Understanding the neurobiology of bipolar depression

  • Jun-Feng Wang
  • L. Trevor Young
Part of the Milestones in Drug Therapy book series (MDT)


Many studies have shown decreased brain volume and cell number in prefrontal and limbic regions of bipolar disorder subjects, suggesting presence of disturbed neuronal circuitry and impaired neuroplasticity in these regions. The serotonin system plays an important role in depression and is a target of antidepressants. Studies have shown that the major serotonin metabolite 5-HIAA and serotonin transporter activity are decreased in cerebrospinal fluid, brain or platelets of subjects with bipolar depression, indicating that an abnormal serotonin system also contributes significantly to this disease. Mitochondria regulate synthesis, release and uptake of neurotransmitters via energy production. Evidence has shown that glucose metabolic rate and cerebral blood flow are decreased in bipolar depression. Studies also suggest defects in mitochondrial electron transport chain and oxidative damage in bipolar disorder. These studies together indicate that bipolar depression may be associated with an abnormal serotonin system resulting from mitochondrial dysfunction-induced impaired neuroplasticity in neuronal circuitry related to mood regulation.


Bipolar Disorder Brain Derive Neurotrophic Factor Serotonin Transporter Biol Psychiatry Bipolar Depression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Isometsa ET, Henriksson MM, Aro HM, Lonnqvist JK (1994) Suicide in bipolar disorder in Finland. Am J Psychiatry 151: 1020–1024PubMedGoogle Scholar
  2. 2.
    Ferrier IN (1999) Treatment of major depression: is improvement enough? J Clin Psychiatry 60 (Suppl 6): 10–14PubMedGoogle Scholar
  3. 3.
    López P, Mosquera F, de León J, Gutiérrez M, Ezcurra J, Ramírez F, González-Pinto A (2001) Suicide attempts in bipolar patients. J Clin Psychiatry 62: 963–966PubMedGoogle Scholar
  4. 4.
    Judd LL, Akiskal HS, Schettler PJ, Endicott J, Maser J, Solomon DA, Leon AC, Rice JA, Keller MB (2002) The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch Gen Psychiatry 59: 530–537PubMedGoogle Scholar
  5. 5.
    Post RM, Denicoff KD, Leverich GS, Altshuler LL, Frye MA, Suppes TM, Rush AJ, Keck PE Jr, McElroy SL, Luckenbaugh DA et al (2003) Morbidity in 258 bipolar outpatients followed for 1 year with daily prospective ratings on the NIMH life chart method. J Clin Psychiatry 64: 680–690PubMedGoogle Scholar
  6. 6.
    Mitchell PB, Malhi GS (2004) Bipolar depression: phenomenological overview and clinical characteristics. Bipolar Disord 6: 530–539PubMedGoogle Scholar
  7. 7.
    Allman JM, Hakeem A, Erwin JM, Nimchinsky E, Hof P (2001) The anterior cingulate cortex. The evolution of an interface between emotion and cognition. Ann N Y Acad Sci 935: 107–117PubMedGoogle Scholar
  8. 8.
    Cardinal RN, Parkinson JA, Hall J, Everitt BJ (2002) Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci Biobehav Rev 26: 321–352PubMedGoogle Scholar
  9. 9.
    Iidaka T, Terashima S, Yamashita K, Okada T, Sadato N, Yonekura Y (2003) Dissociable neural responses in the hippocampus to the retrieval of facial identity and emotion: an event-related fMRI study. Hippocampus 13: 429–436PubMedGoogle Scholar
  10. 10.
    Phelps EA (2006) Emotion and cognition: insights from studies of the human amygdala. Annu Rev Psychol 57: 27–53PubMedGoogle Scholar
  11. 11.
    Drevets WC, Price JL, Simpson Jr, JR, Todd RD, Reich T, Vannier M, Raichle ME (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386: 824–827PubMedGoogle Scholar
  12. 12.
