The genetic basis of bipolar disorder

  • Thomas G. Schulze
  • Francis J. McMahon
Part of the Milestones in Drug Therapy book series (MDT)


Bipolar disorder has long been known to have a strong genetic component, with heritability estimates ranging between 80–90%. However, major breakthroughs on the molecular genetic level have remained elusive. Linkage and candidate gene association studies produced a host of reports, but failed to deliver consistently replicable results. This may in part be attributed to limited sample sizes and high degrees of phenotypic and genotypic heterogeneity. The advent of genome-wide association studies (GWAS) has spurred new hopes for the identification of true susceptibility genes. After close to a century of genetic studies, bipolar disorder is emerging as a complex (non-Mendelian) disorder with a polygenic etiology. The search for common genetic variants with small effects by GWAS will probably have to be complemented by approaches that can detect rare genetic variations with larger effects, such as copy number variants. Progress would be much enhanced by improved phenotype definitions that reduce genetic heterogeneity.


Bipolar Disorder Bipolar Affective Disorder Reverse Phenotyping Lithium Response NIMH Genetic Initiative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baron M (2002) Manic-depression genes and the new millennium: poised for discovery. Mol Psychiatry 7: 342–358PubMedCrossRefGoogle Scholar
  2. 2.
    Berrettini WH (2001) Molecular linkage studies of bipolar disorders. Bipolar Disord 3: 276–283PubMedCrossRefGoogle Scholar
  3. 3.
    Craddock N, Forty L (2006) Genetics of affective (mood) disorders. Eur J Hum Genet 14: 660–668PubMedCrossRefGoogle Scholar
  4. 4.
    Craddock N, Jones I (2001) Molecular genetics of bipolar disorder. Br J Psychiatry Suppl 41: s128–s133PubMedCrossRefGoogle Scholar
  5. 5.
    Detera-Wadleigh SD, McMahon FJ (2004) Genetic association studies in mood disorders: issues and promise. Int Rev Psychiatry 16: 301–310PubMedCrossRefGoogle Scholar
  6. 6.
    Farmer A, Elkin A, McGuffin P(2007) The genetics of bipolar affective disorder. Curr Opin Psychiatry 20: 8–12PubMedCrossRefGoogle Scholar
  7. 7.
    Kato T (2007) Molecular genetics of bipolar disorder and depression. Psychiatry Clin Neurosci 61: 3–19PubMedCrossRefGoogle Scholar
  8. 8.
    Prathikanti S, McMahon FJ (2001) Genome scans for susceptibility genes in bipolar affective disorder. Ann Med 33: 257–262PubMedCrossRefGoogle Scholar
  9. 9.
    Schumacher J, Cichon S, Rietschel M, Nothen MM, Propping P (2002) [Genetics of bipolar affective disorders. Current status of research for identification of susceptibility genes]. Nervenarzt 73: 581–592PubMedCrossRefGoogle Scholar
  10. 10.
    Shih RA, Belmonte PL, Zandi PP (2004) A review of the evidence from family, twin and adoption studies for a genetic contribution to adult psychiatric disorders. Int Rev Psychiatry 16: 260–283PubMedCrossRefGoogle Scholar
  11. 11.
    Sklar P (2002) Linkage analysis in psychiatric disorders: the emerging picture. Annu Rev Genomics Hum Genet 3: 371–413PubMedCrossRefGoogle Scholar
  12. 12.
    Taylor L, Faraone SV, Tsuang MT (2002) Family, twin, and adoption studies of bipolar disease. Curr Psychiatry Rep 4: 130–133PubMedCrossRefGoogle Scholar
  13. 13.
    Tsuang MT, Faraone SV (1990) The Genetics of Mood Disorders. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  14. 14.
    Schulze TG, McMahon FJ (2004) Defining the phenotype in human genetic studies: forward genetics and reverse phenotyping. Hum Hered 58: 131–138PubMedCrossRefGoogle Scholar
  15. 15.
    Hayden EP, Nurnberger JI Jr, (2006) Molecular genetics of bipolar disorder. Genes Brain Behav 5: 85–95PubMedCrossRefGoogle Scholar
  16. 16.
