Skip to main content

Molecular biology of 5-HT receptors

  • Chapter

Abstract

Serotonin (5-hydroxytryptamine, 5-HT) is probably unique among the monoamines in that its effects are mediated by as many as 13 distinct G protein-coupled receptors and several ligand-gated ion channels (5-HT3). These receptors are divided into seven distinct classes (5-HT1 to 5-HT7) largely on the basis of their structural, transductional and operational characteristics. While this degree of physical diversity clearly underscores the physiological importance of serotonin, evidence for an even greater degree of operational diversity continues to emerge.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gaddum JH, Picarelli ZP (1957) Two kinds of tryptamine receptor. Br J Pharmacol Chemother 12: 323–328

    PubMed  CAS  Google Scholar 

  2. Fillion G, Fillion MP, Spirakis C, Bahers JM, Jacob J (1976) 5-Hydroxytryptamine binding to synaptic-membranes from rat-brain. Live Sciences 18: 65–74

    Article  CAS  Google Scholar 

  3. Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors; Differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16: 687–699

    PubMed  CAS  Google Scholar 

  4. Bradley PB, Engel G, Feniuk W, Fozard JR, Humphrey PPA, Middlemiss DN, Mylecharane EJ, Richardson BP, Saxena PR (1986) Proposals for the classification and nomenclature of functional receptors for 5-hydroxytryptamine. Neuropharmacology 25: 563–576

    Article  PubMed  CAS  Google Scholar 

  5. Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14: 233–236

    Article  PubMed  CAS  Google Scholar 

  6. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–203

    PubMed  CAS  Google Scholar 

  7. Hoyer D, Martin GR, Andrade, R, Barnes N, Baxter G, Branchek T, Cohen ML, Dumuis A, Eglen RM, Goethert M et al (2006) 5-Hydroxytryptamine receptors — IUPHAR Receptor database. (doi: 10.1786/543800763668)

    Google Scholar 

  8. Hartig PR, Hoyer D, Humphrey PPA, Martin GR (1996) Alignment of receptor nomenclature with the human genome: Classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 17: 103–105

    Article  PubMed  CAS  Google Scholar 

  9. Hoyer D, Martin G (1997) 5-HT receptor classification and nomenclature: Towards a harmonization with the human genome. Neuropharmacology 36: 419–428

    Article  PubMed  CAS  Google Scholar 

  10. Bai F, Yin T, Johnstone EM, Su C, Varga G, Little SP, Nelson DL (2004) Molecular cloning and pharmacological characterization of the guinea pig 5-HT1E receptor. Eur J Pharmacol, 484: 127–139

    Article  PubMed  CAS  Google Scholar 

  11. Fargin A, Raymond JR, Lohse MJ, Kobilka BK, Caron MG, Lefkowitz RJ (1988) The genomic clone G-21 which resembles a beta-adrenergic-receptor sequence encodes the 5-HT1A receptor. Nature 335: 358–360

    Article  PubMed  CAS  Google Scholar 

  12. Fujiwara Y, Nelson DL, Kashihara K, Varga E, Roeske WR, Yamamura HI (1990) The cloning and sequence-analysis of the rat serotonin-1a receptor gene. Life Sci 47: PL127–PL132

    Article  PubMed  CAS  Google Scholar 

  13. Albert PR, Zhou QY, Vantol HHM, Bunzow JR, Civelli O (1990) Cloning, functional expression, and messenger-RNA tissue distribution of the rat 5-hydroxytryptamine-1a receptor gene. J Biol Chem 265: 5825–5832

    PubMed  CAS  Google Scholar 

  14. Charest A, Wainer BH, Albert PR (1993) Cloning and differentiation-induced expression of a murine serotonin(1a) receptor in a septal cell-line. J Neurosci 13: 5164–5171

    PubMed  CAS  Google Scholar 

  15. Fargin A, Raymond JR, Regan JW, Cotecchia S, Lefkowitz RJ, Caron MG (1989) Effector coupling mechanisms of the cloned 5-HT1A receptor. J Biol Chem 264: 14848–14852

    PubMed  CAS  Google Scholar 

  16. Stam NJ, Van Huizen F, van Alebeek C, Brands J, Dijkema R, Tonnaer J, Olijve W (1992) Genomic organization, coding sequence and functional expression of human 5-HT2 and 5-HT1A receptor genes. Eur J Pharmacol 227: 153–162

    Article  PubMed  CAS  Google Scholar 

  17. Boddeke H, Fargin A, Raymond JR, Schoeffter P, Hoyer D (1992) Agonist antagonist interactions with cloned human 5-HT1A receptors — ariations in intrinsic activity studied in transfected HeLa-cells. Naunyn-Schmiedebergs Arch Pharmacol 345: 257–263

    PubMed  CAS  Google Scholar 

  18. Albert PR, Sajedi N, Lemonde S, Ghahremani MH (1999) Constitutive G (i2)-dependent activation of adenylyl cyclase type II by the 5-HT1A receptor — Inhibition by anxiolytic partial agonists. J Biol Chem 274: 35469–35474

