Non-pharmacological treatments and chronobiological aspects of bipolar disorder: implications for novel therapeutics

  • Wallace C. DuncanJr
Part of the Milestones in Drug Therapy book series (MDT)


This chapter reviews prominent neurobiological effects of chronotherapies for the treatment of mood disorders and integrates previously described therapeutic mechanisms with current advances regarding molecular signaling pathways and neuroplasticity. Scientific discoveries associated with circadian rhythms, disrupted sleep-wake patterns, and mood cycling, have establish preliminary links between circadian clock genes and mood. Importantly, the recent description of lithium’s effects on the molecular signaling pathways of the circadian system has advanced our understanding of the intracellular molecular bases of lithium’s mood stabilizing properties. Specifically discussed are the convergent intracellular pathways of monoaminergic drug therapies and chronotherapies (sleep deprivation (SD), light treatment (LT), and sleep phase advance (SPA)), and the advantage of understanding their common pathways for developing novel therapeutic treatments.


Mood Disorder Sleep Deprivation Circadian Clock Clock Gene Light Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pittendrigh CS, Daan S (1976) A functional analysis of circadian pacemakers in nocturnal rodents. V: Pacemaker structure. A clock for all seasons. J Comp Physiol 106: 333–335CrossRefGoogle Scholar
  2. 2.
    Borbely A (1982) Two process model of sleep regulation. Hum Neurobiology 1: 195–204Google Scholar
  3. 3.
    Tononi G, Cirelli C (2006) Sleep function and homeostasis. Sleep Med Rev 10: 49–62PubMedCrossRefGoogle Scholar
  4. 4.
    Cirelli C, Tononi G (2001) The search for the molecular correlates of sleep and wakefuless. Sleep Med Rev 5: 399–410CrossRefGoogle Scholar
  5. 5.
    Cirelli C, Tononi G (2004) Locus Ceruleus control of state-dependent gene expression. J Neurosci 24: 5410–5419PubMedCrossRefGoogle Scholar
  6. 6.
    Huber R, Ghilardi MF, Massimini M, Tononi G (2004) Local sleep and learning. Nature 430: 78–81PubMedCrossRefGoogle Scholar
  7. 7.
    Hamet P, Tremblay J (2006) Genetics of the sleep-wake cycle and its disorders. Metabolism 55: S7–S12PubMedCrossRefGoogle Scholar
  8. 8.
    Shirayama M, Shirayama Y, Iida H, Kato M, Kajimura N, Watanabe T, Sekimoto M, Shirakawa S, Okawa M, Takahashi K (2003) The psychological aspects of patients with delayed sleep syndrome (DSPS). Sleep Med 4: 427–437PubMedCrossRefGoogle Scholar
  9. 9.
    Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Ptacek LJ, Fu YH (2005) Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 434: 640–644PubMedCrossRefGoogle Scholar
  10. 10.
    Riemann D, Voderholzer H (2003) Primary insomnia: a risk factor to develop depression. J Affect Disorder 76: 255–259CrossRefGoogle Scholar
  11. 11.
    Uz T (2005) Effect of fluoxetine and cocaine on the expression of clock genes in the mouse hippocampus and striatum. Neuroscience 134: 1309–1316PubMedCrossRefGoogle Scholar
  12. 12.
    Yuan Q, Lin F, Zheng X, Sehgal A (2005) Serontonin modulates circadian entrainment in Drosophila. Neuron 47: 115–127PubMedCrossRefGoogle Scholar
  13. 13.
    Benedetti F, Colombo C, Serretti A, Lorenzi C, Pontggia A, Barbini B, Smeraldi E (2003) Antidepressant effect of light therapy combined with sleep deprivation are influenced by a functional polymorphism within the promoter of the serotonin transporter gene. Biol Psychiatry 54: 687–692PubMedCrossRefGoogle Scholar
  14. 14.