    Hirayasu Y, Shenton ME, Salisbury DF, Kwon JS, Wible CG, Fischer IA, Yurgelun-Todd D, Zarate C, Kikinis R, Jolesz FA et al (1999) Subgenual cingulate cortex volume in firstepisode psychosis. Am J Psychiatry 156: 1091–1093PubMedGoogle Scholar
  13. 13.
    Lopez-Larson MP, DelBello MP, Zimmerman ME, Schwiers ML, Strakowski SM (2002) Regional prefrontal gray and white matter abnormalities in bipolar disorder. Biol Psychiatry 52: 93–100PubMedGoogle Scholar
  14. 14.
    Frangou S, Hadjulis M, Chitnis X, Baxter D, Donaldson S, Raymont V (2002) The Maudsley Bipolar Disorder Project: brain structural changes in bipolar 1 disorder. Bipolar Disord 4: 123–124Google Scholar
  15. 15.
    Swayze VW 2nd, Andreasen NC, Alliger RJ, Yuh WT, Ehrhardt JC (1992) Subcortical and temporal structures in affective disorder and schizophrenia: a magnetic resonance imaging study. Biol Psychiatry 31: 221–240PubMedGoogle Scholar
  16. 16.
    Altshuler LL, Bartzokis G, Grieder T, Curran J, Mintz J (1998) Amygdala enlargement in bipolar disorder and hippocampal reduction in schizophrenia: an MRI study demonstrating neuroanatomic specificity. Arch Gen Psychiatry 55: 663–664PubMedGoogle Scholar
  17. 17.
    Ali SO, Denicoff KD, Altshuler LL, Hauser P, Li X, Conrad AJ, Smith-Jackson EE, Leverich GS, Post RM (2001) Relationship between prior course of illness and neuroanatomic structures in bipolar disorder: a preliminary study. Neuropsychiatry Neuropsychol Behav Neurol 14: 227–232PubMedGoogle Scholar
  18. 18.
    Strakowski SM, DelBello MP, Sax KW, Zimmerman ME, Shear PK, Hawkins JM, Larson ER (1999) Brain magnetic resonance imaging of structural abnormalities in bipolar disorder. Arch Gen Psychiatry 56: 254–260PubMedGoogle Scholar
  19. 19.
    Strakowski SM, Adler CM, Holland SK, Mills NP, DelBello MP, Eliassen JC (2005) Abnormal FMRI brain activation in euthymic bipolar disorder patients during a counting Stroop interference task. Am J Psychiatry 162: 1697–1705PubMedGoogle Scholar
  20. 20.
    Hauser P, Matochik J, Altshuler LL, Denicoff KD, Conrad A, Li X, Post RM (2000) MRI-based measurements of temporal lobe and ventricular structures in patients with bipolar I and bipolar II disorders. J Affect Disord 60: 25–32PubMedGoogle Scholar
  21. 21.
    Brambilla P, Harenski K, Nicoletti M, Sassi RB, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2003) MRI investigation of temporal lobe structures in bipolar patients. J Psychiatr Res 37: 287–295PubMedGoogle Scholar
  22. 22.
    Blumberg HP, Kaufman J, Martin A, Whiteman R, Zhang JH, Gore JC, Charney DS, Krystal JH, Peterson BS (2003) Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry 60: 1201–1208PubMedGoogle Scholar
  23. 23.
    DelBello MP, Zimmerman ME, Mills NP, Getz GE, Strakowski SM (2004) Magnetic resonance imaging analysis of amygdala and other subcortical brain regions in adolescents with bipolar disorder. Bipolar Disord 6: 43–52PubMedGoogle Scholar
  24. 24.
    Chen BK, Sassi R, Axelson D, Hatch JP, Sanches M, Nicoletti M, Brambilla P, Keshavan MS, Ryan ND, Birmaher B et al (2004) Cross-sectional study of abnormal amygdala development in adolescents and young adults with bipolar disorder. Biol Psychiatry 56: 399–405PubMedGoogle Scholar
  25. 25.
