Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons

  • Pierre-Hervé Luppi
  • Damien Gervasoni
  • Christelle Peyron
  • Lucienne Leger
  • Denise Salvert
  • Patrice Fort


Extracellular electrophysiological recordings in freely moving cats have shown that serotonergic neurons from the dorsal raphe nucleus are tonically active during waking, decrease their activity during slow-wave sleep, and are nearly quiescent during paradoxical sleep. However, the mechanisms at the origin of the modulation of activity of these neurons were not identified. To fill this gap, we developed a method allowing extracellular single-unit recordings of neurons, combined with iontophoresis of agonists and antagonists in the head-restrained rat. Using this method, we were able to show that GABA is responsible for the decrease of activity of the dorsal raphe serotonergic cells both during slow-wave sleep and paradoxical sleep. In addition, combining retrograde tracing with cholera toxin B subunit and GAD immunohistochemistry, we showed that the GABAergic innervation of the dorsal raphe nucleus arises from multiple distant sources and not only from local interneurons as classically accepted. Among these afferents, we propose that GABAergic neurons located in the lateral and ventrolateral preoptic area and the pontine ventral periaqueductal gray are responsible for the reduction of activity of the serotonergic neurons of the dorsal raphe nucleus during slow-wave sleep and paradoxical sleep, respectively.


GABAergic Neuron Dorsal Raphe Dorsal Raphe Nucleus Serotonergic Neuron Paradoxical Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dahlstrom A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20: 398–399PubMedCrossRefGoogle Scholar
  2. 2.
    Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 64: 166–307PubMedGoogle Scholar
  3. 3.
    Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 165–229PubMedGoogle Scholar
  4. 4.
    McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: 569–575PubMedCrossRefGoogle Scholar
  5. 5.
    Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: 135–150PubMedCrossRefGoogle Scholar
  6. 6.
    Aghajanian GK, Vandermaelen CP (1982) Intracellular identification of central noradrenergic and serotonergic neurons by a new double labeling procedure. J Neurosci 2: 1786–1792PubMedGoogle Scholar
  7. 7.
    Vandermaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289: 109–119PubMedCrossRefGoogle Scholar
  8. 8.
    Lancel M, Faulhaber J, Holsboer F, Rupprecht R (1999) The GABA(A) receptor antagonist picrotoxin attenuates most sleep changes induced by progesterone. Psychopharmacology (Berl) 141: 213–219CrossRefGoogle Scholar
  9. 9.
    Mendelson WB (1992) Mechanism of action of benzodiazepine hypnotics. Clin Neuropharmacol 15Suppl 1: 357A–358APubMedGoogle Scholar
  10. 10.
    Nitz D, Siegel J (1997) GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol 273: R451–455PubMedGoogle Scholar
  11. 11.
    Nitz D, Siegel JM (1997) GABA release in the locus coeruleus as a function of sleep/wake state. Neuroscience 78: 795–801PubMedCrossRefGoogle Scholar
  12. 12.
    Levine ES, Jacobs BL (1992) Neurochemical afferents controlling the activity of serotonergic neurons in the dorsal raphe nucleus: microiontophoretic studies in the awake cat. J Neurosci 12: 4037–4044PubMedGoogle Scholar
  13. 13.
    Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189: 55–58PubMedCrossRefGoogle Scholar
  14. 14.
    Luppi PH, Charlety PJ, Fort P, Akaoka H, Chouvet G, Jouvet M (1991) Anatomical and electrophysiological evidence for a glycinergic inhibitory innervation of the rat locus coeruleus. Neurosci Lett 128: 33–36PubMedCrossRefGoogle Scholar
  15. 15.
    Jones BE (1991) Noradrenergic locus coeruleus neurons: their distant connections and their relationship to neighboring (including cholinergic and GABAergic) neurons of the central gray and reticular formation. Prog Brain Res 88: 15–30PubMedCrossRefGoogle Scholar
  16. 16.
    Koyama Y, Kayama Y (1993) Mutual interactions among cholinergic, noradrenergic and serotonergic neurons studied by ionophoresis of these transmitters in rat brainstem nuclei. Neuroscience 55: 1117–1126PubMedCrossRefGoogle Scholar
  17. 17.
    Gallager DW, Aghajanian GK (1976) Effect of antipsychotic drugs on the firing of dorsal raphe cells. II. Reversal by picrotoxin. Eur J Pharmacol 39: 357–364PubMedCrossRefGoogle Scholar
  18. 18.
