  6. Stramer BM, Mori R, Martin P (2007) The inflammation-fibrosis link? A Jekyll and Hyde role for blood cells during wound repair. J Invest Dermatol 127: 1009–1017

    Article  PubMed  CAS  Google Scholar 

  7. Huaux F (2007) New developments in the understanding of immunology in silicosis. Curr Opin Allergy Clin Immunol 7: 168–173

    Article  PubMed  Google Scholar 

  8. Keane MP, Strieter RM, Lynch JP 3rd, Belperio JA (2006) Inflammation and angiogenesis in fibrotic lung disease. Semin Respir Crit Care Med 27: 589–599

    Article  PubMed  Google Scholar 

  9. Garrood T, Lee L, Pitzalis C (2006) Molecular mechanisms of cell recruitment to inflammatory sites: general and tissue-specific pathways. Rheumatology (Oxford) 45: 250–260

    Article  CAS  Google Scholar 

  10. Rao RM, Shaw SK, Kim M, Luscinskas FW (2005) Emerging topics in the regulation of leukocyte transendothelial migration. Microcirculation 12: 83–89

    Article  PubMed  CAS  Google Scholar 

  11. Selman M, Pardo A (2006) Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc Am Thorac Soc 3: 364–372

    Article  PubMed  CAS  Google Scholar 

  12. Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172: 973–981

    Article  PubMed  CAS  Google Scholar 

  13. Willis BC, Liebler JM, Luby-Phelps K, Nicholson AG, Crandall ED, du Bois RM, Borok Z (2005) Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-beta1: potential role in idiopathic pulmonary fibrosis. Am J Pathol 166: 1321–1332

    PubMed  CAS  Google Scholar 

  14. Kim KK, Kugler MC, Wolters PJ, Robillard L, Galvez MG, Brumwell AN, Sheppard D, Chapman HA (2006) Alveolar epithelial cell mesenchymal transition develops in vivo during pulmonary fibrosis and is regulated by the extracellular matrix. Proc Natl Acad Sci USA 103: 13180–13185

    Article  PubMed  CAS  Google Scholar 

  15. Rawlings ND, Morton FR, Barrett AJ (2006) MEROPS: the peptidase database. Nucleic Acids Res 34: D270–D272

    Article  PubMed  CAS  Google Scholar 

  16. Pardo A, Selman M, Kaminski N (2008) Approaching the degradome in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 40: 1141–1155

    Article  PubMed  CAS  Google Scholar 

  17. Puente XS, Sanchez LM, Overall CM, Lopez-Otin C (2003) Human and mouse proteases: a comparative genomic approach. Nat Rev Genet 4: 544–558

    Article  PubMed  CAS  Google Scholar 

  18. Limb GA, Matter K, Murphy G, Cambrey AD, Bishop PN, Morris GE, Khaw PT (2005) Matrix metalloproteinase-1 associates with intracellular organelles and confers resistance to lamin A/C degradation during apoptosis. Am J Pathol 166: 1555–1563

    PubMed  CAS  Google Scholar 

  19. Wang W, Schulze CJ, Suarez-Pinzon WL, Dyck JR, Sawicki G, Schulz R (2002) Intracellular action of matrix metalloproteinase-2 accounts for acute myocardial ischemia and reperfusion injury. Circulation 106: 1543–1549

    Article  PubMed  CAS  Google Scholar 

  20. Kwan JA, Schulze CJ, Wang W, Leon H, Sariahmetoglu M, Sung M, Sawicka J, Sims DE, Sawicki G, Schulz R (2004) Matrix metalloproteinase-2 (MMP-2) is present in the nucleus of cardiac myocytes and is capable of cleaving poly (ADP-ribose) polymerase (PARP) in vitro. FASEB J 18: 690–692

    PubMed  CAS  Google Scholar 

  21. Luo D, Mari B, Stoll I, Anglard P (2002) Alternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J Biol Chem 277: 25527–25536

