Advertisement

Neuroimaging studies of bipolar depression: therapeutic implications

  • Jonathan Savitz
  • Wayne C. Drevets
Part of the Milestones in Drug Therapy book series (MDT)

Abstract

Bipolar disorder (BPD) is characterized by pathophysiological changes to the visceromotor network, disrupting the regulation of endocrine and autonomic responses to stress, and hence emotion and behavior. Specifically, reductions in gray matter volume and a concomitant increase in glutamatergic neurotransmission, is observed in the pregenual (pgACC) and subgenual anterior cingulate cortex (sgACC), the orbitofrontal, frontal polar and ventrolateral prefrontal cortex (PFC), the posterior cingulate, ventral striatum, and hippocampus. While increased glutamatergic signaling is equally salient in the amygdala, the data are conflicting on the nature of volumetric changes in this region. Neuroreceptor imaging data provide preliminary evidence for serotonin, serotonin transporter (5-HTT), dopamine receptor, and cholinergic system dysfunction in BPD. Oft-reported abnormalities of the deep frontal and basal ganglia white matter, and enlargement of the third and lateral ventricles are likely associated with cerebrovascular disease. Mood stabilizers and antidepressant drugs may attenuate pathological limbic activity, and increase neurotrophic processes, restoring balance to the system.

Keywords

Bipolar Disorder Major Depressive Disorder Mood Disorder White Matter Hyperintensities Biol Psychiatry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The World Health Organization (WHO) (2001) The World Health Report 2001. Geneva, SwitzerlandGoogle Scholar
  2. 2.
    Kessler RC, Chiu WT, Demler O, Walters EE (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey replication. Arch Gen Psychiatry 62: 617–627PubMedGoogle Scholar
  3. 3.
    Phillips ML, Drevets WC, Rauch SL, Lane R (2003) Neurobiology of emotion perception II: Implications for major psychiatric disorders. Biol Psychiatry 54: 515–528PubMedGoogle Scholar
  4. 4.
    Ongur D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460: 425–449PubMedGoogle Scholar
  5. 5.
    Nauta WJH, Domesick V (1984) Afferent and efferent relationships of the basal ganglia. In: D Evered, M O’Conner (eds): Function of the basal ganglia. Pitman Press, LondonGoogle Scholar
  6. 6.
    Folstein MF, Robinson R, Folstein S, McHugh PR (1985) Depression and neurological disorders. New treatment opportunities for elderly depressed patients. J Affect Disord Suppl 1: S11–14Google Scholar
  7. 7.
    Drevets WC, Price JL (2005) Neuroimaging and neuropathological studies of mood disorders. In: JWM Licinio (ed.): Biology of depression: from novel insights to therapeutic strategies. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany, 427–466Google Scholar
  8. 8.
    Drevets WC, Bogers W, Raichle ME (2002) Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 12: 527–544PubMedGoogle Scholar
  9. 9.
    Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45: 651–660PubMedGoogle Scholar
  10. 10.
    Drevets WC, Gadde K, Krishnan KRR (2004) BJ Bunney (eds): The neurobiological foundation of mental illness: Second Edition. Oxford University Press, New York, 461–490Google Scholar
  11. 11.
    Botteron KN, Raichle ME, Drevets WC, Heath AC, Todd RD (2002) Volumetric reduction in left subgenual prefrontal cortex in early onset depression. Biol Psychiatry 51: 342–344PubMedGoogle Scholar
  12. 12.
    Coryell W, Nopoulos P, Drevets W, Wilson T, Andreasen NC (2005) Subgenual prefrontal cortex volumes in major depressive disorder and schizophrenia: diagnostic specificity and prognostic implications. Am J Psychiatry 162: 1706–1712PubMedGoogle Scholar
  13. 13.
    Drevets WC, Price JL, Simpson JR Jr., Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386: 824–847PubMedGoogle Scholar
  14. 14.
    Hirayasu Y, Shenton ME, Salisbury DF, Kwon JS, Wible CG, Fischer IA, Yurgelun-Todd D, Zarate C, Kikinis R, Jolesz FA et al (1999) Subgenual cingulate cortex volume in first-episode psychosis. Am J Psychiatry 156: 1091–1093PubMedGoogle Scholar
  15. 15.
    Haznedar MM, Roversi F, Pallanti S, Baldini-Rossi N, Schnur DB, Licalzi EM, Tang C, Hof PR, Hollander E, Buchsbaum MS (2005) Fronto-thalamo-striatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biol Psychiatry 57: 733–742PubMedGoogle Scholar
  16. 16.
    Lyoo IK, Kim MJ, Stoll AL, Demopulos CM, Parow AM, Dager SR, Friedman SD, Dunner DL, Renshaw PF (2004) Frontal lobe gray matter density decreases in bipolar I disorder. Biol Psychiatry 55: 648–651PubMedGoogle Scholar
  17. 17.
    Drevets WC, Savitz J (2008) Mood disorders and the subgenual anterior cingulate cortex. CNS Spectr 13: 663–681PubMedGoogle Scholar
  18. 18.
    Drevets WC, Todd RD (2005) Depression, mania and related disorders. In: E Rubin, C Zorumski (eds): Adult psychiatry, Second Ed. Blackwell Publishing, Oxford, 91–129Google Scholar
  19. 19.
    Nugent AC, Milham MP, Bain EE, Mah L, Cannon DM, Marrett S, Zarate CA, Pine DS, Price JL, Drevets WC (2006) Cortical abnormalities in bipolar disorder investigated with MRI and voxelbased morphometry. Neuroimage 30: 485–497PubMedGoogle Scholar
  20. 20.
    Cecil KM, DelBello MP, Morey R, Strakowski SM (2002) Frontal lobe differences in bipolar disorder as determined by proton MR spectroscopy. Bipolar Disord 4: 357–365PubMedGoogle Scholar
  21. 21.
    Savitz J, Drevets WC. Bipolar and major depressive disorder: Neuroimaging the developmentaldegenerative divide. Neurosci Biobehav Rev; in pressGoogle Scholar
  22. 22.