    Gallager DW (1978) Benzodiazepines: potentiation of a GABA inhibitory response in the dorsal raphe nucleus. Eur J Pharmacol 49: 133–143PubMedCrossRefGoogle Scholar
  19. 19.
    Pan ZZ, Williams JT (1989) GABA-and glutamate-mediated synaptic potentials in rat dorsal raphe neurons in vitro. J Neurophysiol 61: 719–726PubMedGoogle Scholar
  20. 20.
    Wang QP, Ochiai H, Nakai Y (1992) GABAergic innervation of serotonergic neurons in the dorsal raphe nucleus of the rat studied by electron microscopy double immunostaining. Brain Res Bull 29: 943–948PubMedCrossRefGoogle Scholar
  21. 21.
    Darracq L, Gervasoni D, Souliere F, Lin JS, Fort P, Chouvet G, Luppi PH (1996) Effect of strychnine on rat locus coeruleus neurones during sleep and wakefulness. Neuroreport 8: 351–355PubMedCrossRefGoogle Scholar
  22. 22.
    Gervasoni D, Darracq L, Fort P, Souliere F, Chouvet G, Luppi PH (1998) Electrophysiological evidence that noradrenergic neurons of the rat locus coeruleus are tonically inhibited by GABA during sleep. Eur J Neurosci 10: 964–970PubMedCrossRefGoogle Scholar
  23. 23.
    Akaoka H, Saunier CF, Chergui K, Charlety P, Buda M, Chouvet G (1992) Combining in vivo volume-controlled pressure microejection with extracellular unit recording. J Neurosci Methods 42: 119–128PubMedCrossRefGoogle Scholar
  24. 24.
    Maloney KJ, Cape EG, Gotman J, Jones BE (1997) High-frequency gamma electroencephalogram activity in association with sleep-wake states and spontaneous behaviors in the rat. Neuroscience 76: 541–555PubMedCrossRefGoogle Scholar
  25. 25.
    Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20: 4217–4225PubMedGoogle Scholar
  26. 26.
    McGehee DS, Role LW (1996) Presynaptic ionotropic receptors. Curr Opin Neurobiol 6: 342–349PubMedCrossRefGoogle Scholar
  27. 27.
    Aghajanian GK, Wang RY (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res 122: 229–242PubMedCrossRefGoogle Scholar
  28. 28.
    Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82: 443–468PubMedCrossRefGoogle Scholar
  29. 29.
    Peyron C, Luppi PH, Fort P, Rampon C, Jouvet M (1996) Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. J Comp Neurol 364: 402–413PubMedCrossRefGoogle Scholar
  30. 30.
    Stamp JA, Semba K (1995) Extent of colocalization of serotonin and GABA in the neurons of the rat raphe nuclei. Brain Res 677: 39–49PubMedCrossRefGoogle Scholar
  31. 31.
    McGinty DJ, Sterman MB (1968) Sleep suppression after basal forebrain lesions in the cat. Science 160: 1253–1255PubMedCrossRefGoogle Scholar
  32. 32.
    Sallanon M, Denoyer M, Kitahama K, Aubert C, Gay N, Jouvet M (1989) Long-lasting insomnia induced by preoptic neuron lesions and its transient reversal by muscimol injection into the posterior hypothalamus in the cat. Neuroscience 32: 669–683PubMedCrossRefGoogle Scholar
  33. 33.
    Schmidt MH, Valatx JL, Sakai K, Fort P, Jouvet M (2000) Role of the lateral preoptic area in sleep-related erectile mechanisms and sleep generation in the rat. J Neurosci 20: 6640–6647PubMedGoogle Scholar
  34. 34.
    Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20: 3830–3842PubMedGoogle Scholar
  35. 35.
    Lucas EA, Sterman MB (1975) Effect of a forebrain lesion on the polycyclic sleepwake cycle and sleep-wake patterns in the cat. Exp Neurol 46: 368–388PubMedCrossRefGoogle Scholar
  36. 36.
    Sterman MB, Clemente CD (1962) Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation in the behaving cat. Exp Neurol 6: 103–117PubMedCrossRefGoogle Scholar
  37. 37.
    Szymusiak R, Alam N, Steininger TL, McGinty D (1998) Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803: 178–188PubMedCrossRefGoogle Scholar
  38. 38.