    Smoller JW, Finn CT (2003) Family, twin, and adoption studies of bipolar disorder. Am J Med Genet C Semin Med Genet 123C: 48–58PubMedCrossRefGoogle Scholar
  17. 17.
    Propping P (2005) The biography of psychiatric genetics: from early achievements to historical burden, from an anxious society to critical geneticists. Am J Med Genet B Neuropsychiatr Genet 136B: 2–7PubMedCrossRefGoogle Scholar
  18. 18.
    Schulze TG, Fangerau H, Propping P (2004) From degeneration to genetic susceptibility, from eugenics to genethics, from Bezugsziffer to LOD score: the history of psychiatric genetics. Int Rev Psychiatry 16: 246–259PubMedCrossRefGoogle Scholar
  19. 19.
    Bertelsen A, Harvald B, Hauge M (1977) A Danish twin study of manic-depressive disorders. Br J Psychiatry 130: 331–351CrossRefGoogle Scholar
  20. 20.
    Luxenburger H (1930) Psychiatrisch-neurologische Zwillingspathologie. Zbl Ges Neurol Psychiat 56: 145–180Google Scholar
  21. 21.
    McGuffin P, Rijsdijk F, Andrew M, Sham P, Katz R, Cardno A (2003) The heritability of bipolar affective disorder and the genetic relationship to unipolar depression. Arch Gen Psychiatry 60: 497–502PubMedCrossRefGoogle Scholar
  22. 22.
    Rosanoff AJ, Handy LM, Plessett IR (1934) The etiology of manic-depressive syndromes with special reference to their occurrence in twins. Am J Psychiatry 91: 247–286Google Scholar
  23. 23.
    Mendlewicz J, Rainer JD (1977) Adoption study supporting genetic transmission in manic-depressive illness. Nature 268: 327–329PubMedCrossRefGoogle Scholar
  24. 24.
    Wender PH, Kety SS, Rosenthal D, Schulsinger F, Ortmann J, Lunde I (1986) Psychiatric disorders in the biological and adoptive families of adopted individuals with affective disorders. Arch Gen Psychiatry 43: 923–929PubMedGoogle Scholar
  25. 25.
    Gershon ES, Hamovit J, Guroff JJ, Dibble E, Leckman JF, Sceery W, Targum SD, Nurnberger JI Jr, Goldin LR, Bunney WE Jr (1982) A family study of schizoaffective, bipolar I, bipolar II, unipolar, and normal control probands. Arch Gen Psychiatry 39: 1157–1167PubMedGoogle Scholar
  26. 26.
    Weissman MM, Gershon ES, Kidd KK, Prusoff BA, Leckman JF, Dibble E, Thompson WD, Pauls DL, Guroff JJ (1984) Psychiatric disorders in the relatives of probands with affective disorders. The Yale University—National Institute of Mental Health Collaborative Study. Arch Gen Psychiatry 41: 13–21PubMedGoogle Scholar
  27. 27.
    Berrettini WH (2000) Are schizophrenic and bipolar disorders related? A review of family and molecular studies. Biol Psychiatry 48: 531–538PubMedCrossRefGoogle Scholar
  28. 28.
    Dunner DL, Fleiss JL, Fieve RR (1976) The course of development of mania in patients with recurrent depression. Am J Psychiatry 133: 905–908PubMedGoogle Scholar
  29. 29.
    McInnis MG, McMahon FJ, Chase GA, Simpson SG, Ross CA, DePaulo JR Jr (1993) Anticipation in bipolar affective disorder. Am J Hum Genet 53: 385–390PubMedGoogle Scholar
  30. 30.
    Stine OC, Xu J, Koskela R, McMahon FJ, Gschwend M, Friddle C, Clark CD, McInnis MG, Simpson SG, Breschel TS et al (1995) Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect. Am J Hum Genet 57: 1384–1394Google Scholar
  31. 31.