    Frangou S, Donaldson S, Hadjulis M, Landau S, Goldstein LH (2005) The Maudsley Bipolar Disorder Project: executive dysfunction in bipolar disorder I and its clinical correlates. Biol Psychiatry 58: 859–864PubMedGoogle Scholar
  23. 23.
    Dickstein DP, Milham MP, Nugent AC, Drevets WC, Charney DS, Pine DS, Leibenluft E (2005) Frontotemporal alterations in pediatric bipolar disorder: results of a voxel-based morphometry study. Arch Gen Psychiatry 62: 734–741PubMedGoogle Scholar
  24. 24.
    Lochhead RA, Parsey RV, Oquendo MA, Mann JJ (2004) Regional brain gray matter volume differences in patients with bipolar disorder as assessed by optimized voxel-based morphometry. Biol Psychiatry 55: 1154–1162PubMedGoogle Scholar
  25. 25.
    Vythilingam M, Heim C, Newport J, Miller AH, Anderson E, Bronen R, Brummer M, Staib L, Vermetten E, Charney DS et al (2002) Childhood trauma associated with smaller hippocampal volume in women with major depression. Am J Psychiatry 159: 2072–2080PubMedGoogle Scholar
  26. 26.
    Sheline YI, Gado MH, Kraemer HC (2003) Untreated depression and hippocampal volume loss. Am J Psychiatry 160: 1516–1518PubMedGoogle Scholar
  27. 27.
    Kim JS, Chang MY, Yu IT, Kim JH, Lee SH, Lee YS, Son H (2004) Lithium selectively increases neuronal differentiation of hippocampal neural progenitor cells both in vitro and in vivo. J Neurochem 89: 324–336PubMedGoogle Scholar
  28. 28.
    Son H, Yu IT, Hwang SJ, Kim JS, Lee SH, Lee YS, Kaang BK (2003) Lithium enhances long-term potentiation independently of hippocampal neurogenesis in the rat dentate gyrus. J Neurochem 85: 872–881PubMedGoogle Scholar
  29. 29.
    Moore GJ, Bebchuk JM, Wilds IB, Chen G, Manji HK (2000) Lithium-induced increase in human brain grey matter. Lancet 356: 1241–1242PubMedGoogle Scholar
  30. 30.
    Manji HK, Moore GJ, Chen G (2000) Clinical and preclinical evidence for the neurotrophic effects of mood stabilizers: implications for the pathophysiology and treatment of manic-depressive illness. Biol Psychiatry 48: 740–754PubMedGoogle Scholar
  31. 31.
    Bearden CE, Thompson PM, Dalwani M, Hayashi KM, Lee AD, Nicoletti M, Trakhtenbroit M, Glahn DC, Brambilla P, Sassi RB et al (2007) Greater cortical gray matter density in lithium-treated patients with bipolar disorder. Biol Psychiatry 62: 7–16PubMedGoogle Scholar
  32. 32.
    Beyer JL, Kuchibhatla M, Payne ME, Moo-Young M, Cassidy F, Macfall J, Krishnan KR (2004) Hippocampal volume measurement in older adults with bipolar disorder. Am J Geriatr Psychiatry 12: 613–620PubMedGoogle Scholar
  33. 33.
    Sassi RB, Brambilla P, Hatch JP, Nicoletti MA, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2004) Reduced left anterior cingulate volumes in untreated bipolar patients. Biol Psychiatry 56: 467–475PubMedGoogle Scholar
  34. 34.
    Yucel K, Taylor VH, McKinnon MC, Macdonald K, Alda M, Young LT, Macqueen GM (2008) Bilateral hippocampal volume increase in patients with bipolar disorder and short-term lithium treatment. Neuropsychopharmacology 33: 361–367PubMedGoogle Scholar
  35. 35.
    Hao Y, Creson T, Zhang L, Li P, Du F, Yuan P, Gould TD, Manji HK, Chen G (2004) Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J Neurosci 24: 6590–6599PubMedGoogle Scholar
  36. 36.
    Mark RJ, Ashford JW, Goodman Y, Mattson MP (1995) Anticonvulsants attenuate amyloid betapeptide neurotoxicity, Ca2+ deregulation, and cytoskeletal pathology. Neurobiol Aging 16: 187–198PubMedGoogle Scholar
  37. 37.
    McEwen BS, Magarinos AM, Reagan LP (2002) Structural plasticity and tianeptine: cellular and molecular targets. Eur Psychiatry 17 Suppl 3: 318–330PubMedGoogle Scholar
  38. 38.
    McEwen BS, Olie JP (2005) Neurobiology of mood, anxiety, and emotions as revealed by studies of a unique antidepressant: tianeptine. Mol Psychiatry 10: 525–537PubMedGoogle Scholar
  39. 39.
    Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS (1992) Tianeptine attenuates stressinduced morphological changes in the hippocampus. Eur J Pharmacol 222: 157–162PubMedGoogle Scholar
  40. 40.
    Stewart CA, Reid IC (2000) Repeated ECS and fluoxetine administration have equivalent effects on hippocampal synaptic plasticity. Psychopharmacology (Berl) 148: 217–223Google Scholar
  41. 41.
    Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59: 1116–1127PubMedGoogle Scholar
  42. 42.
    Altshuler LL, Bartzokis G, Grieder T, Curran J, Jimenez T, Leight K, Wilkins J, Gerner R, Mintz J (2000) An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 48: 147–162PubMedGoogle Scholar
  43. 43.
    Brambilla P, Harenski K, Nicoletti M, Sassi RB, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2003) MRI investigation of temporal lobe structures in bipolar patients. J Psychiatr Res 37: 287–295PubMedGoogle Scholar
  44. 44.
    Krishnamoorthy ES (2007) A differential role for the hippocampus and amygdala in neuropsychiatric disorders. J Neurol Neurosurg Psychiatry 78: 1165–1166PubMedGoogle Scholar
  45. 45.
    Tebartz Van Elst L, Baeumer D, Lemieux L, Woermann FG, Koepp M, Krishnamoorthy S, Thompson PJ, Ebert D, Trimble MR (2002) Amygdala pathology in psychosis of epilepsy: A magnetic resonance imaging study in patients with temporal lobe epilepsy. Brain 125: 140–149Google Scholar
  46. 46.