    Chang K, Karchemskiy A, Barnea-Goraly N, Garrett A, Simeonova DI, Reiss A (2005) Reduced amygdalar gray matter volume in familial pediatric bipolar disorder. J Am Acad Child Adolesc Psychiatry 44: 565–573PubMedGoogle Scholar
  26. 26.
    Altshuler LL, Bartzokis G, Grieder T, Curran J, Jimenez T, Leight K, Wilkins J, Gerner R, Mintz J (2000) An MRI study of temporal lobe structures in men with bipolar disorder or schizophrenia. Biol Psychiatry 48: 147–162PubMedGoogle Scholar
  27. 27.
    Rajkowska G, Halaris A, Selemon LD (2001) Reductions in neuronal and glial density characterize the dorsolateral prefrontal cortex in bipolar disorder. Biol Psychiatry 49: 741–752PubMedGoogle Scholar
  28. 28.
    Benes FM, Kwok EW, Vincent SL, Todtenkopf MS (1998) A reduction of nonpyramidal cells in sector CA2 of schizophrenics and manic depressives. Biol Psychiatry 44: 88–97PubMedGoogle Scholar
  29. 29.
    Benes FM, Vincent SL, Todtenkopf M (2001) The density of pyramidal and nonpyramidal neurons in anterior cingulate cortex of schizophrenic and bipolar subjects. Biol Psychiatry 50: 395–406PubMedGoogle Scholar
  30. 30.
    Bezchlibnyk YB, Sun X, Wang JF, MacQueen GM, McEwen BS, Young LT (2007) Neuron somal size is decreased in the lateral amygdalar nucleus of subjects with bipolar disorder. J Psychiatry Neurosci 32: 203–210PubMedGoogle Scholar
  31. 31.
    Berretta S, Pantazopoulos H, Lange N (2007) Neuron numbers and volume of the amygdala in subjects diagnosed with bipolar disorder or schizophrenia. Biol Psychiatry 62: 884–893PubMedGoogle Scholar
  32. 32.
    Dowlatshahi D, MacQueen G, Wang JF, Chen B, Young LT (2000) Increased hippocampal supragranular Timm staining in subjects with bipolar disorder. Neuroreport 11: 3775–3778PubMedGoogle Scholar
  33. 33.
    Sassi RB, Stanley JA, Axelson D, Brambilla P, Nicoletti MA, Keshavan MS, Ramos RT, Ryan N, Birmaher B, Soares JC (2005) Reduced NAA levels in the dorsolateral prefrontal cortex of young bipolar patients. Am J Psychiatry 162: 2109–2115PubMedGoogle Scholar
  34. 34.
    Winsberg ME, Sachs N, Tate DL, Adalsteinsson E, Spielman D, Ketter TA (2005) Decreased dorsolateral prefrontal N-acetyl aspartate in bipolar disorder. Biol Psychiatry 47: 475–481Google Scholar
  35. 35.
    Ongur D, Drevets WC, Price JL (1998) Glial reduction in the subgenual prefrontal cortex in mood disorders. Proc Natl Acad Sci USA 95: 13290–13295PubMedGoogle Scholar
  36. 36.
    Johnston-Wilson NL, Sims CD, Hofmann JP, Anderson L, Shore AD, Torrey EF, Yolken RH (2000) Disease-specific alterations in frontal cortex brain proteins in schizophrenia, bipolar disorder, and major depressive disorder. The Stanley Neuropathology Consortium. Mol Psychiatry 5: 142–149PubMedGoogle Scholar
  37. 37.
    Orlovskaya DD, Vikhreva OV, Zimina IS, Denisov DV, Uranova NA (1999) Ultrastructural dystrophic changes of oligodendroglial cells in autopsied prefrontal cortex and striatum in schizophrenia: a morphometric study. Schizophr Res 36: 82–83Google Scholar
  38. 38.