    Benedetti F, Serretti A, Colombo C, Barbini B, Lorenzi C, Campori E, Smeraldi E (2003) Influence of CLOCK polymorphism on circadian mood fluctuation and illness recurrence in bipolar depression. Am J Med Genet B Neuropsychiatr Genet B Neuropsychiatr Genet 123: 23–26CrossRefGoogle Scholar
  15. 15.
    Spanagel R, Pendyala G, Abarca C, Zghoul T, Sanchis-Segura C, Manone M, Lascorz J, Depner M, Holzberg D, Soyka M et al (2005) The clock gene Per2 influences the glutamatergic system and modulates alcohol consumption. Nat Med 11: 35–42PubMedCrossRefGoogle Scholar
  16. 16.
    Ostenfeld I (1986) Abstinence from night sleep as a treatment for endogenous depressions. The earliest observations in a Danish mental hospital (1954) and the analysis of the causal mechanism. Dan Med Bull 33: 45–49PubMedGoogle Scholar
  17. 17.
    Schulte W (1959) Sequelae of sleep deprivation. Medizinische Klinik (Munich) 54: 969–973Google Scholar
  18. 18.
    Benedetti F, Serretti A, Pontiggia A, Bernasconi A, Lorenzi C, Colombo C, Smeraldi E (2005) Long term response to lithium salts in bipolar illness is influenced by the glycogen synthase kinase 3-beta t/C SNP. Neurosci Lett 376: 51–55PubMedCrossRefGoogle Scholar
  19. 19.
    Benedetti F, Bernasconi A, Blasi V, Cadioli M, Colombo C, Falini A, Lorenzi C, Radgelli D, Scotti G, Smeraldi E (2007) Neural and genetic correlates of antidepressant response to sleep deprivation: a functional magnetic resonance imaging study of moral valence decision in bipolar depression. Arch Gen Psychiatry 64: 179–187PubMedCrossRefGoogle Scholar
  20. 20.
    Liebenluft E, Wehr TA (1992) Is sleep deprivation useful in the treatment of depression? Am J Psychiatry 149: 159–168Google Scholar
  21. 21.
    Parry BL, Curran ML, Stuenkel CA, Yokimozo M, Tam L, Powell KA, Gillin JC (2000) Can critically timed sleep deprivation be used in pregnancy and postpartum depressions? J Affect Disorder 60: 201–212CrossRefGoogle Scholar
  22. 22.
    Parry BL, Cover H, Mostofi N, LeVeau B, Sependa PA, Resnick A, Gillin JC (1995) Early versus late partial sleep deprivation in patients with premenstrual dysphoric disorder and normal comparison subjects. Am J Psychiatry 152: 404–412PubMedGoogle Scholar
  23. 23.
    Barbini B, Colombo C, Benedetti F, Campori E, Bellodi L, Smereldi E (1998) The unipolar-bipolar dichotomy and the resonse to sleep deprivation. Psychiatr Research 79: 43–50CrossRefGoogle Scholar
  24. 24.
    Held K, Kunzel H, Ising M (2004) Treatment with the CRH1 receptor anatagonist R121919 improves sleep-EEG in patients with depression. J Psychiatr Res 38: 129–136PubMedCrossRefGoogle Scholar
  25. 25.
    Ursin R (2002) Serotonin and sleep. Sleep Med Review 6: 57–69Google Scholar
  26. 26.
    Aston-Jones G, Chen S, Zhu Y, Oshinsky ML (2001) A neural circuit for circadian regulation of arousal. Nat Neurosci 4: 732–739PubMedCrossRefGoogle Scholar
  27. 27.
    Gonzalez MM, Aston-Jones G (2006) Circadian regulation of arousal: role of the noradrenergic locus coeruleus system and light exposure. Sleep 29: 1327–1336PubMedGoogle Scholar
  28. 28.
    Gardner J, Fornal C, Jacobs B (1997) Effects of sleep deprivation on serotonergic activity in the dorsal raphe nucleus of the freely moving cat. Neuropsychopharmacology 17: 72–81PubMedCrossRefGoogle Scholar
  29. 29.