    McMahon FJ, Stine OC, Meyers DA, Simpson SG, DePaulo JR Jr (1995) Patterns of maternal transmission in bipolar affective disorder. Am J Hum Genet 56: 1277–1286PubMedGoogle Scholar
  32. 32.
    Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32: 314–331PubMedGoogle Scholar
  33. 33.
    Knowlton RG, Cohen-Haguenauer O, Van Cong N, Frezal J, Brown VA, Barker D, Braman JC, Schumm JW, Tsui LC, Buchwald M (1985) A polymorphic DNA marker linked to cystic fibrosis is located on chromosome 7. Nature 318: 380–382PubMedCrossRefGoogle Scholar
  34. 34.
    Wainwright BJ, Scambler PJ, Schmidtke J Watson EA, Law HY, Farrall M, Cooke HJ, Eiberg H, Williamson R (1985) Localization of cystic fibrosis locus to human chromosome 7cen-q22. Nature 318: 384–385PubMedCrossRefGoogle Scholar
  35. 35.
    Gusella JF, Wexler NS, Conneally PM, Naylor SL, Anderson MA, Tanzi RE, Watkins PC, Ottina K, Wallace MR, Sakaguchi AY (1983) A polymorphic DNA marker genetically linked to Huntington’s disease. Nature 306: 234–238PubMedCrossRefGoogle Scholar
  36. 36.
    Egeland JA, Gerhard DS, Pauls DL, Sussex JN, Kidd KK, Allen CR, Hostetter AM, Housman DE (1987) Bipolar affective disorders linked to DNA markers on chromosome 11. Nature 325: 783–787PubMedCrossRefGoogle Scholar
  37. 37.
    Kelsoe JR, Ginns EI, Egeland JA, Gerhard DS, Goldstein AM, Bale SJ, Pauls DL, Long RT, Kidd KK, Conte G (1989) Re-evaluation of the linkage relationship between chromosome 11p loci and the gene for bipolar affective disorder in the Old Order Amish. Nature 342: 238–243PubMedCrossRefGoogle Scholar
  38. 38.
    Risch N, Botstein D (1996) A manic depressive history. Nat Genet 12: 351–353PubMedCrossRefGoogle Scholar
  39. 39.
    Schulze TG, McMahon FJ (2003) Genetic linkage and association studies in bipolar affective disorder: a time for optimism. Am J Med Genet C Semin Med Genet 123C: 36–47PubMedCrossRefGoogle Scholar
  40. 40.
    Badner JA, Gershon ES (2002) Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatry 7: 405–411PubMedCrossRefGoogle Scholar
  41. 41.
    McQueen MB, Devlin B, Faraone SV, Nimgaonkar VL, Sklar P, Smoller JW, Abou Jamra R, Albus M, Bacanu SA, Baron M et al (2005) Combined analysis from eleven linkage studies of bipolar disorder provides strong evidence of susceptibility loci on chromosomes 6q and 8q. Am J Hum Genet 77: 582–595PubMedCrossRefGoogle Scholar
  42. 42.
    Seguardo R, Detera-Wadleigh SD, Levinson DF, Lewis CM, Gill M, Nurnberger JI Jr, Craddock N, DePaulo JR Jr, Baron M, Gershon ES et al (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part III: Bipolar disorder. Am J Hum Genet 73: 49–62CrossRefGoogle Scholar
  43. 43.
    McMahon FJ (2007) A success at the end of an era, and a glimpse of things to come. Am J Psychiatry 164: 999–1001PubMedCrossRefGoogle Scholar
  44. 44.
    Clerget-Darpoux F, Elston RC (2007) Are linkage analysis and the collection of family data dead? Prospects for family studies in the age of genome-wide association. Hum Hered 64: 91–96PubMedCrossRefGoogle Scholar
  45. 45.
    Morrow EM, Yoo SY, Flavell SW, Kim TK, Lin Y, Hill RS, Mukaddes NM, Balkhy S, Gascon G, Hashmi A et al (2008) Identifying autism loci and genes by tracing recent shared ancestry. Science 321: 218–223PubMedCrossRefGoogle Scholar
  46. 46.