    Article  PubMed  CAS  Google Scholar 

  19. Markstein R, Matsumoto M, Kohler C, Togashi H, Yoshioka M, Hoyer D (1999) Pharmacological characterisation of 5-HT receptors positively coupled to adenylyl cyclase in the rat hippocampus. Naunyn-Schmiedebergs Arch Pharmacol 359: 454–459

    Article  PubMed  CAS  Google Scholar 

  20. Nakhai B, Nielsen DA, Linnoila M, Goldman D (1995) 2 Naturally-occurring aminoacid substitutions in the human 5-HT1A receptor — Glycine-22 to serine-22 and isoleucine-28 to valine-28. Biochem Biophys Res Commun 210: 530–536

    Article  PubMed  CAS  Google Scholar 

  21. Lam S, Shen Y, Nguyen T, Messier TL, Brann M, Comings D, George SR, Odowd BF (1996) A serotonin receptor gene (5HT1A) variant found in a Tourette’s syndrome patient. Biochem Biophys Res Commun 219: 853–858

    Article  PubMed  CAS  Google Scholar 

  22. Del Tredici AL, Schiffer HH, Burstein ES, Lameh J, Mohell N, Hacksell U, Brann MR, Weiner DM (2004) Pharmacology of polymorphic variants of the human 5-HT1A receptor. Biochem Pharmacol 67: 479–490

    Article  PubMed  CAS  Google Scholar 

  23. Hoyer D, Middlemiss DN (1989) Species-differences in the pharmacology of terminal 5-HT autoreceptors in mammalian brain. Trends Pharmacol Sci 10: 130–132

    Article  PubMed  CAS  Google Scholar 

  24. Voigt MM, Laurie DJ, Seeburg PH, Bach A (1991) Molecular-cloning and characterization of a rat-brain cDNA-encoding a 5-hydroxytryptamine1b receptor. EMBO J 10: 4017–4023

    PubMed  CAS  Google Scholar 

  25. Hamblin MW, Metcalf MA (1991) Primary structure and functional-characterization of a human 5-HT1D-type serotonin receptor. Mol Pharmacol 40: 143–148

    PubMed  CAS  Google Scholar 

  26. Adham N, Romanienko P, Hartig P, Weinshank RL, Branchek T (1992) The rat 5-hydroxytryptamine1B receptor is the species homologue of the human 5-hydroxytryptamine1D beta receptor. Mol Pharmacol 41: 1–7

    PubMed  CAS  Google Scholar 

  27. Hartig PR, Branchek TA, Weinshank RL (1992) A subfamily of 5-HT1D receptor genes. Trends Pharmacol Sci 13: 152–159

    Article  PubMed  CAS  Google Scholar 

  28. Hamblin MW, Metcalf MA, McGuffin RW, Karpells S (1992) Molecular-cloning and functional-characterization of a human 5-HT1B serotonin receptor-a homolog of the rat 5-HT1B receptor with 5-HT1D-like pharmacological specificity. Biochem Biophys Res Commun 184: 752–759

    Article  PubMed  CAS  Google Scholar 

  29. Weinshank RL, Zgombick JM, Macchi MJ, Branchek TA, Hartig PR (1992) Human serotonin 1D receptor is encoded by a subfamily of two distinct genes: 5-HT1D⊠ and 5-HT1Dβ. Proc Natl Acad Sci USA 89: 3630–3634

    Article  PubMed  CAS  Google Scholar 

  30. Jin H, Oksenberg D, Ashkenazi A, Peroutka SJ, Duncan AM, Rozmahel R, Yang Y, Mengod G, Palacios JM, Odowd BF (1992) Characterization of the human 5-hydroxytryptamine-1B receptor. J Biol Chem 267: 5735–5738

    PubMed  CAS  Google Scholar 

  31. Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R (1992) Mouse 5HT1B serotonin receptor — Cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci USA 89: 3020–3024

    Article  PubMed  CAS  Google Scholar 

  32. Hamblin MW, McGuffin RW, Metcalf MA, Dorsa DM, Merchant KM (1992) Distinct 5-HT(1b) and 5-HT(1d) serotonin receptors in rat — Structural and pharmacological comparison of the 2 cloned receptors. Mol Cell Neurosci 3: 578–587

    Article  CAS  PubMed  Google Scholar 

  33. Adham N, Tamm JA, Salon JA, Vaysse PJJ, Weinshank RL, Branchek TA (1994) A single-point mutation increases the affinity of serotonin 5-HT1D-alpha, 5-HT1D-beta, 5-HT1E and 5-HT1F receptors for beta-adrenergic antagonists. Neuropharmacology 33: 387–391