    Asikainen M, DeBoer T, Porkka-Heiskanen T, Stenberg D, Tobler I (1995) Sleep deprivation increases brain serotonin turnover in the Djungarian hamster. Neurosci Lett 198: 21–24PubMedCrossRefGoogle Scholar
  30. 30.
    Maudhuit C, Jolas T, Chastanet M, Hamon M, Adrien J (1996) Reduced inhibitory potency of serotonin reuptake blockers on central serotonergic neurons in rats selectively deprived of rapid eye movement sleep. Biol Psychiatry 40: 1000–1007PubMedCrossRefGoogle Scholar
  31. 31.
    Smeraldi E, Benedetti F, Barbini B, Campari E, Colombo C (1999) Sustained antidepressant effect of sleep deprivation combined with pindolol in bipolar depression. Neuropsychopharmacology 20: 380–385PubMedCrossRefGoogle Scholar
  32. 32.
    Basheer R, Magner M, McCarley RW, Shiromani PJ (1998) REM sleep deprivation increases levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. Mol Br Res 57: 235–240CrossRefGoogle Scholar
  33. 33.
    Hipolide DC, Moreira KM, Barlow KB, Wilson AA, Nobrega JN, Tufik S (2005) Distinct effects of sleep deprivation on binding to norepinephrine and serotonin transporters in rat brain. Prog Neuropsychopharmacol Biol Psychiatry 29: 297–303PubMedCrossRefGoogle Scholar
  34. 34.
    Muller HU, Riemann D, Berger M, Muller WE (1993) The influence of total sleep deprivation on urinary excretion of catecholamine metabolites in major depression. Acta Psychiatr Scand 88: 16–20PubMedCrossRefGoogle Scholar
  35. 35.
    Zwicker AP, Calil HM (1986) The effects of REM sleep deprivation on striatal dopamine receptor sites. Pharmacol Biochem Behav 24: 809–812PubMedCrossRefGoogle Scholar
  36. 36.
    Kasper S, Sack DA, Wehr TA, Kick H, Voll G, Viera A (1988) Nocturnal TSH and prolactin secretion during sleep deprivation and prediction of antidepressant response in patients with major depression. Biol Psychiatry 24: 631–641PubMedCrossRefGoogle Scholar
  37. 37.
    Ebert D, Feistel H, Kaschka W, Barocka A, Pirner A (1994) Single photon emission computerized tomography assessment of cerebral dopamine D2 receptor blockade in depression before and after sleep deprivation. Preliminary Results. Biol Psychiatry 35: 880–885PubMedCrossRefGoogle Scholar
  38. 38.
    Ebert D, Albert R, Hammon G, Strasser B, May A, Merz A (1996) Eye-blink rate and depression. Is the antidepressant effect of sleep deprivation mediated by the dopamine system? Neuropsychopharmacology 15: 332–339PubMedCrossRefGoogle Scholar
  39. 39.
    Clark C, Brown GG, Archibald SL (2002) Does amygdalar perfusion correlate with antidepressant response to sleep deprivation in major depression? Psychiatry Res 146: 43–51Google Scholar
  40. 40.
    Clark C, Brown GG, Frank L, Thomas L, Sutherland AN, Gillin JC (2006) Improved anatomic delineation of the antidepressant response to partial sleep deprivation in medial frontal cortex using perfusion weighted functional MRI. Psychiatry Res 146: 213–222PubMedCrossRefGoogle Scholar
  41. 41.
    Gillin JC, Buchsbaum M, Wu J, Clark C, Bunney W (2001) Sleep deprivation as a model experimental antidepressant treatment: findings from functional brain imaging. Depress Anxiety 14: 37–49PubMedCrossRefGoogle Scholar
  42. 42.
    Wu JC, Buchsbaum M, Bunney WE (2001) Clinical neurochemical implications of sleep deprivations effects on the anterior cingulate of depressed responders. Neuropsychopharmacology 25: S74–78PubMedCrossRefGoogle Scholar
  43. 43.
    Mayberg HS (2003) Modulating dysfunctional limbic cortical circuits in depression: towards development of brain based algorithms for diagnosis and treatment. Br Med Bull 65: 193–207PubMedCrossRefGoogle Scholar
  44. 44.