    Szymusiak R, McGinty D (1986) Sleep-related neuronal discharge in the basal forebrain of cats. Brain Res 370: 82–92PubMedCrossRefGoogle Scholar
  39. 39.
    Kaitin KI (1984) Preoptic area unit activity during sleep and wakefulness in the cat. Exp Neurol 83: 347–357PubMedGoogle Scholar
  40. 40.
    Koyama Y, Hayaishi O (1994) Firing of neurons in the preoptic/anterior hypothalamic areas in rat: its possible involvement in slow wave sleep and paradoxical sleep. Neurosci Res 19: 31–38PubMedCrossRefGoogle Scholar
  41. 41.
    Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18: 4705–4721PubMedGoogle Scholar
  42. 42.
    Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271: 216–219PubMedCrossRefGoogle Scholar
  43. 43.
    Steininger TL, Gong H, McGinty D, Szymusiak R (2001) Subregional organization of preoptic area/anterior hypothalamic projections to arousal-related monoaminergic cell groups. J Comp Neurol 429: 638–653PubMedCrossRefGoogle Scholar
  44. 44.
    Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556: 935–946PubMedCrossRefGoogle Scholar
  45. 45.
    Luppi PH, Gervasoni D, Peyron C, Barbagli B, Boissard R, Fort P (1999) Norepinephrine and REM sleep. In: BN Mallick, S Inoue (eds): Rapid eye movement sleep. Norosa Publishing House, New Delhi, 107–122Google Scholar
  46. 46.
    Woch G, Davies RO, Pack AI, Kubin L (1996) Behaviour of raphe cells projecting to the dorsomedial medulla during carbachol-induced atonia in the cat. J Physiol 490: 745–758PubMedGoogle Scholar
  47. 47.
    Liu R, Jolas T, Aghajanian G (2000) Serotonin 5-HT(2) receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 873: 34–45PubMedCrossRefGoogle Scholar
  48. 48.
    Yamuy J, Sampogna S, Lopez-Rodriguez F, Luppi PH, Morales FR, Chase MH (1995) Fos and serotonin immunoreactivity in the raphe nuclei of the cat during carbacholinduced active sleep: a double-labeling study. Neuroscience 67: 211–223PubMedCrossRefGoogle Scholar
  49. 49.
    Maloney KJ, Mainville L, Jones BE (1999) Differential c-Fos expression in cholinergic, monoaminergic, and GABAergic cell groups of the pontomesencephalic tegmentum after paradoxical sleep deprivation and recovery. J Neurosci 19: 3057–3072PubMedGoogle Scholar
  50. 50.
    Ennis M, Aston-Jones G (1989) GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J Neurosci 9: 2973–2981PubMedGoogle Scholar
  51. 51.
    Verret L, Fort P, Gervasoni D, Leger L, Luppi PH (2006) Localization of the neurons active during paradoxical (REM) sleep and projecting to the locus coeruleus noradrenergic neurons in the rat. J Comp Neurol 495: 573–586PubMedCrossRefGoogle Scholar
  52. 52.
    Goutagny R, Fort P, Lapray D, Luppi PH (2005) Role of dorsal paragigantocellular nucleus in paradoxical sleep regulation: a study combining electrophysiology and pharmacology across vigilance states in the rat. Soc Neurosci Abstr Google Scholar
  53. 53.
    Kaur S, Saxena RN, Mallick BN (2001) GABAergic neurons in prepositus hypoglossi regulate REM sleep by its action on locus coeruleus in freely moving rats. Synapse 42: 141–150PubMedCrossRefGoogle Scholar
  54. 54.
    Luppi PH, Boissard R, Gervasoni D, Verret L, Goutagny R, Peyron C, Salvert D, Leger L, Barbagli B, Fort P (2004) The network responsible for paradoxical sleep onset and maintenance: a new theory based on the head-restrained rat model. In: PH Luppi (ed): Sleep: circuits and function. CRC Press, Boca Raton, 272Google Scholar
  55. 55.
    Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22: 4568–4576PubMedGoogle Scholar
  56. 56.
    Jouvet M (1988) The regulation of paradoxical sleep by the hypothalamo-hypophysis. Arch Ital Biol 126: 259–274PubMedGoogle Scholar
  57. 57.