    Orlovskaya DD, Vostrikov VM, Rachmanova NA, Uranova NA (2000) Decreased numerical density of oligodendroglial cells in postmortem prefrontal cortex in schizophrenia, bipolar affective disorder and major depression. Schizophr Res 41: 105–106Google Scholar
  39. 39.
    Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, Rachmanova V (2001) Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 55: 597–610PubMedGoogle Scholar
  40. 40.
    Knable MB, Barci BM, Webster MJ, Meador-Woodruff J, Torrey EF (2004) Stanley Neuropathology Consortium. Molecular abnormalities of the hippocampus in severe psychiatric illness: postmortem findings from the Stanley Neuropathology Consortium. Mol Psychiatry 9: 609–620PubMedGoogle Scholar
  41. 41.
    Neves-Pereira M, Mundo E, Muglia P, King N, Macciardi F, Kennedy JL (2002) The brain-derived neurotrophic factor gene confers susceptibility to bipolar disorder: evidence from a family-based association study. Am J Hum Genet 71: 651–655PubMedGoogle Scholar
  42. 42.
    Sklar P, Gabriel SB, McInnis MG, Bennett P, Lim YM, Tsan G, Schaffner S, Kirov G, Jones I, Owen M et al (2002) Family-based association study of 76 candidate genes in bipolar disorder: BDNF is a potential risk locus. Mol Psychiatry 7: 579–593PubMedGoogle Scholar
  43. 43.
    Geller B, Badner JA, Tillman R, Christian SL, Bolhofner K, Cook EH Jr (2004) Linkage disequilibrium of the brain-derived neurotrophic factor Val66Met polymorphism in children with a prepubertal and early adolescent bipolar disorder phenotype. Am J Psychiatry 161: 1698–1700PubMedGoogle Scholar
  44. 44.
    Lohoff FW, Sander T, Ferraro TN, Dahl JP, Gallinat J, Berrettini WH (2005) Confirmation of association between the Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene and bipolar I disorder Am J Med Genet B Neuropsychiatr Genet 139: 51–53Google Scholar
  45. 45.
    Cunha AB, Frey BN, Andreazza AC, Goi JD, Rosa AR, Gonçalves CA, Santin A, Kapczinski F (2006) Serum brain-derived neurotrophic factor is decreased in bipolar disorder during depressive and manic episodes. Neurosci Lett 398: 215–219PubMedGoogle Scholar
  46. 46.
    Monteleone P, Serritella C, Martiadis V, Maj M (2008) Decreased levels of serum brain-derived neurotrophic factor in both depressed and euthymic patients with unipolar depression and in euthymic patients with bipolar I and II disorders. Bipolar Disord 10: 95–100PubMedGoogle Scholar
  47. 47.
    Tseng M, Alda M, Xu L, Sun X, Wang JF, Grof P, Turecki G, Rouleau G, Young LT (2008) BDNF protein levels are decreased in transformed lymphoblasts from lithium-responsive bipolar disorder subjects. J Psychiatry Neurosci 33: 449–453PubMedGoogle Scholar
  48. 48.
    Asberg M, Bertillsson L, Martensson B, Scalia-Tomba GP, Thoren P, Traskman-Bendz L (1984) CSF monoamine metabolites in melancholia. Acta Psychiatr Scand 69: 201–219PubMedGoogle Scholar
  49. 49.
    Träskman L, Asberg M, Bertilsson L, Sjöstrand L (1981) Monoamine metabolites in CSF and suicidal behaviour. Arch Gen Psychiatry 38: 631–636PubMedGoogle Scholar
  50. 50.
    Swann AC, Secunda S, Davis JM, Robins E, Hanin I, Koslow SH, Maas JW (1983) CSF monoamine metabolites in mania. Am J Psychiatry 140: 396–400PubMedGoogle Scholar
  51. 51.