    Lambert GW, Reid C, Kaye DM, Jennings GL, Esler MD (2002) Effect of sunlight and season on serotonin turnover in the brain. Lancet 360: 1840–1842PubMedCrossRefGoogle Scholar
  45. 45.
    Yatham LN, Lam RW, Zis AP (1997) Growth hormone response to sumatriptan (5HT1D agonist) challenge in seasona; affective disorder: effects of light therapy. Biol Psychiatry 42: 24–29PubMedCrossRefGoogle Scholar
  46. 46.
    Garcia-Borreguero D, Jacobsen FM, Murphy DL, Joseph-Vanderpool JR, Chiara A, Rosenthal NE (1995) Hormonal responses to the administration of m-chlorophenylpiperazine in patients with seasonal affective disorder and controls. Biol Psychiatry 37: 740–749PubMedCrossRefGoogle Scholar
  47. 47.
    Neumeister A, Turner EH, Matthews JR, Postolache TT, Barnett RL, Rauh M, Vetticad RG, Kasper S, Rosenthal NE (1998) Effects of tryptophan versus catecholamine depletion in patients with seasonal affective disorder in remission with light therapy. Arch Gen Psychiatry 55: 524–530PubMedCrossRefGoogle Scholar
  48. 48.
    Gau D (2002) Phosphorylation of CREB Ser142 regulates light-induced phase-shifts of the circadian clock. Neuron 34: 245–253PubMedCrossRefGoogle Scholar
  49. 49.
    Pickard GE, Rea MA (1997) Serotonergic innervation of the hypothalamic suprachiasmatic nucleus and photic regulation of circadian rhythms. Biol Cell 89: 513–523PubMedCrossRefGoogle Scholar
  50. 50.
    Duncan WC (1996) Circadian rhythms and the pharmacology of affective illness. Pharmacol Ther 71: 253–312PubMedCrossRefGoogle Scholar
  51. 51.
    Duncan WC, Johnson K, Wehr TA (1997) Decreased sensitivity and response to light of the photic entrainment pathway during chronic treatment with the MAOI clorgyline and lithium. J Biol Rhythms 13: 330–346CrossRefGoogle Scholar
  52. 52.
    D’Sa C, Duman RS (2002) Antidepressants and neuroplasticity. Bipolar Disord 4: 183–194PubMedCrossRefGoogle Scholar
  53. 53.
    Manji HK, Quiroz JA, Sporn J, Payne JL, Denikoff KD, Gray N, Zarate CA, Charney DS (2003) Enhancing neuronal plasticity and cellular resistance to develop novel improved therapeutics for difficult to treat depression. Biol Psychiatry 53: 707–742PubMedCrossRefGoogle Scholar
  54. 54.
    Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34: 13–25PubMedCrossRefGoogle Scholar
  55. 55.
    Quiroz JA, Singh J, Gould TD, Denikoff KD, Zarate CA, Manji HK (2004) Emerging experimental therapeutics for bipolar disorder: clues from molecular pathphysiology. Mol Psychiatry 9: 756–776PubMedCrossRefGoogle Scholar
  56. 56.
    Young L (2002) Neuroprotective effects of antidepressant and mood stabilizing drugs. J Psychiatry Neurosci 27: 8–9PubMedGoogle Scholar
  57. 57.
    Carlson PJ, Singh JB, Zarate CA, Drevets WC, Manji HK (2006) Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx 3: 22–41PubMedCrossRefGoogle Scholar
  58. 58.
    McEwen B (1999) Stress and hippocampal plasticity. Ann Rev Neurosci 22: 105–122PubMedCrossRefGoogle Scholar
  59. 59.
    Sapolsky R (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57: 925–935PubMedCrossRefGoogle Scholar
  60. 60.
    DeVries AC, Joh HD, Bernard O, Hattori K, Hurn PD, Traystman RJ, Alkayed NJ (2001) Social stress exacerbates stroke outcome by supressing Bcl-2 expression. Proc Natl Acad Sci USA 98: 11824–11828PubMedCrossRefGoogle Scholar
  61. 61.