    Article  PubMed  CAS  Google Scholar 

  34. Schoeffter P, Hoyer D (1989) 5-Hydroxytryptamine 5-HT-1b and 5-HT-1d receptors mediating inhibition of adenylate-cyclase activity — Pharmacological comparison with special reference to the effects of yohimbine, rauwolscine and some beta-adrenoceptor antagonists. Naunyn-Schmiedebergs Arch Pharmacol 340: 285–292

    PubMed  CAS  Google Scholar 

  35. Pauwels PJ, Wurch T, Amoureux MC, Palmier C, Colpaert FC (1996) Stimulation of cloned human serotonin 5-HT1D beta receptor sites in stably transfected C6 glial cells promotes cell growth. J Neurochem 66: 65–73

    PubMed  CAS  Google Scholar 

  36. Zgombick JM, Branchek TA (1998) Native 5-HT1B receptors expressed in OH cells display dual coupling to elevation of intracellular calcium concentrations and inhibition of adenylate cyclase. Naunyn-Schmiedebergs Arch Pharmacol 358: 503–508

    Article  PubMed  CAS  Google Scholar 

  37. Lin SL, Setya S, Johnson-Farley NN, Cowen DS (2002) Differential coupling of 5-HT1 receptors to G proteins of the G(i) family. Br J Pharmacol 136: 1072–1078

    Article  PubMed  CAS  Google Scholar 

  38. Massen Van Den Brink A, Vergouwe MN, Ophoff RA, Saxena PR, Ferrari MD, Frants RR (1998) 5-HT1B receptor polymorphism and clinical response to sumatriptan. Headache 38: 288–291

    Article  Google Scholar 

  39. Lesage AS, Wouters R, Van Gompel P, Heylen L, Van Hoenacker P, Haegeman G, Luyten W, Leysen JE (1998) Agonistic properties of alniditan, sumatriptan and dihydroergotamine on human 5-HT1B and 5-HT1D receptors expressed in various mammalian cell lines. Br J Pharmacol 123: 1655–1665

    Article  PubMed  CAS  Google Scholar 

  40. Hou MY, Kanje M, Longmore J, Tajti J, Uddman R, Edvinsson L (2001) 5-HT1B and 5-HT1D receptors in the human trigeminal ganglion: Co-localization with calcitonin gene-related peptide, substance P and nitric oxide synthase. Brain Res 909: 112–120

    Article  PubMed  CAS  Google Scholar 

  41. Longmore J, Maguire JJ, MacLeod A, Street L, Schofield WN, Hill RG (2000) Comparison of the vasoconstrictor effects of the selective 5-HT1D-receptor agonist L-775, 606 with the mixed 5-HT1B/(1D)-receptor agonist sumatriptan and 5-HT in human isolated coronary artery. Br J Clin Pharmacol 49: 126–131

    Article  PubMed  CAS  Google Scholar 

  42. Hasegawa Y, Higuchi S, Matsushita S, Miyaoka H (2002) Association of a polymorphism of the serotonin 1B receptor gene and alcohol dependence with inactive aldehyde dehydrogenase-2. J Neural Transm 109: 513–521

    Article  PubMed  CAS  Google Scholar 

  43. Hawi Z, Dring M, Kirley A, Foley D, Kent L, Craddock N, Asherson P, Curran S, Gould A, Richards S et al (2002) Serotonergic system and attention deficit hyperactivity disorder (ADHD): a potential susceptibility locus at the 5-HT1B receptor gene in 273 nuclear families from a multi-centre sample. Mol Psychiatry 7: 718–725

    Article  PubMed  CAS  Google Scholar 

  44. Soyka M, Preuss UW, Koller G, Zill P, Bondy B (2004) Association of 5-HT1B receptor gene and antisocial behavior in alcoholism. J Neural Transm 111: 101–109

    Article  PubMed  CAS  Google Scholar 

  45. Huang YY, Oquendo MA, Friedman JMH, Greenhill LL, Brodsky B, Malone KM, Khait V, Mann JJ (2003) Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism. Neuropsychopharmacology 28: 163–169

    Article  PubMed  CAS  Google Scholar 

  46. Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R, Basile S, Beitchman J, Kennedy JL (2003) The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol Psychiatry 8: 98–102

    Article  PubMed  CAS  Google Scholar 

  47. Weydert A, Cloeztayarani I, Fillion MP, Simonchazottes D, Guenet JL, Fillion G (1992) Molecular-cloning of 2 partial serotonin 5-HT(1D) receptor sequences in mouse and one in guinea-pig. C R Acad Sci 314: 429–435

    CAS  Google Scholar 

  48. Bruinvels AT, Landwehrmeyer B, Probst A, Palacios JM, Hoyer D (1994) A comparative autoradiographic study of 5-HT1D binding-sites in human and guinea-pig brain using different radioligands. Mol Brain Res 21: 19–29

    Article  PubMed  CAS  Google Scholar 

  49. Castro ME, Pascual J, Romon T, DelArco C, DelOlmo E, Pazos A (1997) Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: Focus on brainstem and spinal cord. Neuropharmacology 36: 535–542