    Baxendale SA, Thompson PJ, Duncan JS (2005) Epilepsy & depression: the effects of comorbidity on hippocampal volume—a pilot study. Seizure 14: 435–438PubMedGoogle Scholar
  47. 47.
    Briellmann RS, Hopwood MJ, Jackson GD (2007) Major depression in temporal lobe epilepsy with hippocampal sclerosis: clinical and imaging correlates. J Neurol Neurosurg Psychiatry 78: 1226–1230PubMedGoogle Scholar
  48. 48.
    Richardson EJ, Griffith HR, Martin RC, Paige AL, Stewart CC, Jones J, Hermann BP, Seidenberg M(2007) Structural and functional neuroimaging correlates of depression in temporal lobe epilepsy. Epilepsy Behav 10: 242–249PubMedGoogle Scholar
  49. 49.
    Kato T, Hamakawa H, Shioiri T, Murashita J, Takahashi Y, Takahashi S, Inubushi T (1996) Choline-containing compounds detected by proton magnetic resonance spectroscopy in the basal ganglia in bipolar disorder. J Psychiatry Neurosci 21: 248–254PubMedGoogle Scholar
  50. 50.
    Hamakawa H, Kato T, Murashita J, Kato N (1998) Quantitative proton magnetic resonance spectroscopy of the basal ganglia in patients with affective disorders. Eur Arch Psychiatry Clin Neurosci 248: 53–58PubMedGoogle Scholar
  51. 51.
    Ohara K, Isoda H, Suzuki Y, Takehara Y, Ochiai M, Takeda H, Igarashi Y, Ohara K (1998) Proton magnetic resonance spectroscopy of the lenticular nuclei in bipolar I affective disorder. Psychiatry Res 84: 55–60PubMedGoogle Scholar
  52. 52.
    Baumann B, Danos P, Krell D, Diekmann S, Leschinger A, Stauch R, Wurthmann C, Bernstein HG, Bogerts B (1999) Reduced volume of limbic system-affiliated basal ganglia in mood disorders: preliminary data from a postmortem study. J Neuropsychiatry Clin Neurosci 11: 71–78PubMedGoogle Scholar
  53. 53.
    Jernigan TL, Zisook S, Heaton RK, Moranville JT, Hesselink JR, Braff DL (1991) Magnetic resonance imaging abnormalities in lenticular nuclei and cerebral cortex in schizophrenia. Arch Gen Psychiatry 48: 881–890PubMedGoogle Scholar
  54. 54.
    Swayze VW, Andreasen NC, Alliger RJ, Yuh WT, Ehrhartdt JC (1992) Subcortical and temporal lobe structures in affective disorder and schizophrenia: A magnetic resonance imaging study. Biol Psychiatry 31: 221–240PubMedGoogle Scholar
  55. 55.
    Chakos MH, Lieberman JA, Alvir J, Bilder R, Ashtari M (1995) Caudate nuclei volumes in schizophrenic patients treated with typical antipsychotics or clozapine. Lancet 345: 456–457PubMedGoogle Scholar
  56. 56.
    Frazier JA, Giedd JN, Kaysen D, Albus K, Hamburger S, Alaghband-Rad J, Lenane MC, McKenna K, Breier A, Rapoport JL (1996) Childhood-onset schizophrenia: brain MRI rescan after 2 years of clozapine maintenance treatment. Am J Psychiatry 153: 564–566PubMedGoogle Scholar
  57. 57.
    Strakowski SM, DelBello MP, Zimmerman ME, Getz GE, Mills NP, Ret J, Shear P, Adler CM (2002) Ventricular and periventricular structural volumes in first-versus multiple-episode bipolar disorder. Am J Psychiatry 159: 1841–1847PubMedGoogle Scholar
  58. 58.
    DelBello MP, Zimmerman ME, Mills NP, Getz GE, Strakowski SM (2004) Magnetic resonance imaging analysis of amygdala and other subcortical brain regions in adolescents with bipolar disorder. Bipolar Disord 6: 43–52PubMedGoogle Scholar
  59. 59.
    Wilke M, Kowatch RA, DelBello MP, Mills NP, Holland SK (2004) Voxel-based morphometry in adolescents with bipolar disorder: first results. Psychiatry Res 131: 57–69PubMedGoogle Scholar
  60. 60.
    Anstey KJ, Jorm AF, Reglade-Meslin C, Maller J, Kumar R, von Sanden C, Windsor TD, Rodgers B, Wen W, Sachdev P (2006) Weekly alcohol consumption, brain atrophy, and white matter hyperintensities in a community-based sample aged 60 to 64 years. Psychosom Med 68: 778–785PubMedGoogle Scholar
  61. 61.
    Salerno JA, Murphy DG, Horwitz B, DeCarli C, Haxby JV, Rapoport SI, Schapiro MB (1992) Brain atrophy in hypertension. A volumetric magnetic resonance imaging study. Hypertension 20: 340–348PubMedGoogle Scholar
  62. 62.
    Goldstein IB, Bartzokis G, Guthrie D, Shapiro D (2002) Ambulatory blood pressure and brain atrophy in the healthy elderly. Neurology 59: 713–719PubMedGoogle Scholar
  63. 63.
    Knopman DS, Mosley TH, Catellier DJ, Sharrett AR (2005) Cardiovascular risk factors and cerebral atrophy in a middle-aged cohort. Neurology 65: 876–881PubMedGoogle Scholar
  64. 64.
    Krishnan KR, Doraiswamy PM, Figiel GS, Husain MM, Shah SA, Na C, Boyko OB, McDonald WM, Nemeroff CB, Ellinwood EH Jr (1991) Hippocampal abnormalities in depression. J Neuropsychiatry Clin Neurosci 3: 387–391PubMedGoogle Scholar
  65. 65.
    Figiel GS, Krishnan KR, Rao VP, Doraiswamy M, Ellinwood EH Jr, Nemeroff CB, Evans D, Boyko O (1991) Subcortical hyperintensities on brain magnetic resonance imaging: a comparison of normal and bipolar subjects. J Neuropsychiatry Clin Neurosci 3: 18–22PubMedGoogle Scholar
  66. 66.