    Blum R, Konnerth A (2005) Neurotrophin-mediated rapid signaling in the central nervous system. Physiology 20: 70–78PubMedCrossRefGoogle Scholar
  62. 62.
    Duman RS, Malberg J, Thome J (1999) Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 46: 1181–1191PubMedCrossRefGoogle Scholar
  63. 63.
    Thome J, Sakai N, Shin K, Steffen C, Zhang YJ, Impey S, Storm D, Duman RS (2000) cAMP response element-mediated gene transcription is upregulated by chronic antidepressant treatment. J Neurosci 20: 4030–4036PubMedGoogle Scholar
  64. 64.
    Beaulieu J-M (2007) Not only lithium: regulation of glycogen synthase kinase-3 by antipsychotics and serotonergic drugs. Int J Neuropsychopharmacol 10: 3–6PubMedCrossRefGoogle Scholar
  65. 65.
    Martinowich K, Lu B (2008) Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology 33: 73–83PubMedCrossRefGoogle Scholar
  66. 66.
    Serretti A, Macciardi F, Cusin C, Lattuada E, Souery D, Lipp O, Mahieu B, Van Broeckhoven C, Blackwood D, Muir W (2000) Linkage study of mood disorders with D2, D3, and TH genes: a multicenter study. J Affect Disorder 58: 51–61CrossRefGoogle Scholar
  67. 67.
    Retey JV, Honneger E, Khatami R, Luhmann U, Jung H, Berger W, Landolt H-P (2005) A functional genetic variation of adenosine deaminase affects the duration and intensity of deep sleep in humans. Proc Natl Acad Sci USA 102: 15676–15681PubMedCrossRefGoogle Scholar
  68. 68.
    van Calker D, Biber K (2005) The role of adenosine receptors in neural resilience and the neurobiology of mood disorders. Neurochem Res 30: 1205–1217PubMedCrossRefGoogle Scholar
  69. 69.
    Kim Y, Laposky A, Bergmann BM, Turek FW (2007) Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep. Proc Natl Acad Sci USA 104: 10697–10702PubMedCrossRefGoogle Scholar
  70. 70.
    Li X, Zhu W, Roh M, Friedman AB, Rosborough K, Jope RS (2004) In vivo regulation of gltcogen synthase kinase-3B (GSK3B) by serotonergic activity in mouse brain. Neuropsychopharmacology 29: 1426–1431PubMedCrossRefGoogle Scholar
  71. 71.
    Gould TD, Einat H, Bhat B, Manji HK (2004) AR-A014418 a selective GSK-3 inhibitor pruduces antidepressant like effects in the forced swim test. Int J Neuropsychopharmacol 7: 387–390PubMedCrossRefGoogle Scholar
  72. 72.
    Roh MS, Kang UG, Shin SY, Lee YH, Jung HY, Juhan YS, Kim YS (2003) Biphasic changes in the Ser-9 phosphorylation of glycogen kinase-3beta after electroconvulsive shock in the rat brain. Prog Neuropsychopharmacol Biol Psychiatry 7: 1–5CrossRefGoogle Scholar
  73. 73.
    Beaulieu JM, Soynikova TD, Yao WD, Kockeritz L, Woodgett JR, Gainetdinov RR, Caron MG (2004) Lithium antagonizes dopamine-dependent behaviors mediated by an Akt/glucogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 101: 5099–5109PubMedCrossRefGoogle Scholar
  74. 74.
    Yujnovsky I, Hirayama J, Doi M, Borelli E, Sassone-Corsi P (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. Proc Natl Acad Sci USA 103: 6386–6391PubMedCrossRefGoogle Scholar
  75. 75.
    Blood AB, Hunter CJ, Power GG (2003) Adenosine mediates decreased cerebral metabolic rate and increased cerebral blood flow during acute moderate hypoxia in the near-term fetal sheep. J Physiol 553: 935–945PubMedCrossRefGoogle Scholar
  76. 76.