    Article  PubMed  CAS  Google Scholar 

  50. Varnas K, Hall H, Bonaventure P, Sedvall G (2001) Autoradiographic mapping of 5-HT1B and 5-HT1D receptors in the post mortem human brain using [3H]GR 125743. Brain Res 915: 47–57

    Article  PubMed  CAS  Google Scholar 

  51. Bonaventure P, Langlois X, Leysen JE (1998) Co-localization of 5-HT1B-and 5-HT1D receptor mRNA in serotonergic cell bodies in guinea pig dorsal raphe nucleus: a double labeling in situ hybridization histochemistry study. Neurosci Lett 254: 113–116

    Article  PubMed  CAS  Google Scholar 

  52. Price GW, Burton MJ, Collin LJ, Duckworth M, Gaster L, Gothert M, Jones BJ, Roberts C, Watson JM, Middlemiss DN (1997) SB-216641 and BRL-15572 — Compounds to pharmacologically discriminate h5-HT1B and h5-HT1D receptors. Naunyn-Schmiedebergs Arch Pharmacol 356: 312–320

    Article  PubMed  CAS  Google Scholar 

  53. Schlicker E, Fink K, Molderings GJ, Price GW, Duckworth M, Gaster L, Middlemiss DN, Zentner J, Likungu J, Gothert M (1997) Effects of selective h5-HT1B (SB-216641) and h5-HT1D (BRL-15572) receptor ligands on guinea-pig and human 5-HT auto-and heteroreceptors. Naunyn-Schmiedebergs Arch Pharmacol 356: 321–327

    Article  PubMed  CAS  Google Scholar 

  54. Middlemiss DN, Gothert M, Schlicker E, Scott CM, Selkirk JV, Watson J, Gaster LM, Wyman P, Riley G, Price GW (1999) SB-236057, a selective 5-HT1B receptor inverse agonist, blocks the 5-HT human terminal autoreceptor. Eur J Pharmacol 375: 359–365

    Article  PubMed  CAS  Google Scholar 

  55. Bergen AW, van den Bree MBM, Yeager M, Welch R, Ganjei JK, Haque K, Bacanu S, Berrettini WH, Grice DE, Bulik CM et al (2003) Candidate genes for anorexia nervosa in the 1p33–36 linkage region: Serotonin 1D and delta opioid receptors display significant association to anorexia nervosa. Biol Psychiatry 53: 165S–165S

    Google Scholar 

  56. Rousselle JC, Plantefol M, Fillion MP, Massot O, Pauwels PJ, Fillion G (1998) Specific interaction of 5-HT-moduline with human 5-HT1B as well as 5-HT1D receptors expressed in transfected cultured cells. Naunyn-Schmiedebergs Arch Pharmacol 358: 279–286

    Article  PubMed  CAS  Google Scholar 

  57. Xie XD, Lee SP, O’Dowd BF, George SR (1999) Serotonin 5-HT1B and 5-HT1D receptors form homodimers when expressed alone and heterodimers when co-expressed. FEBS Lett 456: 63–67

    Article  PubMed  CAS  Google Scholar 

  58. Lee SP, Xie ZD, Varghese G, Nguyen T, O’Dowd BF, George SR (2000) Oligomerization of dopamine and serotonin receptors. Neuropsychopharmacology 23: S32–S40

    Article  PubMed  CAS  Google Scholar 

  59. Miller KJ, Teitler M (1992) Quantitative autoradiography of 5-CT-sensitive (5-HT1D) and 5-CT-insensitive (5-HT1E) serotonin receptors in human brain. Neurosci Lett 136: 223–226

    Article  PubMed  CAS  Google Scholar 

  60. McAllister G, Charlesworth A, Snodin C, Beer MS, Noble AJ, Middlemiss DN, Iversen LL, Whiting P (1992) Molecular cloning of a serotonin receptor from human brain (5ht1e) — a 5th 5HT1-like subtype. Proc Natl Acad Sci USA 89: 5517–5521

    Article  PubMed  CAS  Google Scholar 

  61. Zgombick JM, Schechter LE, Macchi M, Hartig PR, Branchek TA, Weinshank RL (1992) Human gene S31 encodes the pharmacologically defined serotonin 5-hydroxytryptamine-1E receptor. Mol Pharmacol 42: 180–185

    PubMed  CAS  Google Scholar 

  62. Amlaiky N, Ramboz S, Boschert U, Plassat JL, Hen R (1992) Isolation of a mouse 5HT1E-like serotonin receptor expressed predominantly in hippocampus. J Biol Chem 267: 19761–19764

    PubMed  CAS  Google Scholar 

  63. Shimron-Abarbanell D, Nothen MM, Erdmann J, Propping P (1995) Lack of genetically determined structural variants of the human serotonin-1E (5-HT1E) receptor protein points to its evolutionary conservation. Brain Res Mol Brain Res 29: 387–390