    Sher L, Carballo JJ, Grunebaum MF, Burke AK, Zalsman G, Huang YY, Mann JJ, Oquendo MA (2006) A prospective study of the association of cerebrospinal fluid monoamine metabolite levels with lethality of suicide attempts in patients with bipolar disorder. Bipolar Disord 8: 543–550PubMedGoogle Scholar
  52. 52.
    Young LT, Warsh JJ, Kish SJ, Shannak K, Hornykeiwicz O (1994) Reduced brain 5-HT and elevated NE turnover and metabolites in bipolar affective disorder. Biol Psychiatry 35: 121–127PubMedGoogle Scholar
  53. 53.
    Rudnick G (2006) Serotonin transporters—structure and function. J Membr Biol 213: 101–110PubMedGoogle Scholar
  54. 54.
    White KJ, Walline CC, Barker EL (2005) Serotonin transporters: implications for antidepressant drug development. AAPS J 7: E421–433PubMedGoogle Scholar
  55. 55.
    Leake A, Fairbairn AF, McKeith IG, Ferrier IN (1991) Studies on the serotonin uptake binding site in major depressive disorder and control post mortem brain: neurochemical and clinical correlates. Psychiatry Res 39: 155–165PubMedGoogle Scholar
  56. 56.
    Sneddon JM (1973) Blood platelets as a model for monoamine containing neurons. Prog Neurobiol 1: 151–198PubMedGoogle Scholar
  57. 57.
    Stahl SM, Woo DJ, Mefford IN, Berger PA, Ciaranello RD (1983) Hyperserotonemia and platelet serotonin uptake and release in schizophrenia and affective disorders. Am J Psychiatry 140: 26–30PubMedGoogle Scholar
  58. 58.
    Scott M, Reading HW, Loudon JB (1979) Studies on human blood platelets in affective disorder. Psychopharmacology (Berl) 60: 131–135Google Scholar
  59. 59.
    Meltzer HY, Arora RC, Baber R, Tricou BJ (1981) Serotonin uptake in blood platelets of psychiatric patients. Arch Gen Psychiatry 38: 1322–1326PubMedGoogle Scholar
  60. 60.
    Marazziti D, Lenzi A, Cassano GB (1991) Serotonergic dysfunction in bipolar disorder. Pharmacopsychiatry 24: 164–166PubMedGoogle Scholar
  61. 61.
    Muscettola SA, Dilauro A, Giannini CP (1986) Platelet 3H-imipramine binding in bipolar patients. Psychiatry Res 18: 343–353PubMedGoogle Scholar
  62. 62.
    Lewis DA, McChesney C (1985) Tritiated imipramine binding distinguishes among subtypes of depression. Arch Gen Psychiatry 42: 485–488PubMedGoogle Scholar
  63. 63.
    Oquendo MA, Hastings RS, Huang YY, Simpson N, Ogden RT, Hu XZ, Goldman D, Arango V, Van Heertum RL, Mann JJ et al (2007) Brain serotonin transporter binding in depressed patients with bipolar disorder using positron emission tomography. Arch Gen Psychiatry 64: 201–208PubMedGoogle Scholar
  64. 64.
    Malison RT, Price LH, Berman R, van Dyck CH, Pelton GH, Carpenter L, Sanacora G, Owens MJ, Nemeroff CB, Rajeevan N et al (1998) Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 44: 1090–1098PubMedGoogle Scholar
  65. 65.
    Newberg AB, Plossl K, Mozley PD, Stubbs JB, Wintering N, Udeshi M, Alavi A, Kauppinen T, Kung HF (2004) Biodistribution and imaging with (123)I-ADAM: a serotonin transporter imaging agent. J Nucl Med 45: 834–841PubMedGoogle Scholar
  66. 66.
