Autonomic Service Access Management for Next Generation Converged Networks

  • Monique Calisti
  • Roberto Ghizzioli
  • Dominic Greenwood
Part of the Whitestein Series in Software Agent Technologies and Autonomic Computing book series (WSSAT)


This chapter presents the Living Systems Autonomic Service Access Management Suite, LS/ASAM, a comprehensive middleware solution enabling adaptive connectivity management of nomadic end hosts across heterogeneous access networks with autonomic optimisation of network performance and availability.


Access Network Session Initiation Protocol Service Access Access Strategy Access Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. Strassner, Autonomic Networking-Theory and Practice. Proceedings 9th IFIP/IEEE International Symposium on Integrated Network Management, Nice, France, (2005).Google Scholar
  2. [2]
    N. R. Jennings, Agent-Oriented Software Engineering. Lecture Notes in Computer Science, 1647, 1999, 1–7.Google Scholar
  3. [3]
    R. Ferrus, A. Gelonch, O. Sallent, J. Perez-Romero, Vertical Handover Support in Coordinated Heterogeneous Radio Access Networks. Proceedings 14th IST Mobile and Wireless Communications Summit, Dresden, Germany, 2005.Google Scholar
  4. [4]
    C. Perkins, RFC 3220: IP Mobility Support for IPv4. 2002.Google Scholar
  5. [5]
    S. Kent, R. Atkinson, RFC 2401: Security Architecture for the Internet Protocol. 1998.Google Scholar
  6. [6]
    M. Yokoo, K. Hirayama, Algorithms for Distributed Constraint Satisfaction: A Review. Autonomous Agents and Multi-Agent Systems, 3:2, 2000, 185–207.CrossRefGoogle Scholar
  7. [7]
    Foundation for Intelligent Physical Agents, FIPA Iterated Contract Net Interaction Protocol Specification. 2001.Google Scholar
  8. [8]
    J. Hofbauer, W. H. Sandholm, On the global convergence of stochastic fictitious play. Econometrica, 70, 2002, 2265–94.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. S. Shamma, G. Arslan, Unified convergence proofs of continuous-time fictitious play. IEEE Transactions on Automatic Control, 49:7, 2004, 1137–42.CrossRefMathSciNetGoogle Scholar
  10. [10]
    K. Ahmavaara, H. Haverinen, R. Pichna, Integration of wireless LAN and 3G wireless-Interworking Architecture between 3GPP and WLAN systems. IEEE Communications Magazine, 41:11, 2003, 74–81.CrossRefGoogle Scholar
  11. [11]
    X. G. Wang, G. Min, J. E. Mellor, K. Al-Begain, L. Guan, An adaptive QoS framework for integrated cellular and WLAN networks. Computer Networks, 47:2, 2005, 167–183.CrossRefGoogle Scholar
  12. [12]
    W. Song, H. Jiang, W. Zhuang, X. Shen, Resource management for QoS support in cellular/WLAN interworking. IEEE Network, 19:5, 2005, 12–18.CrossRefGoogle Scholar
  13. [13]
    3GPP, TS 23.107 V7.4.0: Quality of Service (QoS) concept and architecture. 2006.Google Scholar
  14. [14]
    M. Cuevas, Admission control and resource reservation for session-based applications in next generation networks. BT Technology Journal, 23:2, 2005, 130–145.CrossRefMathSciNetGoogle Scholar
  15. [15]
    M. Kolbehdari, D. Lizotte, G. Shires, S. Trevor, Session Initiation Protocol (SIP) Evolution in Converged Communications. Intel Technology Journal, 10:1, 2006.Google Scholar
  16. [16]
    ABIresearch, IP Multimedia Subsystem Industry Survey Results. 2005.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Monique Calisti
    • 1
  • Roberto Ghizzioli
    • 1
  • Dominic Greenwood
    • 1
  1. 1.Whitestein Technologies AGZürichSwitzerland

Personalised recommendations