    Article  PubMed  CAS  Google Scholar 

  64. Adham N, Vaysse PJJ, Weinshank RL, Branchek TA (1994) The cloned human 5-HT1E receptor couples to inhibition and activation of adenylyl-cyclase via 2 distinct pathways in transfected Bs-C-1 cells. Neuropharmacology 33: 403–410

    Article  PubMed  CAS  Google Scholar 

  65. Levy FO, Holtgrevegrez H, Tasken K, Solberg R, Ried T, Gudermann T (1994) Assignment of the gene encoding the 5-ht1e serotonin receptor (s31) (locus HTR1E) to human-chromosome 6q14-Q15. Genomics 22: 637–640

    Article  PubMed  CAS  Google Scholar 

  66. Adham N, Kao H, Schechter LE, Bard J, Olsen M, Urquhart D, Durkin M, Hartig PR, Weinshak RL, Branchek TA (1993) Cloning of another human serotonin receptor (5-HT1F): A fifth 5-HT1 receptor subtype coupled to the inhibition of adenylate cyclase. Proc Natl Acad Sci USA 90: 408–412

    Article  PubMed  CAS  Google Scholar 

  67. Lovenberg TW, Erlander MG, Baron BM, Racke M, Slone AL, Siegel BW, Craft CM, Burns JE, Danielson PE, Sutcliffe JG (1993) Molecular-cloning and functional expression of 5-HT1E-like rat and human 5-hydroxytryptamine receptor genes. Proc Natl Acad Sci USA 90: 2184–2188

    Article  PubMed  CAS  Google Scholar 

  68. Guptan P, Dhingra A, Panicker MM (1997) Multiple transcripts encode the 5-HT1F receptor in rodent brain. Neuroreport 8: 3317–3321

    Article  PubMed  CAS  Google Scholar 

  69. Adham N, Borden LA, Schechter LE, Gustafson EL, Cochran TL, Vaysse PJJ, Weinshank RL, Branchek TA (1993) Cell-specific coupling of the cloned human 5-HT(1F) receptor to multiple signal-transduction pathways. Naunyn-Schmiedebergs Arch Pharmacol 348: 566–575

    Article  PubMed  CAS  Google Scholar 

  70. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71: 533–554

    Article  PubMed  CAS  Google Scholar 

  71. Johnson KW, Schaus JM, Durkin MM, Audia JE, Kaldor SW, Flaugh ME, Adham N, Zgombick JM, Cohen ML, Branchek TA et al (1997) 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport 8: 2237–2240

    PubMed  CAS  Google Scholar 

  72. Mitsikostas DD, del Rio MS, Moskowitz MA, Waeber C (1999) Both 5-HT1B and 5-HT1F receptors modulate c-fos expression within rat trigeminal nucleus caudalis. Eur J Pharmacol 369: 271–277

    Article  PubMed  CAS  Google Scholar 

  73. Cohen ML, Schenck K (1999) 5-Hydroxytryptamine(1F) receptors do not participate in vasoconstriction: Lack of vasoconstriction to LY344864, a selective serotonin(1F) receptor agonist in rabbit saphenous vein. J Pharmacol Exp Ther 290: 935–939

    PubMed  CAS  Google Scholar 

  74. Phebus LA, Johnson KW, Zgombick JM, Gilbert PJ, VanBelle K, Mancuso V, Nelson DLG, Calligaro DO, Kiefer AD, Branchek TA et al (1997) Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: Binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci 61: 2117–2126

    Article  PubMed  CAS  Google Scholar 

  75. Lucaites VL, Nelson DL, Wainscott DB, Baez M (1996) Receptor subtype and density determine the coupling repertoire of the 5-HT2 receptor subfamily. Life Sci 59: 1081–1095

    Article  PubMed  CAS  Google Scholar 

  76. Pritchett DB, Bach AWJ, Wozny M, Taleb O, Daltoso R, Shih JC, Seeburg PH (1988) Structure and functional expression of cloned rat serotonin 5HT-2 receptor. EMBO J 7: 4135–4140

    PubMed  CAS  Google Scholar 

  77. Julius D, Huang KN, Livelli TJ, Axel R, Jessell TM (1990) The 5HT2 receptor defines a family of structurally distinct but functionally conserved serotonin receptors. Proc Natl Acad Sci USA 87: 928–932

    Article  PubMed  CAS  Google Scholar 

  78. Saltzman AG, Morse B, Whitman MM, Ivanshchenko Y, Jaye M, Felder S (1991) Cloning of the human serotonin 5-HT2 and 5-HT1C receptor subtypes. Biochem Biophys Res Commun 181: 1469–1478

    Article  PubMed  CAS  Google Scholar 

  79. Chen K, Yang W, Grimsby J, Shih JC (1992) The human 5-HT2 receptor is encoded by a multiple intron exon gene. Mol Brain Res 14: 20–26