    Detera-Wadleigh SD, McMahon FJ (2006) G72/G30 in schizophrenia and bipolar disorder: review and meta-analysis. Biol Psychiatry 60: 106–114PubMedCrossRefGoogle Scholar
  47. 47.
    The Celera Genomics Sequencing Team (2001) The sequence of the human genome. Science 291: 1304–1351CrossRefGoogle Scholar
  48. 48.
    The International Human Genome Mapping Consortium (2001) A physical map of the human genome. Nature 409: 934–941CrossRefGoogle Scholar
  49. 49.
    The International HapMap Consortium(2004) The International HapMap Consortium. The International HapMap Project. Nature 426: 789–796Google Scholar
  50. 50.
    Diabetes Genetics Initiative (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316: 1331–1336CrossRefGoogle Scholar
  51. 51.
    Scott LJ, Mohlke KL, Bonnycaste LL, Willer CJ, Li Y, Duren WL, Erdos MR, Stringham HM, Chines PS, Jackson AU et al (2007) A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 316: 1341–1345PubMedCrossRefGoogle Scholar
  52. 52.
    Sladek R, Rochelau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S et al (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445: 881–885PubMedCrossRefGoogle Scholar
  53. 53.
    The Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447: 661–678CrossRefGoogle Scholar
  54. 54.
    Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM, Perry JR, Elliott KS, Lango H, Rayner NW et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316: 889–894PubMedCrossRefGoogle Scholar
  55. 55.
    Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A et al (2007) A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science 316: 1491–1493PubMedCrossRefGoogle Scholar
  56. 56.
    McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennachio LA, Tybjaerg-Hansen A, Folsom AR et al (2007) A common allele on chromosome 9 associated with coronary heart disease. Science 316: 1488–1491PubMedCrossRefGoogle Scholar
  57. 57.
    Klein RJ, Zeiss C, Chew EY, Tsai JY, Sackler RS, Haynes C, Henning AK, SanGiovanni JP, Mane SM, Mayne ST et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308: 385–389PubMedCrossRefGoogle Scholar
  58. 58.
    Maller J, George S, Purcell S, Fagerness J, Altshuler D, Daly MJ, Seddon JM (2006) Common variation in three genes, including a noncoding variant in CFH, strongly influences risk of agerelated macular degeneration. Nat Genet 38: 1055–1059PubMedCrossRefGoogle Scholar
  59. 59.
    Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39: 207–211PubMedCrossRefGoogle Scholar
  60. 60.
    Rioux JD, Xavier RJ, Taylor KD, Silverberg MS, Goyette P, Huett A, Green T, Kuballa P, Barmada MM, Datta LW et al (2007) Genome-wide association study identifies new susceptibility loci for Crohn disease and implicates autophagy in disease pathogenesis. Nat Genet 39: 596–604PubMedCrossRefGoogle Scholar
  61. 61.
    Gudmundsson J, Sulem P, Manolescu A, Amundadottir LT, Gudbjartsson D, Helgason A, Rafnar T, Bergthorsson JT, Agnarsson BA, Baker A et al (2007) Genome-wide association study identifies a second prostate cancer susceptibility variant at 8q24. Nat Genet 39: 631–637PubMedCrossRefGoogle Scholar
  62. 62.
    Yeager M, Orr N, Jacobs KB, Kraft P, Wacholder S, Minichiello MJ, Fearnhead P, Yu K, Chatterjee N, Wang Z et al (2007) Genome-wide association study of prostate cancer identifies a second risk locus at 8q24. Nat Genet 39: 645–649PubMedCrossRefGoogle Scholar
  63. 63.
    Baum AE, Akula N, Cabanero M, Cardona I, Corona W, Klemens B, Schulze TG, Cichon S, Rietschel M, Nothen MM et al (2008) A genome-wide association study implicates diacylglycerol kinase eta (DGKH) and several other genes in the etiology of bipolar disorder. Mol Psychiatry 13: 197–207PubMedCrossRefGoogle Scholar
  64. 64.