    Article  PubMed  CAS  Google Scholar 

  22. Brinckerhoff CE, Matrisian LM (2002) Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol 3: 207–214

    Article  PubMed  CAS  Google Scholar 

  23. Folgueras AR, Pendas AM, Sanchez LM, Lopez-Otin C (2004) Matrix metalloproteinases in cancer: from new functions to improved inhibition strategies. Int J Dev Biol 48: 411–424

    Article  PubMed  CAS  Google Scholar 

  24. Sternlicht MD, Werb Z (2001) How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17: 463–516

    Article  PubMed  CAS  Google Scholar 

  25. Pardo A, Selman M (2006) Matrix metalloproteases in aberrant fibrotic tissue remodeling. Proc Am Thorac Soc 3: 383–388

    Article  PubMed  CAS  Google Scholar 

  26. Zuo F, Kaminski N, Eugui E, Allard J, Yakhini Z, Ben-Dor A, Lollini L, Morris D, Kim Y, DeLustro B et al (2002) Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc Natl Acad Sci USA 999: 6292–6297

    Article  CAS  Google Scholar 

  27. Segura-Valdez L, Pardo A, Gaxiola M, Uhal BD, Becerril C, Selman M (2000) Upregulation of gelatinases A and B, collagenases 1 and 2, and increased parenchymal cell death in COPD. Chest 117: 684–694

    Article  PubMed  CAS  Google Scholar 

  28. Vincenti MP, Brinckerhoff CE (2002) Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 4: 157–164

    Article  PubMed  CAS  Google Scholar 

  29. Fukuda Y, Ishizaki M, Kudoh S, Kitaichi M, Yamanaka N (1998) Localization of matrix metalloproteinases-1,-2, and-9 and tissue inhibitor of metalloproteinase-2 in interstitial lung diseases. Lab Invest 78: 687–698

    PubMed  CAS  Google Scholar 

  30. Selman M, Ruiz V, Cabrera S, Segura L, Ramírez R, Barrios R, Pardo A (2000) TIMP-1,-2,-3 and-4 in idiopathic pulmonary fibrosis. A prevailing non degradative lung microenvironment? Am J Physiol 279: L562–L574

    CAS  Google Scholar 

  31. Hall MC, Young DA, Waters JG, Rowan AD, Chantry A, Edwards DR, Clark IM (2003) The comparative role of activator protein 1 and Smad factors in the regulation of Timp-1 and MMP-1 gene expression by transforming growth factor-beta 1. J Biol Chem 278: 10304–10313

    Article  PubMed  CAS  Google Scholar 

  32. Pardo A, Gibson K, Cisneros J, Richards TJ, Yang Y, Becerril C, Yousem S, Herrera I, Ruiz V, Selman M et al (2005) Up-regulation and profibrotic role of osteopontin in human idiopathic pulmonary fibrosis. PLoS Med 2: e251

    Article  PubMed  CAS  Google Scholar 

  33. Swiderski RE, Dencoff JE, Floerchinger CS, Shapiro SD, Hunninghake GW (1998) Differential expression of extracellular matrix remodeling genes in a murine model of bleomycin-induced pulmonary fibrosis. Am J Pathol 152: 821–828

    PubMed  CAS  Google Scholar 

  34. Ortiz LA, Lasky J, Gozal E, Ruiz V, Lungarella G, Cavarra E, Brody AR, Friedman M, Pardo A, Selman M (2001) Tumor necrosis factor receptor deficiency alters matriz metalloproteinase 13/tissue inhibitor of metalloproteinase 1 expression in murine silicosis. Am J Respir Crit Care Med 163: 244–252

    PubMed  CAS  Google Scholar 

  35. Ruiz V, Ordonez RM, Berumen J, Ramirez R, Uhal B, Becerril C, Pardo A, Selman M (2003) Unbalanced collagenase/TIMP-1 expression and epithelial apoptosis in experimental lung fibrosis. Am J Physiol Lung Cell Mol Physiol 285: L1026–1036

    PubMed  CAS  Google Scholar 

  36. D’Armiento J, Dalal SS, Okada Y, Berg RA, Chada K (1992) Collagenase expression in the lungs of transgenic mice causes pulmonary emphysema. Cell 71: 955–961