    Article  PubMed  CAS  Google Scholar 

  80. Foguet M, Nguyen H, Le H, Lubbert H (1992) Structure of the mouse 5-HT1C, 5-HT2 and Stomach fundus serotonin receptor genes. Neuroreport 3: 345–348

    Article  PubMed  CAS  Google Scholar 

  81. Yang W, Chen K, Lan NC, Gallaher TK, Shih JC (1992) Gene structure and expression of the mouse 5-HT2 receptor. J Neurosci Res 33: 196–204

    Article  PubMed  CAS  Google Scholar 

  82. Garlow SJ, Chin AC, Marinovich AM, Heller MR, Ciaranello RD (1994) Cloning and functional promoter mapping of the rat serotonin-2 receptor Gene. Mol Cell Neurosci 5: 291–300

    Article  PubMed  CAS  Google Scholar 

  83. Hoyer D (1988) Molecular pharmacology and biology of 5-HT1C receptors. Trends Pharmacol Sci 9: 89–94

    Article  PubMed  CAS  Google Scholar 

  84. Arranz MJ, Munro J, Owen MJ, Spurlock G, Sham PC, Zhao J, Kirov G, Collier DA, Kerwin RW (1998) Evidence for association between polymorphisms in the promoter and coding regions of the 5-HT2A receptor gene and response to clozapine. Mol Psychiatry 3: 61–66

    Article  PubMed  CAS  Google Scholar 

  85. Ullmer C, Boddeke H, Schmuck K, Lubbert H (1996) 5-HT2B receptor-mediated calcium release from ryanodine-sensitive intracellular stores in human pulmonary artery endothelial cells. Br J Pharmacol 117: 1081–1088

    PubMed  CAS  Google Scholar 

  86. Foguet M, Hoyer D, Pardo LA, Parekh A, Kluxen FW, Kalkman HO, Stuhmer W, Lubbert H (1992) Cloning and functional-characterization of the rat stomach fundus serotonin receptor. EMBO J 11: 3481–3487

    PubMed  CAS  Google Scholar 

  87. Kursar JD, Nelson DL, Wainscott DB, Cohen ML, Baez M (1992) Molecular-cloning, functional expression, and pharmacological characterization of a novel serotonin receptor (5-hydroxytryptamine2F) from rat stomach fundus. Mol Pharmacol 42: 549–557

    PubMed  CAS  Google Scholar 

  88. Kursar JD, Nelson DL, Wainscott DB, Baez M (1994) Molecular-cloning, functional expression, and messenger-rna tissue distribution of the human 5-hydroxytryptamine (2B) receptor. Mol Pharmacol 46: 227–234

    PubMed  CAS  Google Scholar 

  89. Loric S, Launay JM, Colas JF, Maroteaux L (1992) New mouse 5-HT2-like receptor — Expression in brain, heart and intestine. FEBS Lett 312: 203–207

    Article  PubMed  CAS  Google Scholar 

  90. Schmuck K, Ullmer C, Engels P, Lubbert H (1994) Cloning and functional-characterization of the human 5-HT2B serotonin receptor. FEBS Lett 342: 85–90

    Article  PubMed  CAS  Google Scholar 

  91. Wainscott DB, Cohen ML, Schenck KW, Audia JE, Nissen JS, Baez M, Kursar JD, Lucaites VL, Nelson DL (1993) Pharmacological characteristics of the newly cloned rat 5-hydroxytryptamine2F receptor. Mol Pharmacol 43: 419–426

    PubMed  CAS  Google Scholar 

  92. Wainscott DB, Lucaites VL, Kursar JD, Baez M, Nelson DL (1996) Pharmacologic characterization of the human 5-hydroxytryptamine(2B) receptor: Evidence for species differences. J Pharmacol Exp Ther 276: 720–727

    PubMed  CAS  Google Scholar 

  93. LeConiat M, Choi DS, Maroteaux L, Launay JM, Berger R (1996) The 5-HT2B receptor gene maps to 2q36.3-2q37.1. Genomics 32: 172–173

    Article  CAS  Google Scholar 

  94. Bonhaus DW, Bach C, Desouza A, Salazar FHR, Matsuoka BD, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine(2B) (5-HT2B) receptor gene-products — Comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115: 622–628

    PubMed  CAS  Google Scholar 

  95. Duxon MS, Kennett GA, Lightowler S, Blackburn TP, Fone KCF (1997) Activation of 5-HT2B receptors in the medial amygdala causes anxiolysis in the social interaction test in the rat. Neuropharmacology 36: 601–608

    Article  PubMed  CAS  Google Scholar 

  96. Ellis ES, Byrne C, Murphy OE, Tilford NS, Baxter GS (1995) Mediation by 5-hydroxytryptamine(2B) receptors of endothelium-dependent relaxation in rat jugularvein. Br J Pharmacol 114: 400–404

    PubMed  CAS  Google Scholar 

  97. Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA, Sun JH, Link JR, Abbaszade I, Hollis JM et al (2000) Possible role of valvular serotonin 5-HT2B receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 57: 75–81