    Swanson TH, Drazba JA, Rivkees SA (1995) Adenosine A1 receptors are located predominantly on axons of the rat hippocampal formation. J Comp Neurol 363: 517–531PubMedCrossRefGoogle Scholar
  77. 77.
    Eschke D, Brand A, Scheibler P, Hess S, Eger K, Allgaier C, Nieber K (2001) Effect of an adenosine A(1) receptor agonist and novel pyrimidoindole on membrane properties and neurotransmitter release in rat cortical and hippocampal neurons. Neurochem Int 38: 391–398PubMedCrossRefGoogle Scholar
  78. 78.
    Zarate CA, Singh J, Manji HK (2006) Cellular plasticity cascades: targets for the development of novel therapeutics for bipolar disorder. Biol Psychiatry 59: 1006–1020PubMedCrossRefGoogle Scholar
  79. 79.
    Bradbury MJ, Dement WC, Edgar DM (1997) Serotonin containing fibers in the suprachiasmatic hypothalamus attenuate light-induced phase-delays in mice. Brain Res 768: 125–134PubMedCrossRefGoogle Scholar
  80. 80.
    Uz T (2003) The pineal gland is critical for circadian Period1 expression in the striatum and for cocaine sensitization in mice. Neuropsychopharmacology 28: 2117–2133PubMedGoogle Scholar
  81. 81.
    Dauvilliers Y, Maret S, Tafti S (2005) Genetics of normal and pathological sleep in humans. Sleep Rev Med 9: 91–100CrossRefGoogle Scholar
  82. 82.
    Hohjoh H, Takasu M, Shishikura K (2003) Significant association of the arylalkylamine N-acetransferase (AA-NAT) gene with delayed sleep phase syndrome. Neurogenetics 4: 151–153PubMedGoogle Scholar
  83. 83.
    Abarca C (2002) Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc Natl Acad Sci USA 99: 9026–9030PubMedCrossRefGoogle Scholar
  84. 84.
    Roybal K, Theobold D, Graham A, DiNieri J, Russo SJ, Krishnan V (2007) Mania-like behavior induced by disruption of CLOCK. Proc Natl Acad Sci USA 104: 6406–6411PubMedCrossRefGoogle Scholar
  85. 85.
    Manev H, Uz T (2006) Clock genes influencing and influenced by psychoactive drugs. Trends in Pharmacological Science 27: 186–189CrossRefGoogle Scholar
  86. 86.
    Johansson C, Willeit M, Smedh C, Ekholm J, Paunio T, Kieseppa T (2003) Circadian clock-related polymorphism in seasonal affective disorder and their relevance to diurnal preference. Neuropsychopharmacology 28: 734–739PubMedCrossRefGoogle Scholar
  87. 87.
    Roecklein KA, Rohan KJ, Duncan WC, Rollag MD, Rosenthal NE, Lipsky RH, Provencio I (2008) A missense variant (P10L) of the melanopsin (OPN4) gene in seasonal affective disorder. J Affective Disorder doi: 10.1016/j.jad.2008.08.005Google Scholar
  88. 88.
    Partonen T, Treutlein J, Alpman A, Frank J, Johansson C, Depner M, Aron L, Rietschel M, Wellek S, Soronen P (2007) Three circadian clock genes Per2, Arntl, Npas2 contribute to winter depression. Annals Med 39: 229–2328CrossRefGoogle Scholar
  89. 89.
    Serretti A, Benedetti F, Mandelli L, Lorenzi C, Pirovano A, Colombo C, Smeraldi E (2003) Genetic dissection of psyschopathological symptoms: insomnia in mood disorders and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet B Neuropsychiatr Genet 121: 35–38CrossRefGoogle Scholar
  90. 90.
    Serretti A, Cusin C, Benedetti F, Mandelli L, Pirovano A, Zanardi R, Colombo C, Smeraldi E (2005) Insomnia improvement during antidepressant treatment and CLOCK gene polymorphism. Am J Med Genet B Neuropsychiatr Genet 137: 36–39Google Scholar
  91. 91.