    Hickie I, Scott E, Mitchell P, Wilhelm K, Austin MP, Bennett B (1995) Subcortical hyperintensities on magnetic resonance imaging: clinical correlates and prognostic significance in patients with severe depression. Biol Psychiatry 37: 151–160PubMedGoogle Scholar
  67. 67.
    Steffens DC, Helms MJ, Krishnan KR, Burke GL (1999) Cerebrovascular disease and depression symptoms in the cardiovascular health study. Stroke 30: 2159–2166PubMedGoogle Scholar
  68. 68.
    Hannestad J, Taylor WD, McQuoid DR, Payne ME, Krishnan KR, Steffens DC, Macfall JR (2006) White matter lesion volumes and caudate volumes in late-life depression. Int J Geriatr Psychiatry 21: 1193–1198PubMedGoogle Scholar
  69. 69.
    Ovbiagele B, Saver JL (2006) Cerebral white matter hyperintensities on MRI: Current concepts and therapeutic implications. Cerebrovasc Dis 22: 83–90PubMedGoogle Scholar
  70. 70.
    Kertesz A, Black SE, Tokar G, Benke T, Carr T, Nicholson L (1988) Periventricular and subcortical hyperintensities on magnetic resonance imaging. ‘Rims, caps, and unidentified bright objects’. Arch Neurol 45: 404–408PubMedGoogle Scholar
  71. 71.
    Drevets WC, Gadde K, Krishnan KRR (2008) Neuroimaging studies in depression. In: DS Charney, EJ Nestler (eds): The neurobiological foundation of mental illness. Oxford University Press, New York, 461–490Google Scholar
  72. 72.
    Kilbourne AM, Cornelius JR, Han X, Pincus HA, Shad M, Salloum I, Conigliaro J, Haas GL (2004) Burden of general medical conditions among individuals with bipolar disorder. Bipolar Disord 6: 368–373PubMedGoogle Scholar
  73. 73.
    Newcomer JW (2006) Medical risk in patients with bipolar disorder and schizophrenia. J Clin Psychiatry 67 Suppl 9: 25–30; discussion 36-42PubMedGoogle Scholar
  74. 74.
    Dufouil C, de Kersaint-Gilly A, Besancon V, Levy C, Auffray E, Brunnereau L, Alperovitch A, Tzourio C (2001) Longitudinal study of blood pressure and white matter hyperintensities: the EVA MRI Cohort. Neurology 56: 921–926PubMedGoogle Scholar
  75. 75.
    Gunstad J, Cohen RA, Tate DF, Paul RH, Poppas A, Hoth K, Macgregor KL, Jefferson AL (2005) Blood pressure variability and white matter hyperintensities in older adults with cardiovascular disease. Blood Press 14: 353–358PubMedGoogle Scholar
  76. 76.
    Gustafson DR, Steen B, Skoog I (2004) Body mass index and white matter lesions in elderly women. An 18-year longitudinal study. Int Psychogeriatr 16: 327–336PubMedGoogle Scholar
  77. 77.
    Dager SR, Friedman SD (2000) Brain imaging and the effects of caffeine and nicotine. Ann Med 32: 592–599PubMedGoogle Scholar
  78. 78.
    Novak V, Last D, Alsop DC, Abduljalil AM, Hu K, Lepicovsky L, Cavallerano J, Lipsitz LA (2006) Cerebral blood flow velocity and periventricular white matter hyperintensities in type 2 diabetes. Diabetes Care 29: 1529–1534PubMedGoogle Scholar
  79. 79.
    Dupont RM, Jernigan TL, Butters N, Delis D, Hesselink JR, Heindel W, Gillin JC (1990) Subcortical abnormalities detected in bipolar affective disorder using magnetic resonance imaging. Clinical and neuropsychological significance. Arch Gen Psychiatry 47: 55–59PubMedGoogle Scholar
  80. 80.
    Lyoo IK, Streeter CC, Ahn KH, Lee HK, Pollack MH, Silveri MM, Nassar L, Levin JM, Sarid-Segal O, Ciraulo DA et al (2004) White matter hyperintensities in subjects with cocaine and opiate dependence and healthy comparison subjects. Psychiatry Res 131: 135–145PubMedGoogle Scholar
  81. 81.
    Medina KL, Nagel BJ, Park A, McQueeny T, Tapert SF (2007) Depressive symptoms in adolescents: associations with white matter volume and marijuana use. J Child Psychol Psychiatry 48: 592–600PubMedGoogle Scholar
  82. 82.
    Lenze E, Cross D, McKeel D, Neuman RJ, Sheline YI (1999) White matter hyperintensities and gray matter lesions in physically healthy depressed subjects. Am J Psychiatry 156: 1602–1607PubMedGoogle Scholar
  83. 83.
    Nemeroff CB, Musselman DL (2000) Are platelets the link between depression and ischemic heart disease? Am Heart J 140: 57–62PubMedGoogle Scholar
  84. 84.
    Biegon A, Essar N, Israeli M, Elizur A, Bruch S, Bar-Nathan AA (1990) Serotonin 5-HT2 receptor binding on blood platelets as a state dependent marker in major affective disorder. Psychopharmacology (Berl) 102: 73–75Google Scholar
  85. 85.
    Musselman DL, Tomer A, Manatunga AK, Knight BT, Porter MR, Kasey S, Marzec U, Harker LA, Nemeroff CB (1996) Exaggerated platelet reactivity in major depression. Am J Psychiatry 153: 1313–1317PubMedGoogle Scholar
  86. 86.
    de Castro AG, Bajbouj M, Schlattmann P, Lemke H, Heuser I, Neu P (2008) Cerebrovascular reactivity in depressed patients without vascular risk factors. J Psychiatr Res 42: 78–82PubMedGoogle Scholar
  87. 87.
    Botteron KN, Vannier MW, Geller B, Todd RD, Lee BC (1995) Preliminary study of magnetic resonance imaging characteristics in 8-to 16-year-olds with mania. J Am Acad Child Adolesc Psychiatry 34: 742–749PubMedGoogle Scholar
  88. 88.