    PubMed  CAS  Google Scholar 

  98. Nebigil CG, Jaffre F, Messaddeq N, Hickel P, Monassier L, Launay JM, Maroteaux L (2003) Overexpression of the serotonin 5-HT2B receptor in heart leads to abnormal mitochondrial function and cardiac hypertrophy. Circulation 107: 3223–3229

    Article  PubMed  CAS  Google Scholar 

  99. Yu L, Nguyen H, Le H, Bloem LJ, Kozak CA, Hoffman BJ, Snutch TP, Lester HA, Davidson N, Lubbert H (1991) The mouse 5-HT1C receptor contains 8 hydrophobic domains and is X-linked. Mol Brain Res 11: 143–149

    Article  PubMed  CAS  Google Scholar 

  100. Boddeke H, Hoffman BJ, Palacios JM, Knot H, Hoyer D (1993) Characterization of functional-responses in A9-cells transfected with cloned rat 5-HT1C receptors. Naunyn-Schmiedebergs Arch Pharmacol 347: 119–124

    PubMed  CAS  Google Scholar 

  101. Xie E, Zhu L, Zhao L, Chang L-S (1996) The human serotonin 5-HT2C receptor: Complete cDNA, genomic structure, and alternatively spliced variant. Genomics 35: 551–561

    Article  PubMed  CAS  Google Scholar 

  102. Pazos A, Hoyer D, Palacios JM (1984) The binding of serotonergic ligands to the porcine choroid-plexus — Characterization of a new type of serotonin recognition site. Eur J Pharmacol 106: 539–546

    Article  PubMed  CAS  Google Scholar 

  103. Conn PJ, Sandersbush E, Hoffman BJ, Hartig PR (1986) A unique serotonin receptor in choroid-plexus is linked to phosphatidylinositol turnover. Proc Natl Acad Sci USA 83: 4086–4088

    Article  PubMed  CAS  Google Scholar 

  104. Hoyer D, Waeber C, Schoeffter P, Palacios JM, Dravid A (1989) 5-HT1C receptor-mediated stimulation of inositol phosphate production in pig choroid-plexus — A pharmacological characterization. Naunyn-Schmiedebergs Arch Pharmacol 339: 252–258

    PubMed  CAS  Google Scholar 

  105. Burns CM, Chu H, Rueter SM, Hutchinson LK, Canton H, Sanders Bush E, Emeson RB (1997) Regulation of serotonin-2C receptor G-protein coupling by RNA editing. Nature 387: 303–308

    Article  PubMed  CAS  Google Scholar 

  106. Fitzgerald LW, Iyer G, Conklin DS, Krause CM, Marshall A, Patterson JP, Tran DP, Jonak GJ, Hartig PR (1999) Messenger RNA editing of the human serotonin 5-HT2C receptor. Neuropsychopharmacology 21: S82–S90

    Google Scholar 

  107. Price RD, Weiner DM, Chang MSS, Sanders-Bush E (2001) RNA editing of the human serotonin 5-HT2C receptor alters receptor-mediated activation of G(13) protein. J Biol Chem 276: 44663–44668

    Article  PubMed  CAS  Google Scholar 

  108. Canton H, Emeson RB, Barker EL, Backstrom JR, Lu JT, Chang MS, Sanders Bush E (1996) Identification, molecular cloning, and distribution of a short variant of the 5-hydroxytryptamine(2C) receptor produced by alternative splicing. Mol Pharmacol 50: 799–807

    PubMed  CAS  Google Scholar 

  109. Berg KA, Cropper JD, Niswender CM, Sanders-Bush E, Emeson RB, Clarke WP (2001) RNA-editing of the 5-HT2C receptor alters agonist-receptor-effector coupling specificity. Br J Pharmacol 134: 386–392

    Article  PubMed  CAS  Google Scholar 

  110. Niswender CM, Copeland SC, Herrick-Davis K, Emeson RB, Sanders-Bush E (1999) RNA editing of the human serotonin 5-hydroxytryptamine 2C receptor silences constitutive activity. J Biol Chem 274: 9472–9478

    Article  PubMed  CAS  Google Scholar 

  111. Herrick-Davis K, Grinde E, Niswander CM (1999) Serotonin 5-HT2C receptor RNA editing alters receptor basal activity: Implications for serotonergic signal transduction. J Neurochem 73: 1711–1717

    Article  PubMed  CAS  Google Scholar 

  112. Herrick-Davis K, Grinde E, Teitler M (2000) Inverse agonist activity of atypical antipsychotic drugs at human 5-hydroxytryptamine2C receptors. J Pharmacol Exp Ther 295: 226–232

    PubMed  CAS  Google Scholar 

  113. Rauser L, Savage JE, Meltzer HY, Roth BL (2001) Inverse agonist actions of typical and atypical antipsychotic drugs at the human 5-hydroxytryptamine(2C) receptor. J Pharmacol Exp Ther 299: 83–89