    Sklar P, Smoller JW, Fan J, Ferreira MA, Perlis RH, Chambert K, Nimgaonkar VL, McQueen MB, Faraone SV, Kirby A et al (2008) Whole-genome association study of bipolar disorder. Mol Psychiatry 13: 558–569PubMedCrossRefGoogle Scholar
  65. 65.
    Lango H,W eedon MN (2008) What will whole genome searches for susceptibility genes for common complex disease offer to clinical practice. J Intern Med 263: 16–27PubMedGoogle Scholar
  66. 66.
    Manolio TA, Brooks LD, Collins FS (2008) A HapMap harvest of insights into the genetics of common disease. J Clin Invest 118: 1590–1605PubMedCrossRefGoogle Scholar
  67. 67.
    Falconer DS (1981) Introduction to quantitative genetics. Longman, LondonGoogle Scholar
  68. 68.
    Keller MC, Miller G (2006) Resolving the paradox of common, harmful, heritable mental disorders: which evolutionary genetic models work best? Behav Brain Sci 29: 385–404PubMedGoogle Scholar
  69. 69.
    Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69: 124–137PubMedCrossRefGoogle Scholar
  70. 70.
    Pritchard JK, Cox NJ (2002) The allelic architecture of human disease genes: common diseasecommon variant or not? Hum Mol Genet 11: 2417–2423PubMedCrossRefGoogle Scholar
  71. 71.
    Terwilliger JD, Haghighi F, Hiekkalinna TS, Goring HH (2002) A biased assessment of the use of SNPs in human complex traits. Curr Opin Genet Dev 12: 726–734PubMedCrossRefGoogle Scholar
  72. 72.
    Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, Yamrom B, Yoon S, Krasnitz A, Kendall J et al (2007) Strong association of de novo copy number mutations with autism. Science 316: 445–449PubMedCrossRefGoogle Scholar
  73. 73.
    Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM, Nord AS, Kusenda RL, Malhotra D, Bhandari A et al (2008) Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 320: 539–543PubMedCrossRefGoogle Scholar
  74. 74.
    Xu B, Roos JL, Levy S, van Rensburg EJ, Gogos JA, Karayiorgou M (2008) Strong association of de novo copy number mutations with sporadic schizophrenia. Nat Genet 40: 880–885PubMedCrossRefGoogle Scholar
  75. 75.
    Schulze TG, Ohlraun S, Czerski PM, Schumacher J, Kassem L, Deschner M, Gross M, Tullius M, Heidmann V, Kovalenko S et al (2005) Genotype-phenotype studies in bipolar disorder showing association between the DAOA/G30 locus and persecutory delusions: a first step toward a molecular genetic classification of psychiatric phenotypes. Am J Psychiatry 162: 2101–2108PubMedCrossRefGoogle Scholar
  76. 76.
    Williams NM, Green EK, Macgregor S, Dwyer S, Norton N, Williams H, Raybould R, Grozeva D, Hamshere M, Zammit S et al (2006) Variation at the DAOA/G30 locus influences susceptibility to major mood episodes but not psychosis in schizophrenia and bipolar disorder. Arch Gen Psychiatry 63: 366–373PubMedCrossRefGoogle Scholar
  77. 77.
    Craddock N, Owen MJ (2007) Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatry 6: 84–91PubMedGoogle Scholar
  78. 78.
    Braun J, Sieper J (2006) Early diagnosis of spondyloarthritis. Nat Clin Pract Rheumatol 2: 536–545PubMedCrossRefGoogle Scholar
  79. 79.
    Fisfalen ME, Schulze TG, DePaulo JR Jr, DeGroot LJ, Badner JA, McMahon FJ (2005) Familial variation in episode frequency in bipolar affective disorder. Am J Psychiatry 162: 1266–1272PubMedCrossRefGoogle Scholar
  80. 80.
    McMahon FJ, Simpson SG, McInnis MG, Badner JA, MacKinnon DF, DePaulo JR Jr (2001) Linkage of bipolar disorder to chromosome 18q and the validity of bipolar II disorder. Arch Gen Psychiatry 58: 1025–1031PubMedCrossRefGoogle Scholar
  81. 81.