    Lyoo IK, Lee HK, Jung JH, Noam GG, Renshaw PF (2002) White matter hyperintensities on magnetic resonance imaging of the brain in children with psychiatric disorders. Compr Psychiatry 43: 361–368PubMedGoogle Scholar
  89. 89.
    Pillai JJ, Friedman L, Stuve TA, Trinidad S, Jesberger JA, Lewin JS, Findling RL, Swales TP, Schulz SC (2002) Increased presence of white matter hyperintensities in adolescent patients with bipolar disorder. Psychiatry Res 114: 51–56PubMedGoogle Scholar
  90. 90.
    Ahearn EP, Steffens DC, Cassidy F, Van Meter SA, Provenzale JM, Seldin MF, Weisler RH, Krishnan KR (1998) Familial leukoencephalopathy in bipolar disorder. Am J Psychiatry 155: 1605–1607PubMedGoogle Scholar
  91. 91.
    Cannon M, Jones PB, Murray RM (2002) Obstetric complications and schizophrenia: historical and meta-analytic review. Am J Psychiatry 159: 1080–1092PubMedGoogle Scholar
  92. 92.
    Kinney DK, Yurgelun-Todd DA, Levy DL, Medoff D, Lajonchere CM, Radford-Paregol M (1993) Obstetrical complications in patients with bipolar disorder and their siblings. Psychiatry Res 48: 47–56PubMedGoogle Scholar
  93. 93.
    Kinney DK, Yurgelun-Todd DA, Tohen M, Tramer S (1998) Pre-and perinatal complications and risk for bipolar disorder: a retrospective study. J Affect Disord 50: 117–124PubMedGoogle Scholar
  94. 94.
    Pavuluri MN, Henry DB, Nadimpalli SS, O’Connor MM, Sweeney JA (2006) Biological risk factors in pediatric bipolar disorder. Biol Psychiatry 60: 936–941PubMedGoogle Scholar
  95. 95.
    Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB, Starkey M, Webster MJ, Yolken RH, Bahn S (2003) Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 362: 798–805PubMedGoogle Scholar
  96. 96.
    Aston C, Jiang L, Sokolov BP (2005) Transcriptional profiling reveals evidence for signaling and oligodendroglial abnormalities in the temporal cortex from patients with major depressive disorder. Mol Psychiatry 10: 309–322PubMedGoogle Scholar
  97. 97.
    Cotter D, Mackay D, Chana G, Beasley C, Landau S, Everall IP (2002) Reduced neuronal size and glial cell density in area 9 of the dorsolateral prefrontal cortex in subjects with major depressive disorder. Cereb Cortex 12: 386–394PubMedGoogle Scholar
  98. 98.
    Hamidi M, Drevets WC, Price JL (2004) Glial reduction in amygdala in major depressive disorder is due to oligodendrocytes. Biol Psychiatry 55: 563–569PubMedGoogle Scholar
  99. 99.
    Uranova NA, Vostrikov VM, Orlovskaya DD, Rachmanova VI (2004) Oligodendroglial density in the prefrontal cortex in schizophrenia and mood disorders: a study from the Stanley Neuropathology Consortium. Schizophr Res 67: 269–275PubMedGoogle Scholar
  100. 100.
    Vostrikov VM, Uranova NA, Orlovskaya DD (2007) Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res 94: 273–280PubMedGoogle Scholar
  101. 101.
    Carter CJ (2007) EIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schizophr Bull 33: 1343–1353PubMedGoogle Scholar
  102. 102.
    Carter CJ (2007) Multiple genes and factors associated with bipolar disorder converge on growth factor and stress activated kinase pathways controlling translation initiation: implications for oligodendrocyte viability. Neurochem Int 50: 461–490PubMedGoogle Scholar
  103. 103.
    Sokolov BP (2007) Oligodendroglial abnormalities in schizophrenia, mood disorders and substance abuse. Comorbidity, shared traits, or molecular phenocopies? Int J Neuropsychopharmacol 1–9Google Scholar
  104. 104.
    Starkstein SE, Robinson RG (1989) Affective disorders and cerebral vascular disease. Br J Psychiatry 154: 170–182PubMedGoogle Scholar
  105. 105.
    Chabriat H, Vahedi K, Iba-Zizen MT, Joutel A, Nibbio A, Nagy TG, Krebs MO, Julien J, Dubois B, Ducrocq X et al (1995) Clinical spectrum of CADASIL: a study of 7 families. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Lancet 346: 934–939PubMedGoogle Scholar
  106. 106.
    Desmond DW, Moroney JT, Lynch T, Chan S, Chin SS, Mohr JP (1999) The natural history of CADASIL: a pooled analysis of previously published cases. Stroke 30: 1230–1233PubMedGoogle Scholar
  107. 107.
    Adler CM, Holland SK, Schmithorst V, Wilke M, Weiss KL, Pan H, Strakowski SM (2004) Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disord 6: 197–203PubMedGoogle Scholar
  108. 108.
    Geschwind N (1965) Disconnexion syndromes in animals and man. I. Brain 88: 237–294PubMedGoogle Scholar
  109. 109.
    Geschwind N (1965) Disconnexion syndromes in animals and man. II. Brain 88: 585–644PubMedGoogle Scholar
  110. 110.
    Neumeister A, Nugent AC, Waldeck T, Geraci M, Schwarz M, Bonne O, Bain EE, Luckenbaugh DA, Herscovitch P, Charney DS et al (2004) Neural and behavioral responses to tryptophan depletion in unmedicated patients with remitted major depressive disorder and controls. Arch Gen Psychiatry 61: 765–773PubMedGoogle Scholar
  111. 111.
    Hasler G, Fromm S, Carlson PJ, Luckenbaugh DA, Waldeck T, Geraci M, Roiser JP, Neumeister A, Meyers N, Charney DS, Drevets WC (2008) Neural response to catecholamine depletion in unmedicated subjects with major depressive disorder in remission and health subjects. Arch Gen Psychiatry 65: 521–531PubMedGoogle Scholar
  112. 112.
    Kegeles LS, Malone KM, Slifstein M, Ellis SP, Xanthopoulos E, Keilp JG, Campbell C, Oquendo M, Van Heertum RL, Mann JJ (2003) Response of cortical metabolic deficits to serotonergic challenge in familial mood disorders. Am J Psychiatry 160: 76–82PubMedGoogle Scholar
  113. 113.