    Article  PubMed  CAS  Google Scholar 

  37. Pilcher BK, Dumin JA, Sudbeck BD, Krane SM, Welgus HG, Parks WC (1997) The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol 137: 1445–1457

    Article  PubMed  CAS  Google Scholar 

  38. Selman M, Pardo A, Barrera L, Estrada A, Watson SR, Wilson K, Aziz N, Kaminski N, Zlotnik A (2006) Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med 173: 188–198

    Article  PubMed  CAS  Google Scholar 

  39. Vuorinen K, Myllarniemi M, Lammi L, Piirila P, Rytila P, Salmenkivi K, Kinnula VL (2007) Elevated matrilysin levels in bronchoalveolar lavage fluid do not distinguish idiopathic pulmonary fibrosis from other interstitial lung diseases. APMIS 115, 969–975

    Article  PubMed  CAS  Google Scholar 

  40. Agnihotri R, Crawford HC, Haro H, Matrisian LM, Havrda MC, Liaw L (2001) Osteopontin, a novel substrate for matrix metalloproteinase-3 (stromelysin-1) and matrix metalloproteinase-7 (matrilysin). J Biol Chem 276: 28261–28267

    Article  PubMed  CAS  Google Scholar 

  41. Li Q, Park PW, Wilson CL, Parks WC (2002) Matrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell 111: 635–646

    Article  PubMed  CAS  Google Scholar 

  42. Patterson ML, Atkinson SJ, Knäuper V, Murphy G (2001) Specific collagenolysis by gelatinase A, MMP-2, is determined by the hemopexin domain and not the fibronectinlike domain. FEBS Lett 503: 158–162

    Article  PubMed  CAS  Google Scholar 

  43. McQuibban GA, Gong JH, Tam EM, McCulloch CA, Clark-Lewis I, Overall CM (2000) Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289: 1202–1206

    Article  PubMed  CAS  Google Scholar 

  44. Monaco S, Sparano V, Gioia M, Sbardella D, Di Pierro D, Marini S, Coletta M (2006) Enzymatic processing of collagen IV by MMP-2 (gelatinase A) affects neutrophil migration and it is modulated by extracatalytic domains. Protein Sci 15: 2805–2815

    Article  PubMed  CAS  Google Scholar 

  45. Hayashi T, Stetler-Stevenson WG, Fleming MV, Fishback N, Koss MN, Liotta LA, Ferrans VJ, Travis WD (1996) Immunohistochemical study of metalloproteinases and their tissue inhibitors in the lungs of patients with diffuse alveolar damage and idiopathic pulmonary fibrosis. Am J Pathol 149: 1241–1256

    PubMed  CAS  Google Scholar 

  46. García-Alvarez J, Ramirez R, Sampieri CL, Nuttall RK, Edwards DR, Selman M, Pardo A (2006) Membrane type-matrix metalloproteinases in idiopathic pulmonary fibrosis. Sarcoidosis Vasc Diffuse Lung Dis 23: 13–21

    PubMed  Google Scholar 

  47. Van den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, Jacobsen C, Moestrup SK, Fry S, Royle L, Wormald MR et al (2006) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281: 18626–18637

    Article  PubMed  CAS  Google Scholar 

  48. Pérez-Ramos J, Segura L, Ramírez R, Vanda B, Selman M, Pardo A (1999) Matrix metalloproteinases 2, 9, and 13 and tissue inhibitor of metalloproteinases 1 and 2 in early and late lesions of experimental lung silicosis. Am J Respir Crit Care Med 160: 1274–1282

    PubMed  Google Scholar 

  49. Cisneros-Lira J, Gaxiola M, Ramos C, Selman M, Pardo A (2003) Cigarette smoke exposure potentiates bleomycin-induced lung fibrosis in guinea pigs. Am J Physiol Lung Cell Mol Physiol 285: L949–956