    Potash JB, Zandi PP,W illour VL, Lan TH, Huo Y, Avramopoulos D, Shugart YY, MacKinnon DF, Simpson SG, McMahon FJ et al (2003) Suggestive linkage to chromosomal regions 13q31 and 22q12 in families with psychotic bipolar disorder. Am J Psychiatry 160: 680–686PubMedCrossRefGoogle Scholar
  82. 82.
    Faraone SV, Glatt SJ, Su J, Tsuang MT (2004) Three potential susceptibility loci shown by a genome-wide scan for regions influencing the age at onset of mania. Am J Psychiatry 161: 625–630PubMedCrossRefGoogle Scholar
  83. 83.
    Lin PI, McInnis MG, Potash JB, Willour VL, MacKinnon DF, DePaulo JR Jr, Zandi PP (2005) Assessment of the effect of age at onset on linkage to bipolar disorder: evidence on chromosomes 18p and 21q. Am J Hum Genet 77: 545–555PubMedCrossRefGoogle Scholar
  84. 84.
    Kassem L, Lopez V, Hedeker D, Steele J, Zandi PP, Bipolar Disorder Consortium NIMH Genetics Initiative, McMahon FJ (2006) Familiality of polarity at illness onset in bipolar affective disorder. Am J Psychiatry 163: 1754–1759PubMedCrossRefGoogle Scholar
  85. 85.
    Craddock N, Jones L, Jones I, Kirov G, Green EK, Grozeva D, Moskvina V, Nikolov I, Hamshere M, Vukcevic D et al (2008) Strong genetic evidence for a selective influence of GABAA receptors on a component of the bipolar disorder phenotype. Mol Psychiatry July 1, Epub ahead of printGoogle Scholar
  86. 86.
    Iannuzzi MC, Baughman RP (2007) Reverse phenotyping in sarcoidosis. Am J Respir Crit Care Med 175: 4–5PubMedCrossRefGoogle Scholar
  87. 87.
    Potash JB, Toolan J, Steele J, Miller EB, Pearl J, Zandi PP, Schulze TG, Kassem L, Simpson SG, Lopez V et al (2007) The bipolar disorder phenome database: a resource for genetic studies. Am J Psychiatry 164: 1229–1237PubMedCrossRefGoogle Scholar
  88. 88.
    Schulze TG, Hedeker D, Zandi PP, Rietschel M, McMahon FJ (2006) What is familial about familial bipolar disorder? Resemblance among relatives across a broad spectrum of phenotypic characteristics. Arch Gen Psychiatry 63: 1368–1376PubMedCrossRefGoogle Scholar
  89. 89.
    Brockmoller J, Tzvetkov MV (2008) Pharmacogenetics: data, concepts and tools to improve drug discovery and drug treatment. Eur J Clin Pharmacol 64: 133–157PubMedCrossRefGoogle Scholar
  90. 90.
    Kirchheiner J, Nickchen K, Bauer M, Wong ML, Licinio J, Roots I, Brockmoller J (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9: 442–473PubMedCrossRefGoogle Scholar
  91. 91.
    Laje G, Paddock S, Manji HK, Rush AJ, Wilson AF, Charney D, McMahon FJ (2007) Genetic markers of suicidal ideation emerging during citalopram treatment of major depression. Am J Psychiatry 164: 1530–1538PubMedCrossRefGoogle Scholar
  92. 92.
    Lekman M, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, Lipsky R, Wisniewski SR, Manji HK, McMahon FJ et al (2008) The FKBP5-gene in depression and treatment response—an association study in the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) Cohort. Biol Psychiatry 63: 1103–1110PubMedCrossRefGoogle Scholar
  93. 93.
    McMahon FJ, Buervenich S, Charney D, Lipsky R, Rush AJ, Wilson AF, Sorant AJ, Papanicolaou GJ, Laje G, Fava M et al (2006) Variation in the gene encoding the serotonin 2A receptor is associated with outcome of antidepressant treatment. Am J Hum Genet 78: 804–814PubMedCrossRefGoogle Scholar
  94. 94.