    Holthoff VA, Beuthien-Baumann B, Zundorf G, Triemer A, Ludecke S, Winiecki P, Koch R, Fuchtner F, Herholz K (2004) Changes in brain metabolism associated with remission in unipolar major depression. Acta Psychiatr Scand 110: 184–194PubMedGoogle Scholar
  114. 114.
    Nobler MS, Oquendo MA, Kegeles LS, Malone KM, Campbell CC, Sackeim HA, Mann JJ (2001) Decreased regional brain metabolism after ect. Am J Psychiatry 158: 305–308PubMedGoogle Scholar
  115. 115.
    Ketter TA, Drevets WC (2002) Neuroimaging studies of bipolar depression: functional neuropathology, treatment effects, and predictors of clinical response. Clinical Neuroscience Research 2: 182–192Google Scholar
  116. 116.
    Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13: 728–733PubMedGoogle Scholar
  117. 117.
    Neumeister A, Hu XZ, Luckenbaugh DA, Schwarz M, Nugent AC, Bonne O, Herscovitch P, Goldman D, Drevets WC, Charney DS (2006) Differential effects of 5-HTTLPR genotypes on the behavioral and neural responses to tryptophan depletion in patients with major depression and controls. Arch Gen Psychiatry 63: 978–986PubMedGoogle Scholar
  118. 118.
    Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11: 240–249PubMedGoogle Scholar
  119. 119.
    Ketter TA, Kimbrell TA, George MS, Dunn RT, Speer AM, Benson BE, Willis MW, Danielson A, Frye MA, Herscovitch P et al (2001) Effects of mood and subtype on cerebral glucose metabolism in treatment-resistant bipolar disorder. Biol Psychiatry 49: 97–109PubMedGoogle Scholar
  120. 120.
    Sheline YI, Barch DM, Donnelly JM, Ollinger JM, Snyder AZ, Mintun MA (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50: 651–658PubMedGoogle Scholar
  121. 121.
    Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME (2002) Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71: 431–447PubMedGoogle Scholar
  122. 122.
    Bauer M, London ED, Rasgon N, Berman SM, Frye MA, Altshuler LL, Mandelkern MA, Bramen J, Voytek B, Woods R et al (2005) Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression. Mol Psychiatry 10: 456–469PubMedGoogle Scholar
  123. 123.
    Mah L, Zarate CA Jr, Singh J, Duan YF, Luckenbaugh DA, Manji HK, Drevets WC (2007) Regional cerebral glucose metabolic abnormalities in bipolar II depression. Biol Psychiatry 61: 765–775PubMedGoogle Scholar
  124. 124.
    Yurgelun-Todd DA, Gruber SA, Kanayama G, Killgore WD, Baird AA, Young AD (2000) fMRI during affect discrimination in bipolar affective disorder. Bipolar Disord 2: 237–248PubMedGoogle Scholar
  125. 125.
    Lawrence NS, Williams AM, Surguladze S, Giampietro V, Brammer MJ, Andrew C, Frangou S, Ecker C, Phillips ML (2004) Subcortical and ventral prefrontal cortical neural responses to facial expressions distinguish patients with bipolar disorder and major depression. Biol Psychiatry 55: 578–587PubMedGoogle Scholar
  126. 126.
    Rich BA, Vinton DT, Roberson-Nay R, Hommer RE, Berghorst LH, McClure EB, Fromm SJ, Pine DS, Leibenluft E (2006) Limbic hyperactivation during processing of neutral facial expressions in children with bipolar disorder. Proc Natl Acad Sci USA 103: 8900–8905PubMedGoogle Scholar
  127. 127.
    Pavuluri MN, O’Connor MM, Harral E, Sweeney JA (2007) Affective neural circuitry during facial emotion processing in pediatric bipolar disorder. Biol Psychiatry 62: 158–167PubMedGoogle Scholar
  128. 128.
    Blumberg HP, Stern E, Ricketts S, Martinez D, de Asis J, White T, Epstein J, Isenberg N, McBride PA, Kemperman I et al (1999) Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 156: 1986–1988PubMedGoogle Scholar
  129. 129.
    Kruger S, Seminowicz D, Goldapple K, Kennedy SH, Mayberg HS (2003) State and trait influences on mood regulation in bipolar disorder: blood flow differences with an acute mood challenge. Biol Psychiatry 54: 1274–1283PubMedGoogle Scholar
  130. 130.
    Shulman RG, Rothman DL, Behar KL, Hyder F (2004) Energetic basis of brain activity: implications for neuroimaging. Trends Neurosci 27: 489–495PubMedGoogle Scholar
  131. 131.
    Drevets WC, Videen TO, Price JL, Preskorn SH, Carmichael ST, Raichle ME (1992) A functional anatomical study of unipolar depression. J Neurosci 12: 3628–3641PubMedGoogle Scholar
  132. 132.
    Paul IA, Skolnick P (2003) Glutamate and depression: clinical and preclinical studies. Ann N Y Acad Sci 1003: 250–272PubMedGoogle Scholar
  133. 133.
    Krystal JH, Sanacora G, Blumberg H, Anand A, Charney DS, Marek G, Epperson CN, Goddard A, Mason GF (2002) Glutamate and GABA systems as targets for novel antidepressant and mood-stabilizing treatments. Mol Psychiatry 7 Suppl 1: S71–80PubMedGoogle Scholar
  134. 134.
    McEwen BS, Magarinos AM (2001) Stress and hippocampal plasticity: implications for the pathophysiology of affective disorders. Hum Psychopharmacol 16: S7–S19PubMedGoogle Scholar
  135. 135.
    Bowen DM, Najlerahim A, Procter AW, Francis PT, Murphy E (1989) Circumscribed changes of the cerebral cortex in neuropsychiatric disorders of later life. Proc Natl Acad Sci USA 86: 9504–9508PubMedGoogle Scholar
  136. 136.
    Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95: 13290–13295PubMedGoogle Scholar
  137. 137.