    Parsey RV, Hastings RS, Oquendo MA, Huang YY, Simpson N, Arcement J, Huang Y, Ogden RT, Van Heertum RL, Arango V et al (2006) Lower serotonin transporter binding potential in the human brain during major depressive episodes. Am J Psychiatry 163: 48–57PubMedGoogle Scholar
  67. 67.
    Ramamoorthy S, Blakely RD (1999) Phosphorylation and sequestration of serotonin transporters differentially modulated by psychostimulants. Science 285: 763–766PubMedGoogle Scholar
  68. 68.
    Soucy J-P, Lafaille F, Lemoine P, Mrini A, Descarries L (1994) Validation of the transporter ligand cyanoimipramine as a marker of serotonin innervation density in brain. J Nucl Med 35: 1822–1830PubMedGoogle Scholar
  69. 69.
    Cannon DM, Ichise M, Fromm SJ, Nugent AC, Rollis D, Gandhi SK, Klaver JM, Charney DS, Manji HK, Drevets WC (2006) Serotonin transporter binding in bipolar disorder assessed using [11C]DASB and positron emission tomography. Biol Psychiatry 60: 207–217PubMedGoogle Scholar
  70. 70.
    Cannon DM, Ichise M, Rollis D, Klaver JM, Gandhi SK, Charney DS, Manji HK, Drevets WC (2007) Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder. Biol Psychiatry 62: 870–877PubMedGoogle Scholar
  71. 71.
    Stockmeier CA (2003) Involvement of serotonin in depression: evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. J Psychiatr Res 37: 357–373PubMedGoogle Scholar
  72. 72.
    Madhav TR, Pei Q, Zetterstrom TS (2001) Serotonergic cells of the rat raphe nuclei express mRNA of tyrosine kinase B (trkB), the high-affinity receptor for brain derived neurotrophic factor (BDNF). Brain Res 93: 56–63Google Scholar
  73. 73.
    Djalali S, Höltje M, Grosse G, Rothe T, Stroh T, Grosse J, Deng DR, Hellweg R, Grantyn R, Hörtnagl H et al (2005) Effects of brain-derived neurotrophic factor (BDNF) on glial cells and serotonergic neurones during development. J Neurochem 92: 616–627PubMedGoogle Scholar
  74. 74.
    Rumajogee P, Madeira A, Verge D, Hamon M, Miquel MC (2002) Up-regulation of the neuronal serotoninergic phenotype in vitro: BDNF and cAMP share Trk B-dependent mechanisms. J Neurochem 83: 1525–1528PubMedGoogle Scholar
  75. 75.
    Hensler JG, Advani T, Monteggia LM (2007) Regulation of serotonin-1A receptor function in inducible brain-derived neurotrophic factor knockout mice after administration of corticosterone. Biol Psychiatry 62: 521–529PubMedGoogle Scholar
  76. 76.
    Nibuya M, Morinobu S, Duman RS (1995) Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15: 7539–7547PubMedGoogle Scholar
  77. 77.
    Nibuya M, Nestler EJ, Duman RS (1996) Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neurosci 16: 2365–2372PubMedGoogle Scholar
  78. 78.
    Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT (2001) Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 50: 260–265PubMedGoogle Scholar
  79. 79.
    Dwivedi Y, Rao JS, Rizavi HS, Kotowski J, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Abnormal expression and functional characteristics of cyclic adenosine monophosphate response element binding protein in postmortem brain of suicide subjects. Arch Gen Psychiatry 60: 273–282PubMedGoogle Scholar
  80. 80.
    Karege F, Vaudan G, Schwald M, Perroud N, La Harpe R (2005) Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res 136: 29–37PubMedGoogle Scholar
  81. 81.
    Ferrari R, Pedersini P, Bongrazio M, Gaia G, Bernocchi P, Di Lisa F, Visioli O (1993) Mitochondrial energy production and cation control in myocardial ischaemia and reperfusion. Basic Res Cardiol 88: 495–512PubMedGoogle Scholar
  82. 82.
    Hertz L, Kala G (2007) Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis 22: 199–218PubMedGoogle Scholar
  83. 83.