    Paddock S, Laje G, Charney D, Rush AJ, Wilson AF, Sorant AJ, Lipsky R, Wisniewski SR, Manji HK, McMahon FJ (2007) Association of GRIK4 with outcome of antidepressant treatment in the STAR*D cohort. Am J Psychiatry 164: 1181–1188PubMedCrossRefGoogle Scholar
  95. 95.
    Alda M (2003) Pharmacogenetic aspects of bipolar disorder. Pharmacogenomics 4: 35–40PubMedCrossRefGoogle Scholar
  96. 96.
    Winokur G (1975) The Iowa 500: heterogeneity and course in manic-depressive illness (bipolar). Compr Psychiatry 16: 125–131PubMedCrossRefGoogle Scholar
  97. 97.
    Bremer T, Diamond C, McKinney R, Shehktman T, Barrett TB, Herold C, Kelsoe JR (2007) The pharmacogenetics of lithium response depends upon clinical co-morbidity. Mol Diagn Ther 11: 161–170PubMedGoogle Scholar
  98. 98.
    Dmitrzak-Weglarz M, Rybakowski JK, Suwalska A, Slopien A, Czerski PM, Leszczynska Rodziewicz A, Hauser J (2005) Association studies of 5-HT2A and 5-HT2C serotonin receptor gene polymorphisms with prophylactic lithium response in bipolar patients. Pharmacol Rep 57: 761–765PubMedGoogle Scholar
  99. 99.
    Rybakowski JK, Suwalska A, Czerski PM, Dmitrzak-Weglarz M, Leszczynska-Rodziewicz A, Hauser J (2005) Prophylactic effect of lithium in bipolar affective illness may be related to serotonin transporter genotype. Pharmacol Rep 57: 124–127PubMedGoogle Scholar
  100. 100.
    Rybakowski JK, Suwalska A, Skibinska M, Szczepankiewicz A, Leszczynska-Rodziewicz A, Permoda A, Czerski PM, Hauser J (2005) Prophylactic lithium response and polymorphism of the brain-derived neurotrophic factor gene. Pharmacopsychiatry 38: 166–170PubMedCrossRefGoogle Scholar
  101. 101.
    Anguelova M, Benkelfat C, Turecki G (2003) A systematic review of association studies investigating genes coding for serotonin receptors and the serotonin transporter: I. Affective disorders. Mol Psychiatry 8: 574–591PubMedCrossRefGoogle Scholar
  102. 102.
    Fan J, Sklar P (2008) Genetics of bipolar disorder: focus on BDNF Val66Met polymorphism. Novartis Found Symp 289: 60–72PubMedCrossRefGoogle Scholar
  103. 103.
    Kanazawa T, Glatt SJ, Kia-Keating B, Yoneda H, Tsuang MT (2007) Meta-analysis reveals no association of the Val66Met polymorphism of brain-derived neurotrophic factor with either schizophrenia or bipolar disorder. Psychiatr Genet 17: 165–170PubMedCrossRefGoogle Scholar
  104. 104.
    Hodgkinson CA, Goldman D, Jaeger J, Persaud S, Kane JM, Lipsky R, Malhotra D (2004) Disrupted in schizophrenia 1 (DISC1): association with schizophrenia, schizoaffective disorder, and bipolar disorder. Am J Hum Genet 75: 862–872PubMedCrossRefGoogle Scholar
  105. 105.
    Perlis RH, Purcell S, Fagerness J, Kirby A, Petryshen TL, Fan J, Sklar P (2008) Family-based association study of lithium-related and other candidate genes in bipolar disorder. Arch Gen Psychiatry 65: 53–61PubMedCrossRefGoogle Scholar
  106. 106.
    Thomson PA, Wray NR, Millar JK, Evans KL, Hellard SL, Condie A, Muir WJ, Blackwood D, Porteous DJ (2005) Association between the TRAX/DISC locus and both bipolar disorder and schizophrenia in the Scottish population. Mol Psychiatry 10: 657–658PubMedCrossRefGoogle Scholar
  107. 107.