    Rajkowska G, Miguel-Hidalgo JJ, Wei J, Dilley G, Pittman SD, Meltzer HY, Overholser JC, Roth BL, Stockmeier CA (1999) Morphometric evidence for neuronal and glial prefrontal cell pathology in major depression. Biol Psychiatry 45: 1085–1098PubMedGoogle Scholar
  138. 138.
    Eastwood SL, Harrison PJ (2000) Hippocampal synaptic pathology in schizophrenia, bipolar disorder and major depression: a study of complexin mRNAs. Mol Psychiatry 5: 425–432PubMedGoogle Scholar
  139. 139.
    Rajkowska G, Miguel-Hidalgo JJ (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6: 219–233PubMedGoogle Scholar
  140. 140.
    Cotter D, Mackay D, Landau S, Kerwin R, Everall I (2001) Reduced glial cell density and neuronal size in the anterior cingulate cortex in major depressive disorder. Arch Gen Psychiatry 58: 545–553PubMedGoogle Scholar
  141. 141.
    Bowley MP, Drevets WC, Ongur D, Price JL (2002) Low glial numbers in the amygdala in major depressive disorder. Biol Psychiatry 52: 404–412PubMedGoogle Scholar
  142. 142.
    Benes FM, Vincent SL, Todtenkopf M (2001) The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry 50: 395–406PubMedGoogle Scholar
  143. 143.
    Todtenkopf MS, Vincent SL, Benes FM (2005) A cross-study meta-analysis and three-dimensional comparison of cell counting in the anterior cingulate cortex of schizophrenic and bipolar brain. Schizophr Res 73: 79–89PubMedGoogle Scholar
  144. 144.
    Czeh B, Lucassen PJ (2007) What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? Eur Arch Psychiatry Clin Neurosci 257: 250–260PubMedGoogle Scholar
  145. 145.
    Honer WG, Falkai P, Chen C, Arango V, Mann JJ, Dwork AJ (1999) Synaptic and plasticity-associated proteins in anterior frontal cortex in severe mental illness. Neuroscience 91: 1247–1255PubMedGoogle Scholar
  146. 146.
    Regenold WT, Phatak P, Marano CM, Gearhart L, Viens CH, Hisley KC (2007) Myelin staining of deep white matter in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and unipolar major depression. Psychiatry Res 151: 179–188PubMedGoogle Scholar
  147. 147.
    Brambilla P, Nicoletti M, Sassi RB, Mallinger AG, Frank E, Keshavan MS, Soares JC (2004) Corpus callosum signal intensity in patients with bipolar and unipolar disorder. J Neurol Neurosurg Psychiatry 75: 221–225PubMedGoogle Scholar
  148. 148.
    Martinez P, Ronsaville D, Gold PW, Hauser P, Drevets WC (2002) Morphometric abnormalities in adolescent offspring of depressed mothers. Soc Neurosci Abstr 32: 498–504Google Scholar
  149. 149.
    Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, Rachmanova V (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55: 597–610PubMedGoogle Scholar
  150. 150.
    Janus C, D’Amelio S, Amitay O, Chishti MA, Strome R, Fraser P, Carlson GA, Roder JC, St George-Hyslop P, Westaway D (2000) Spatial learning in transgenic mice expressing human presenilin 1 (PS1) transgenes. Neurobiol Aging 21: 541–549PubMedGoogle Scholar
  151. 151.
    Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, Yolken RH (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5: 142–149PubMedGoogle Scholar
  152. 152.
    Webster MJ, Knable MB, Johnston-Wilson N, Nagata K, Inagaki M, Yolken RH (2001) Immunohistochemical localization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav Immun 15: 388–400PubMedGoogle Scholar
  153. 153.
    Cotter DR, Pariante CM, Everall IP (2001) Glial cell abnormalities in major psychiatric disorders: the evidence and implications. Brain Res Bull 55: 585–595PubMedGoogle Scholar
  154. 154.
    Cheng JD, de Vellis J (2000) Oligodendrocytes as glucocorticoids target cells: functional analysis of the glycerol phosphate dehydrogenase gene. J Neurosci Res 59: 436–445PubMedGoogle Scholar
  155. 155.
    Alonso G (2000) Prolonged corticosterone treatment of adult rats inhibits the proliferation of oligodendrocyte progenitors present throughout white and gray matter regions of the brain. Glia 31: 219–231PubMedGoogle Scholar
  156. 156.
    Banasr M, Hery M, Printemps R, Daszuta A (2004) Serotonin-induced increases in adult cell proliferation and neurogenesis are mediated through different and common 5-HT receptor subtypes in the dentate gyrus and the subventricular zone. Neuropsychopharmacology 29: 450–460PubMedGoogle Scholar
  157. 157.
    Czeh B, Pudovkina O, van der Hart MG, Simon M, Heilbronner U, Michaelis T, Watanabe T, Frahm J, Fuchs E (2005) Examining SLV-323, a novel NK1 receptor antagonist, in a chronic psychosocial stress model for depression. Psychopharmacology (Berl) 180: 548–557Google Scholar
  158. 158.
    Wellman CL (2001) Dendritic reorganization in pyramidal neurons in medial prefrontal cortex after chronic corticosterone administration. J Neurobiol 49: 245–253PubMedGoogle Scholar
  159. 159.
    Radley JJ, Rocher AB, Rodriguez A, Ehlenberger DB, Dammann M, McEwen BS, Morrison JH, Wearne SL, Hof PR (2008) Repeated stress alters dendritic spine morphology in the rat medial prefrontal cortex. J Comp Neurol 507: 1141–1150PubMedGoogle Scholar
  160. 160.
    Vyas A, Bernal S, Chattarji S (2003) Effects of chronic stress on dendritic arborization in the central and extended amygdala. Brain Res 965: 290–294PubMedGoogle Scholar
  161. 161.
    Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S (2002) Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J Neurosci 22: 6810–6818PubMedGoogle Scholar
  162. 162.
    Izquierdo A, Wellman CL, Holmes A (2006) Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J Neurosci 26: 5733–5738PubMedGoogle Scholar
  163. 163.
    Miracle AD, Brace MF, Huyck KD, Singler SA, Wellman CL (2006) Chronic stress impairs recall of extinction of conditioned fear. Neurobiol Learn Mem 85: 213–218PubMedGoogle Scholar
  164. 164.