    Pirovano A, Lorenzi C, Serretti A, Ploia C, Landoni S, Catalano M, Smeraldi E (2005) Two new rare variants in the circadian “clock” gene may influence sleep pattern. Genet Med 7: 455–457PubMedCrossRefGoogle Scholar
  92. 92.
    Desan PH, Oren DA, Malison R, Price LH, Rosenbaum J, Smoller J, Charney DS, Gelernter J (2000) Genetic polymorphism at the CLOCK gene locus and major depression. Am J Med Genet 96: 418–421PubMedCrossRefGoogle Scholar
  93. 93.
    Mansour HA, Wood J, Logue T, Chowdri KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonker VL (2006) Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophenia. Genes Brain Behavior 5: 150–157CrossRefGoogle Scholar
  94. 94.
    Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD (2006) Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141: 234–241Google Scholar
  95. 95.
    Benedetti F, Serretti A, Columbo C, Lorenzi C, Tubazio V, Smeraldi E (2004) A glycogen synthase kinase 3-beta promoter gene single nucleotide polymorphism is associated with age of onset and response to total sleep deprivation in bipolar depression. Neurosci Lett 368: 123–126PubMedCrossRefGoogle Scholar
  96. 96.
    Szczepankiewicz A, Skibinska M, Hauser J, Slopien A, Leszcynska-Rodziewicz A, Kapelski P, Dmitrzak-Weglarz M, Czerski PM, Rybakowski JK (2006) Association analysis of the GSK-3beta T-C gene polymorphism with schizophrenia and bipolar disorder. Neuropsychobiology 53: 51–56PubMedCrossRefGoogle Scholar
  97. 97.
    Shiino Y, Nakajima S, Ozeki Y, Isono T, Yamada N (2003) Mutation screening of the human period 2 gene in bipolar disorder. Neurosci Letter 338: 82–84CrossRefGoogle Scholar
  98. 98.
    Nievergelt CM, Kripke DF, Remick RA, Sadovnick AD, McElroy SL, Keck PE, Schork NJ, Kelsoe JR (2005) Examination of the clock gene Cryptochrome 1 in bipolar disorder: mutational analysis and absence of evidence of linkage or association. Psychiatr Genet 15: 45–52PubMedCrossRefGoogle Scholar
  99. 99.
    Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptacek LJ, Fu YH (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291: 1040–1043PubMedCrossRefGoogle Scholar
  100. 100.
    Archer SN, Robilliard DL, Skene DJ, Smits M, Williams A, Arendt J, Von Schantz M (2003) A length polymorphism in the circadian gene Per3 is linked to delayed sleep phase syndrome and extreme diurnal preference. Sleep 26: 413–415PubMedGoogle Scholar
  101. 101.
    Ebisawa T, Uchiyama M, Kajimura N, Mishima K, Kamei Y, Katoh M, Watanabe T, Sekimoto M, Shibui K, Kim K (2001) Association of structural polymorphisms in the human period 3 gene with delayed sleep phase syndrome. EMBO reports 2: 342–346PubMedCrossRefGoogle Scholar
  102. 102.
    Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS, Mignot E (1998) A CLOCK polymorphism associated with human diurnal preference. Sleep 21: 569–576PubMedGoogle Scholar
  103. 103.
    Mishima K, Tozawa T, Satoh K, Saitoh H, Mishima Y (2005) The 3111 T/C polymorphism of hClock is associated with evening preference and delayed sleep timing in a Japanese population sample. Am J Med Genet B Neuropsychiatr Genet 133: 101–104Google Scholar
  104. 104.
    Robilliard DL, Archer SN, Arendt J, Lockley SW, Hack LM, English J, Leger D, Smits MG, Williams A, Skene DJ et al (2002) The 3111 Clock gene polymorphism is not associated with sleep and circadian rhythmicity in phenotypically characterized human subjects. J Sleep Res 11: 305–312PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Wallace C. DuncanJr
    • 1
  1. 1.Mood and Anxiety Disorders Program, National Institute of Mental HealthBethesdaUSA

Personalised recommendations