    PubMed  CAS  Google Scholar 

  50. Pardo A, Ruiz V, Arreola JL, Ramírez R, Cisneros-Lira J, Gaxiola M, Barrios R, Kala SV, Lieberman MW, Selman M (2003) Bleomycin-induced pulmonary fibrosis is attenuated in g_glutamyl transpeptidase-deficient mice. Am J Respir Crit Care Med 167: 925–932

    Article  PubMed  Google Scholar 

  51. Selman M, Carrillo G, Estrada A, Mejia M, Becerril C, Cisneros J, Gaxiola M, Pérez-Padilla R, Navarro C, Richards T et al (2207) Accelerated variant of idiopathic pulmonary fibrosis: clinical behavior and gene expression pattern. PLoS ONE 2: e482

    Article  CAS  Google Scholar 

  52. Atkinson JJ, Senior RM (2003) Matrix metalloproteinase-9 in lung remodeling. Am J Respir Cell Mol Biol 28: 12–24

    Article  PubMed  CAS  Google Scholar 

  53. Betsuyaku T, Fukuda Y, Parks WC, Shipley JM, Senior RM (2000) Gelatinase B is required for alveolar bronchiolization after intratracheal bleomycin. Am J Pathol 157: 525–535

    PubMed  CAS  Google Scholar 

  54. Cabrera S, Gaxiola M, Arreola JL, Ramírez R, Jara P, D’Armiento J, Selman M, Pardo A (2007) Overexpression of MMP9 in macrophages attenuates pulmonary fibrosis induced by bleomycin. Int J Biochem Cell Biol 39: 2324–2338

    Article  PubMed  CAS  Google Scholar 

  55. Yoon HK, Cho HY, Kleeberger SR (2007) Protective role of matrix metalloproteinase-9 in ozone-induced airway inflammation. Environ Health Perspect 115: 1557–1563

    Article  PubMed  CAS  Google Scholar 

  56. Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker G (2000) Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-and leaves RANTES and MCP-2 intact. Blood 96: 2673–2681

    PubMed  Google Scholar 

  57. Van Den Steen PE, Wuyts A, Husson SJ, Proost P, Van Damme J, Opdenakker G (2003) Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur J Biochem 270: 3739–3749

    Article  CAS  Google Scholar 

  58. Manoury B, Nénan S, Guénon I, Lagente V, Boichot E (2007) Influence of early neutrophil depletion on MMPs/TIMP-1 balance in bleomycin-induced lung fibrosis. Int Immunopharmacol 7: 900–911

    Article  PubMed  CAS  Google Scholar 

  59. Chirco R, Liu XW, Jung KK, Kim HR (2006) Novel functions of TIMPs in cell signaling. Cancer Metastasis Rev 25: 99–113

    Article  PubMed  CAS  Google Scholar 

  60. Gomez DE, Alonso DF, Yoshiji H, Thorgeirsson UP (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol 74: 111–122

    PubMed  CAS  Google Scholar 

  61. Murphy G, Willenbrock F (1995) Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol 248: 496–510

    Article  PubMed  CAS  Google Scholar 

  62. García-Alvarez J, Ramirez R, Checa M, Nuttall RK, Sampieri CL, Edwards DR, Selman M, Pardo A (2006) Tissue inhibitor of metalloproteinase-3 is up-regulated by transforming growth factor-beta1 in vitro and expressed in fibroblastic foci in vivo in idiopathic pulmonary fibrosis. Exp Lung Res 32: 201–214

    Article  PubMed  CAS  Google Scholar 

  63. Jung KK, Liu XW, Chirco R, Fridman R, Kim HR (2006) Identification of CD63 as a tissue inhibitor of metalloproteinase-1 interacting cell surface protein. EMBO J 25: 3934–3942

    Article  PubMed  CAS  Google Scholar 

  64. Kolb M, Bonniaud P, Galt T, Sime PJ, Kelly MM, Margetts PJ, Gauldie J (2002) Differences in the fibrogenic response after transfer of active transforming growth factor-beta1 gene to lungs of ‘fibrosisprone’ and ‘fibrosis-resistant’ mouse strains. Am J Respir Cell Mol Biol 27: 141–15