    Milad MR, Quinn BT, Pitman RK, Orr SP, Fischl B, Rauch SL (2005) Thickness of ventromedial prefrontal cortex in humans is correlated with extinction memory. Proc Natl Acad Sci USA 102: 10706–10711PubMedGoogle Scholar
  165. 165.
    Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, Mathis C (2007) Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 34: 865–877PubMedGoogle Scholar
  166. 166.
    Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS, Manji HK, Drevets WC (2007) Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder. Biol Psychiatry 62: 870–877PubMedGoogle Scholar
  167. 167.
    Barton DA, Esler MD, Dawood T, Lambert EA, Haikerwal D, Brenchley C, Socratous F, Hastings J, Guo L, Wiesner G et al (2008) Elevated brain serotonin turnover in patients with depression: effect of genotype and therapy. Arch Gen Psychiatry 65: 38–46PubMedGoogle Scholar
  168. 168.
    Stockmeier CA (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37: 357–373PubMedGoogle Scholar
  169. 169.
    Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin1A receptor acts during development to establish normal anxiety-like behaviour in the adult. Nature 416: 396–400PubMedGoogle Scholar
  170. 170.
    Lopez JF, Chalmers DT, Little KY, Watson SJ (1998) A.E. Bennett Research Award. Regulation of serotonin1A, glucocorticoid, and mineralocorticoid receptor in rat and human hippocampus: implications for the neurobiology of depression. Biol Psychiatry 43: 547–573PubMedGoogle Scholar
  171. 171.
    Flugge G (1995) Dynamics of central nervous 5-HT1A-receptors under psychosocial stress. J Neurosci 15: 7132–7140PubMedGoogle Scholar
  172. 172.
    Drevets WC, Frank E, Price JC, Kupfer DJ, Holt D, Greer PJ, Huang Y, Gautier C, Mathis C (1999) PET imaging of serotonin 1A receptor binding in depression. Biol Psychiatry 46: 1375–1387PubMedGoogle Scholar
  173. 173.
    Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK, Klaver JM, Charney DS, Manji HK, Drevets WC (2006) Serotonin transporter binding in bipolar disorder assessed using [11C]DASB and positron emission tomography. Biol Psychiatry 60: 207–217PubMedGoogle Scholar
  174. 174.
    Suhara T, Nakayama K, Inoue O, Fukuda H, Shimizu M, Mori A, Tateno Y (1992) D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology (Berl) 106: 14–18Google Scholar
  175. 175.
    Pearlson GD, Wong DF, Tune LE, Ross CA, Chase GA, Links JM, Dannals RF, Wilson AA, Ravert HT, Wagner HN Jr, et al (1995) In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry 52: 471–477PubMedGoogle Scholar
  176. 176.
    Anand A, Verhoeff P, Seneca N, Zoghbi SS, Seibyl JP, Charney DS, Innis RB (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 157: 1108–1114PubMedGoogle Scholar
  177. 177.
    Janowsky DS, Overstreet DH, Nurnberger JIJ (1994) Is cholinergic sensitivity a genetic marker for the affective disorders? Am J Med Genet 54: 335–344PubMedGoogle Scholar
  178. 178.
    Benson BE, Carson RE, Kiesewetter DO, Herscovitch P, Eckelman WC, Post RM, Ketter TA (2004) A potential cholinergic mechanism of procaine’s limbic activation. Neuropsychopharmacology 29: 1239–1250PubMedGoogle Scholar
  179. 179.
    Ketter TA, Andreason PJ, George MS, Lee C, Gill DS, Parekh PI, Willis MW, Herscovitch P, Post RM (1996) Anterior paralimbic mediation of procaine-induced emotional and psychosensory experiences. Arch Gen Psychiatry 53: 59–69PubMedGoogle Scholar
  180. 180.
    Cannon DM, Carson RE, Nugent AC, Eckelman WC, Kiesewetter DO, Williams J, Rollis D, Drevets M, Gandhi S, Solorio G et al (2006) Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry 63: 741–747PubMedGoogle Scholar
  181. 181.
    Furey ML, Drevets WC (2006) Antidepressant efficacy of the antimuscarinic drug scopolamine: a randomized, placebo-controlled clinical trial. Arch Gen Psychiatry 63: 1121–1129PubMedGoogle Scholar
  182. 182.
    Russchen FT, Bakst I, Amaral DG, Price JL (1985) The amygdalostriatal projections in the monkey. An anterograde tracing study. Brain Res 329: 241–257PubMedGoogle Scholar
  183. 183.
    Shekhar A, Truitt W, Rainnie D, Sajdyk T (2005) Role of stress, corticotrophin releasing factor (CRF) and amygdala plasticity in chronic anxiety. Stress 8: 209–219PubMedGoogle Scholar
  184. 184.
    Davis M, Shi C (1999) The extended amygdala: are the central nucleus of the amygdala and the bed nucleus of the stria terminalis differentially involved in fear versus anxiety? Ann N Y Acad Sci 877: 281–291PubMedGoogle Scholar
  185. 185.
    LeDoux J (2003) The emotional brain, fear, and the amygdala. Cell Mol Neurobiol 23: 727–738PubMedGoogle Scholar
  186. 186.
    Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Function 213: 93–118Google Scholar
  187. 187.
    Manji HK, Drevets WC, Charney DS (2001) The cellular neurobiology of depression. Nature Medicine 7: 541–547PubMedGoogle Scholar
  188. 188.
    Drevets WC (2007) Orbitofrontal cortex function and structure in depression. Ann N Y Acad Sci 1121: 499–527PubMedGoogle Scholar
  189. 189.
    Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamopituitary-adrenocortical axis. Trends Neurosci 20: 78–84PubMedGoogle Scholar
  190. 190.
    Carpenter M, Sutin J (1983) Human Neuroanatomy, Eighth Edition. Williams and Wilkins, Baltimore, MDGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Jonathan Savitz
    • 1
  • Wayne C. Drevets
    • 1
  1. 1.Section on Neuroimaging in Mood and Anxiety DisordersNational Institute of Mental HealthBethesdaUSA

Personalised recommendations