On Axiomatics of Linear Dependence III

  • Takeo Nakasawa


In my earlier work1,1 gave a method which can be used for investigations of linear dependence in the projective space. The method is an algebraic symbol calculation, in which certain sequences of elements are called linearly independent and the other sequences of elements are called linearly dependent. Therefore, I called this calculation cycle calculation2, following G. Thomsen.


Linear Dependence Linear Space Projective Space Boolean Algebra Projective Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 7.
    O. Veblen and J.W. Young, “Projective geometry, I”, Boston, 1910, (1–30).Google Scholar
  2. 13.
    O. Veblen and W.H. Bussy, “Finite projective geometries”, Trans. Amer. Math. Soc., Vol. 7, 1906, (241–242).MATHCrossRefMathSciNetGoogle Scholar
  3. 18.
    D. Hubert, “Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen”, 4. Mitteilung, Göttingen Nachrichten, 1906, (pp.157–227).Google Scholar
  4. 19.
    S. Banach, «Sur les operations dans les ensembles attraits et leur application aus equations integrals», Fund. Math., 3, (1922), p. 135.Google Scholar
  5. A. Tychonoff, „EinFixpunktssatz“, Math. Ann., 111, (1935), p. 767.CrossRefMathSciNetGoogle Scholar
  6. 20.
    G. Birkhoff, “On the combination of subalgebras”, Proc. of the Cam. Phil. Soc, 29, 1933, (441-464), and “Applications of lattice algebra”, ibid., 30, 1934, (115-122).Google Scholar
  7. 21.
    E.V. Huntington, “Set of independent postulates for the algebra of logic”, Trans. of Amer. Math. Soc., Vol. 5, 1904, (288–290).MATHCrossRefMathSciNetGoogle Scholar
  8. G. Bergnn, „Zur Axiomatik der Elementargeometrie“, Monat. für Math. und Phys., 36, 1929, (269-290).Google Scholar
  9. 22.
    Fritz Klein, „Zur Theorie der abstrakten Verknüpfungen“, Math. Ann., 105, 1931, (308–323) and Über einen Zerlegungssatz in der Theorie der abstrakten Verknüpfungen”, Math. Ann., 106, 1932, (114-130).CrossRefMathSciNetGoogle Scholar
  10. 29.
    H. Whitney, “On the abstract properties of linear dependence”, Amer. Journ. of Math., Vol. 57, 1935, (509–533).MATHCrossRefGoogle Scholar
  11. S. Maclane, “Some interpretations of abstract linear dependence in terms of projective geometry”, Amer. Journ. of Math., Vol. 58, 1936, (236–240).MATHCrossRefGoogle Scholar

Copyright information

© Birkhüuser Verlag AG 2009

Authors and Affiliations

  • Takeo Nakasawa

There are no affiliations available

Personalised recommendations