    Baxter L, Phelps ME, Mazziotta JC, Schwartz JM, Gerner RH, Selin CE, Sumida RM (1985) Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 42: 441–447PubMedGoogle Scholar
  84. 84.
    Baxter LR, Schwartz JM, Phelps ME, Mazziotta JC, Guze BH, Selin CE, Gerner RH, Sumida RM (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–250PubMedGoogle Scholar
  85. 85.
    Drevets WC, Price JL, Bardgett ME, Reich T, Todd RD, Raichle ME (2002) Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71: 431–447PubMedGoogle Scholar
  86. 86.
    Ito H, Kawashima R, Awata S, Ono S, Sato K, Goto R, Koyama M, Sato M, Fukuda H (1996) Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med 37: 410–414PubMedGoogle Scholar
  87. 87.
    Rubin E, Sackeim HA, Prohovnik I, Moeller JR, Schnur DB, Mukherjee S (1995) Regional cerebral blood flow in mood disorders: IV. Comparison of mania and depression. Psychiatry Res 61: 1–10PubMedGoogle Scholar
  88. 88.
    Tutus A, Simsek A, Sofuoglu S, Nardali M, Kugu N, Karaaslan F, Gönül AS (1998) Changes in regional cerebral blood flow demonstrated by single photon emission computed tomography in depressive disorders: comparison of unipolar versus bipolar subtypes. Psychiatry Res 83: 169–177PubMedGoogle Scholar
  89. 89.
    Krüger S, Alda M, Young LT, Goldapple K, Parikh S, Mayberg HS (2006) Risk and resilience markers in bipolar disorder: brain responses to emotional challenge in bipolar patients and their healthy siblings. Am J Psychiatry 163: 257–264PubMedGoogle Scholar
  90. 90.
    Moon R, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 25: 7276–7278Google Scholar
  91. 91.
    Petroff OAC, Prichard JW, Behar KL, Alger JR, den Hollander JA, Shulman RG (1985) Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 35: 781–788PubMedGoogle Scholar
  92. 92.
    Kato T, Takahashi S, Shioiri T, Inubushi T (1992) Brain phosphorous metabolism in depressive disorders detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 26: 223–230PubMedGoogle Scholar
  93. 93.
    Kato T, Shioiri T, Murashita J, Hamakawa H, Inubushi T, Takahashi S (1994a) Phosphorus-31 magnetic resonance spectroscopy and ventricular enlargement in bipolar disorder. Psychiatry Res 55: 41–50PubMedGoogle Scholar
  94. 94.
    Volz HP, Rzanny R, Riehemann S, May S, Hegewald H, Preussler B, Hübner G, Kaiser WA, Sauer H (1998) 31P magnetic resonance spectroscopy in the frontal lobe of major depressed patients. Eur Arch Psychiatry Clin Neurosci 248: 289–295PubMedGoogle Scholar
  95. 95.
    Kato T, Takahashi S, Shioiri T, Murashita J, Hamakawa H, Inubushi T (1994b) Reduction of brain phosphocreatine in bipolar II disorder detected by phosphorus-31 magnetic resonance spectroscopy. J Affect Disord 31: 125–133PubMedGoogle Scholar
  96. 96.
    Kato T, Shioiri T, Murashita J, Hamakawa H, Takahashi Y, Inubushi T, Takahashi S (1995) Lateralized abnormality of high energy phosphate metabolism in the frontal lobes of patients with bipolar disorder detected by phase-encoded 31P-MRS. Psychol Med 25: 557–566PubMedGoogle Scholar
  97. 97.
    Hamakawa H, Kato T, Shioiri T, Inubushi T, Kato N (1999) Quantitative proton magnetic resonance spectroscopy of the bilateral frontal lobes in patients with bipolar disorder. Psychol Med 29: 639–644PubMedGoogle Scholar
  98. 98.