    Alam MN, Gong H, Alam T, Jaganath R, McGinty D, Szymusiak R (2002) Sleepwaking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area. J Physiol 538: 619–631PubMedCrossRefGoogle Scholar
  58. 58.
    Koyama Y, Takahashi K, Kodama T, Kayama Y (2003) State-dependent activity of neurons in the perifornical hypothalamic area during sleep and waking. Neuroscience 119: 1209–1219PubMedCrossRefGoogle Scholar
  59. 59.
    Steininger TL, Alam MN, Gong H, Szymusiak R, McGinty D (1999) Sleep-waking discharge of neurons in the posterior lateral hypothalamus of the albino rat. Brain Res 840: 138–147PubMedCrossRefGoogle Scholar
  60. 60.
    Lin JS, Sakai K, Vanni-Mercier G, Jouvet M (1989) A critical role of the posterior hypothalamus in the mechanisms of wakefulness determined by microinjection of muscimol in freely moving cats. Brain Res 479: 225–240PubMedCrossRefGoogle Scholar
  61. 61.
    Verret L, Goutagny R, Fort P, Cagnon L, Salvert D, Leger L, Boissard R, Salin P, Peyron C, Luppi PH (2003) A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep. BMC Neurosci 4: 19PubMedCrossRefGoogle Scholar
  62. 62.
    Gao XB, van den Pol AN (2001) Melanin concentrating hormone depresses synaptic activity of glutamate and GABA neurons from rat lateral hypothalamus. J Physiol 533: 237–252PubMedCrossRefGoogle Scholar
  63. 63.
    Hervieu GJ, Cluderay JE, Harrison D, Meakin J, Maycox P, Nasir S, Leslie RA (2000) The distribution of the mRNA and protein products of the melanin-concentrating hormone (MCH) receptor gene, slc-1, in the central nervous system of the rat. Eur J Neurosci 12: 1194–1216PubMedCrossRefGoogle Scholar
  64. 64.
    Saito Y, Nothacker HP, Wang Z, Lin SH, Leslie F, Civelli O (1999) Molecular characterization of the melanin-concentrating-hormone receptor. Nature 400: 265–269PubMedCrossRefGoogle Scholar
  65. 65.
    Bittencourt JC, Presse F, Arias C, Peto C, Vaughan J, Nahon JL, Vale W, Sawchenko PE (1992) The melanin-concentrating hormone system of the rat brain: an immunoand hybridization histochemical characterization. J Comp Neurol 319: 218–245PubMedCrossRefGoogle Scholar
  66. 66.
    Mileykovskiy BY, Kiyashchenko LI, Siegel JM (2005) Behavioral correlates of activity in identified hypocretin/orexin neurons. Neuron 46: 787–798PubMedCrossRefGoogle Scholar
  67. 67.
    Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25: 6716–6720PubMedCrossRefGoogle Scholar
  68. 68.
    Bayer L, Mairet-Coello G, Risold PY, Griffond B (2002) Orexin/hypocretin neurons: chemical phenotype and possible interactions with melanin-concentrating hormone neurons. Regul Pept 104: 33–39PubMedCrossRefGoogle Scholar
  69. 69.
    Guan JL, Uehara K, Lu S, Wang QP, Funahashi H, Sakurai T, Yanagizawa M, Shioda S (2002) Reciprocal synaptic relationships between orexin-and melanin-concentrating hormone-containing neurons in the rat lateral hypothalamus: a novel circuit implicated in feeding regulation. Int J Obes Relat Metab Disord 26: 1523–1532PubMedCrossRefGoogle Scholar
  70. 70.
    Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH (2002) The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16: 1959–1973PubMedCrossRefGoogle Scholar
  71. 71.
    Boissard R, Fort P, Gervasoni D, Barbagli B, Luppi PH (2003) Localization of the GABAergic and non-GABAergic neurons projecting to the sublaterodorsal nucleus and potentially gating paradoxical sleep onset. Eur J Neurosci 18: 1627–1639PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Pierre-Hervé Luppi
    • 1
  • Damien Gervasoni
    • 1
  • Christelle Peyron
    • 1
  • Lucienne Leger
    • 1
  • Denise Salvert
    • 1
  • Patrice Fort
    • 1
  1. 1.Physiopathologie des réseaux neuronaux du cycle veille-sommeil, Faculté de Médecine LaënnecCNRS UMR 5167Lyon cedex 08France

Personalised recommendations