    PubMed  CAS  Google Scholar 

  65. Manoury B, Caulet-Maugendre S, Guénon I, Lagente V, Boichot E (2006) TIMP-1 is a key factor of fibrogenic response to bleomycin in mouse lung. Int J Immunopathol Pharmacol 19: 471–487

    PubMed  CAS  Google Scholar 

  66. Kim KH, Burkhart K, Chen P, Frevert CW, Randolph-Habecker J, Hackman RC, Soloway PD, Madtes DK (2005) Tissue inhibitor of metalloproteinase-1 deficiency amplifies acute lung injury in bleomycin-exposed mice. Am J Respir Cell Mol Biol 33: 271–279

    Article  PubMed  CAS  Google Scholar 

  67. Van den Steen PE, Van Aelst I, Hvidberg V, Piccard H, Fiten P, Jacobsen C, Moestrup SK, Fry S, Royle L, Wormald MR et al (2006) The hemopexin and O-glycosylated domains tune gelatinase B/MMP-9 bioavailability via inhibition and binding to cargo receptors. J Biol Chem 281: 18626–18637

    Article  PubMed  CAS  Google Scholar 

  68. Fattman CL, Gambelli F, Hoyle GW, Pitt BR, Ortiz LA (2008) Epithelial expression of TIMP1 does not alter sensitivity to bleomycin-induced lung injury in C57BL/6 mice. Am J Physiol Lung Cell Mol Physiol 294: L572–581

    Article  PubMed  CAS  Google Scholar 

  69. Desmouliere A, Redard M, Darby I, Gabianni G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146: 56–66

    PubMed  CAS  Google Scholar 

  70. Iredale JP, Benyon RC, Pickering J, McCullen M, Northrop M, Pawley S, Hovell C, Arthur MJ (1998) Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 102: 538–549

    Article  PubMed  CAS  Google Scholar 

  71. Murawaki Y, Ikuta Y, Kawasaki H (1999) Clinical usefulness of serum tissue inhibitor of metalloproteinases (TIMP)-2 assay in patients with chronic liver disease in comparison with serum TIMP-1. Clin Chim Acta 281: 109–120

    Article  PubMed  CAS  Google Scholar 

  72. Hemmann S, Graf J, Roderfeld M, Roeb E (2007) Expression of MMPs and TIMPs in liver fibrosis — a systematic review with special emphasis on anti-fibrotic strategies. J Hepatol 46: 955–975

    Article  PubMed  CAS  Google Scholar 

  73. Leco KJ, Waterhouse P, Sanchez OH, Gowing KL, Poole AR, Wakeham A, Mak TW, Khokha R (2001) Spontaneous air space enlargement in the lungs of mice lacking tissue inhibitor of metalloproteinases-3 (TIMP-3). J Clin Invest 108: 817–829

    PubMed  CAS  Google Scholar 

  74. Pottier N, Chupin C, Defamie V, Cardinaud B, Sutherland R, Rios G, Gauthier F, Wolters PJ, Berthiaume Y, Barbry P et al (2007) Relationships between early inflammatory response to bleomycin and sensitivity to lung fibrosis: a role for dipeptidyl-peptidase I and tissue inhibitor of metalloproteinase-3? Am J Respir Crit Care Med 176: 1098–1107

    Article  PubMed  CAS  Google Scholar 

  75. Qi JH, Ebrahem Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B (2003) A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 9: 407–415

    Article  PubMed  CAS  Google Scholar 

  76. Cosgrove GP, Brown KK, Schiemann WP, Serls AE, Parr JE, Geraci MW, Schwarz MI, Cool CD, Worthen GS (2004) Pigment epithelium-derived factor in idiopathic pulmonary fibrosis: a role in aberrant angiogenesis. Am J Respir Crit Care Med 170: 242–251

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Pardo, A., Selman, M. (2008). Role of matrix metalloproteases in pulmonary fibrosis. In: Lagente, V., Boichot, E. (eds) Matrix Metalloproteinases in Tissue Remodelling and Inflammation. Progress in Inflammation Research. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8585-9_3

Download citation

Publish with us

Policies and ethics