    Frye MA, Watzl J, Banakar S, O’Neill J, Mintz J, Davanzo P, Fischer J, Chirichigno JW, Ventura J, Elman S et al (2007) Increased anterior cingulate/medial prefrontal cortical glutamate and creatine in bipolar depression. Neuropsychopharmacology 32: 2490–2499PubMedGoogle Scholar
  99. 99.
    Dager SR, Friedman SD, Parow A, Demopulos C, Stoll AL, Lyoo IK, Dunner DL, Renshaw PF (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61: 450–458PubMedGoogle Scholar
  100. 100.
    Kato T, Kunugi H, Nanko S, Kato N (2001) Mitochondrial DNA polymorphisms in bipolar disorder. J Affect Disord 62: 151–164PubMedGoogle Scholar
  101. 101.
    Kato T, Kunugi H, Nanko S, Kato N (2000) Association of bipolar disorder with the 5178 polymorphism in mitochondrial DNA. Am J Med Genet 96: 182–186PubMedGoogle Scholar
  102. 102.
    Munakata K, Tanaka M, Mori K, Washizuka S, Yoneda M, Tajima O, Akiyama T, Nanko S, Kunugi H, Tadokoro K et al (2004) Mitochondrial DNA 3644 T->C mutation associated with bipolar disorder. Genomics 84: 1041–1050PubMedGoogle Scholar
  103. 103.
    Sun X, Wang JF, Tseng M, Young LT (2006) Down regulation in components of mitochondrial electron transport chain in post mortem frontal cortex from subjects with bipolar disorder. J Psychiatry Neurosci 31: 189–196PubMedGoogle Scholar
  104. 104.
    Konradi C, Eaton M, MacDonald ML, Walsh J, Benes FM, Heckers S (2004) Molecular evidence for mitochondrial dysfunction in bipolar disorder. Arch Gen Psychiatry 61: 300–308PubMedGoogle Scholar
  105. 105.
    Washizuka S, Kakiuchi C, Mori K, Kunugi H, Tajima O, Akiyama T, Nanko S, Kato T (2003) Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 120: 72–78Google Scholar
  106. 106.
    Washizuka S, Iwamoto K, Kazuno AA, Kakiuchi C, Mori K, Kametani M, Yamada K, Kunugi H, Tajima O, Akiyama T et al (2004) Association of mitochondrial complex I subunit gene NDUFV2 at 18p11 with bipolar disorder in Japanese and the National Institute of Mental Health pedigrees. Biol Psychiatry 56: 483–489PubMedGoogle Scholar
  107. 107.
    Halliwell B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59: 1609–1623PubMedGoogle Scholar
  108. 108.
    Wang JF, Shao L, Sun X, Young LT (2007) Increased lipid peroxidation in postmortem cingulate cortex from subjects with bipolar disorder and schizophrenia. Soc Neurosci Abstr 33, Program No. 707.11Google Scholar
  109. 109.
    Kuloglu M, Ustundag B, Atmaca M, Canatan H, Tezcan AE, Cinkilinc N (2002) Lipid peroxidation and antioxidant enzyme levels in patients with schizophrenia and bipolar disorder. Cell Biochem Funct 20: 171–175PubMedGoogle Scholar
  110. 110.
    Ranjekar PK, Hinge A, Hegde MV, Ghate M, Kale A, Sitasawad S, Wagh UV, Debsikdar VB, Mahadik SP (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenic and bipolar mood disorder patients. Psychiatry Res 121: 109–122PubMedGoogle Scholar
  111. 111.
    Benes FM, Matzilevich D, Burke RE, Walsh J (2006) The expression of proapoptosis genes is increased in bipolar disorder, but not in schizophrenia. Mol Psychiatry 11: 241–251PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Jun-Feng Wang
    • 1
  • L. Trevor Young
    • 1
  1. 1.Department of PsychiatryUniversity of British ColumbiaVancouverCanada

Personalised recommendations