    Cichon S, WInge I, Mattheisen M, Georgi A, Karpushova A, Freudenberg-Hua Y, Babadjanova G, van den Bogaert A, Abramova LI, Kapiletti S et al (2008) Brain-specific tryptophan hydroxylase 2 (TPH2): a functional Pro206Ser substitution and variation in the 5’-region are associated with bipolar affective disorder. Hum Mol Genet 17: 87–97PubMedCrossRefGoogle Scholar
  108. 108.
    Harvey M, Gagne B, Labbe M, Barden N (2007) Polymorphisms in the neuronal isoform of tryptophan hydroxylase 2 are associated with bipolar disorder in French Canadian pedigrees. Psychiatr Genet 17: 17–22PubMedCrossRefGoogle Scholar
  109. 109.
    Harvey M, Shink E, Tremblay M, Gagne B, Raymond C, Labbe M, Walther DJ, Bader M, Barden N (2004) Support for the involvement of TPH2 gene in affective disorders. Mol Psychiatry 9: 980–981PubMedCrossRefGoogle Scholar
  110. 110.
    Lopez V, Detera-Wadleigh SD, Cardona I, NIMH Genetics Initiative Bipolar Disorder Consortium, Kassem L, McMahon FJ (2007) Nested association between genetic variation in tryptophan hydroxylase II, bipolar affective disorder, and suicide attempts. Biol Psychiatry 61: 181–186PubMedCrossRefGoogle Scholar
  111. 111.
    van den Bogaert A, Sleegers K, De Zutter S, Heyrman L, Norrback KF, Adolfsson R, Van Broeckhoven C, Del-Favero J (2006) Association of brain-specific tryptophan hydroxylase, TPH2, with unipolar and bipolar disorder in a Northern Swedish, isolated population. Arch Gen Psychiatry 63: 1103–1110CrossRefGoogle Scholar
  112. 112.
    Mansour HA, Wood J, Logue T, Chowdari KV, Dayal M, Kupfer DJ, Monk TH, Devlin B, Nimgaonkar VL (2006) Association study of eight circadian genes with bipolar I disorder, schizoaffective disorder and schizophrenia. Genes Brain Behav 5: 150–157PubMedCrossRefGoogle Scholar
  113. 113.
    Nievergelt CM, Kripke DF, Barrett TB, Burg E, Remick RA, Sadovnick AD, McElroy SL, Keck PE Jr, Schork NJ, Kelsoe JR (2006) Suggestive evidence for association of the circadian genes PERIOD3 and ARNTL with bipolar disorder. Am J Med Genet B Neuropsychiatr Genet 141B: 234–241PubMedCrossRefGoogle Scholar
  114. 114.
    Abou Jamra R, Becker T, Georgi A, Feulner T, Schumacher J, Stromaier J, Schirmbeck F, Schulze TG, Propping P, Rietschel M et al (2008) Genetic variation of the FAT gene at 4q35 is associated with bipolar affective disorder. Mol Psychiatry 13: 277–284PubMedCrossRefGoogle Scholar
  115. 115.
    Blair IP, Chetcuti AF, Badenhop RF, Scimone A, Moses MJ, Adams LJ, Craddock N, Green EK, Kirov G, Owen MJ et al (2006) Positional cloning, association analysis and expression studies provide convergent evidence that the cadherin gene FAT contains a bipolar disorder susceptibility allele. Mol Psychiatry 11: 372–383PubMedCrossRefGoogle Scholar
  116. 116.
    Baum AE, Hamshere M, Green EK, Cichon S, Rietschel M, Noethen MM, Craddock N, McMahon FJ (2008) Meta-analysis of two genome-wide association studies of bipolar disorder reveals important points of agreement. Mol Psychiatry 13: 466–467PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2009

Authors and Affiliations

  • Thomas G. Schulze
    • 1
  • Francis J. McMahon
    • 2
  1. 1.Unit on the Genetic Basis of Mood and Anxiety Disorders, Mood & Anxiety Disorders ProgramNational Institute of Mental HealthBethesdaUSA
  2. 2.Department of Health & Human ServicesNational Institutes of HealthBethesdaUSA

Personalised recommendations