    PubMed  CAS  Google Scholar 

  114. Lerer B, Macciardi F, Segman RH, Adolfsson R, Blackwood D, Blairy S, Del Favero J, Dikeos DG, Kaneva R, Lilli R et al (2001) ariability of 5-HT2C receptor cys23ser polymorphism among European populations and vulnerability to affective disorder. Mol Psychiatry 6: 579–585

    Article  PubMed  CAS  Google Scholar 

  115. Buckland PR, Hoogendoorn B, Guy CA, Smith SK, Coleman SL, O’Donovan MC (2005) Low gene expression conferred by association of an allele of the 5-HT2C receptor gene with antipsychotic-induced weight gain. Am J Psychiatry 162: 613–615

    Article  PubMed  Google Scholar 

  116. Hoyer D (1990) Serotonin 5-HT3, 5-HT4, and 5-HT-M receptors. Neuropsychopharmacology 3: 371–383

    PubMed  CAS  Google Scholar 

  117. Hoyer D, Martin GR (1995) Classification and nomenclature of 5-HT receptors: A comment on current Issues. Behav Brain Res 73: 263–268

    Article  CAS  Google Scholar 

  118. Boess FG, Beroukhim R, Martin IL (1995) Ultrastructure of the 5-hydroxytryptamine( 3) receptor. J Neurochem 64: 1401–1405

    Article  PubMed  CAS  Google Scholar 

  119. Maricq A, Peterson AS, Brake AJ, Myers RM, Julius D (1991) Primary structure and functional expression of the 5HT3 receptor, a serotonin-gated ion channel. Science 254: 432–437

    Article  PubMed  CAS  Google Scholar 

  120. Dubin AE, Huvar R, D’Andrea MR, Pyati J, Zhu JY, Joy KC, Wilson SJ, Galindo JE, Glass CA, Luo L et al (1999) The pharmacological and functional characteristics of the serotonin 5-HT3A receptor are specifically modified by a 5-MT3B receptor subunit. J Biol Chem 274: 30799–30810

    Article  PubMed  CAS  Google Scholar 

  121. Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17: 3157–3167

    PubMed  CAS  Google Scholar 

  122. Davies PA, Pistis M, Hanna MC, Peters JA, Lambert JJ, Hales TG, Kirkness EF (1999) The 5-HT3B subunit is a major determinant of serotonin-receptor function. Nature 397: 359–363

    Article  PubMed  CAS  Google Scholar 

  123. Brady CA, Stanford IM, Ali I, Lin L, Williams JM, Dubin AE, Hope AG, Barnes NM (2001) Pharmacological comparison of human homomeric 5-HT3A receptors versus heteromeric 5-HT3A/3B receptors. Neuropharmacology 41: 282–284

    Article  PubMed  CAS  Google Scholar 

  124. Brown AM, Hope AG, Lambert JJ, Peters JA (1998) Ion permeation and conduction in a human recombinant 5-HT3 receptor subunit (h5-HT3A). J Physiol (Lond) 507: 653–665

    Article  CAS  Google Scholar 

  125. Hapfelmeier G, Haseneder R, Lampadius K, Rammes G, Rupprecht R, Zieglgansberger W (2002) Cloned human and murine serotonin(3A) receptors expressed in human embryonic kidney 293 cells display different single-channel kinetics. Neurosci Lett 335: 44–48

    Article  PubMed  CAS  Google Scholar 

  126. Peters JA, Kelley S P, Dunlop JI, Kirkness EF, Hales TG, Lambert JJ (2004) The 5-hydroxytryptamine type 3 (5-HT3) receptor reveals a novel determinant of single-channel conductance. Biochem Soc Trans 32: 547–552.

    Article  PubMed  CAS  Google Scholar 

  127. Boyd GW, Low P, Dunlop JI, Robertson LA, Vardy A, Lambert JJ, Peters JA, Connolly CN (2002) Assembly and cell surface expression of homomeric and heteromeric 5-HT3 receptors: The role of oligomerization and chaperone proteins. Mol Cell Neurosci 21: 38–50

    Article  PubMed  CAS  Google Scholar 

  128. Hapfelmeier G, Tredt C, Haseneder R, Zieglgansberger W, Eisensamer B, Rupprecht R, Rammes G (2003) Co-expression of the 5-HT3B serotonin receptor subunit alters the biophysics of the 5-HT3 receptor. Biophys J 84: 1720–1733

    PubMed  CAS  Google Scholar 

  129. Fletcher S, Lindstrom JM, McKernan RM, Barnes NM (1998) Evidence that porcine native 5-HT3 receptors do not contain nicotinic acetylcholine receptor subunits. Neuropharmacology 37: 397–399

    Article  PubMed  CAS  Google Scholar 

  130. Fletcher S, Barnes NM (1998) Desperately seeking subunits: are native 5-HT3 receptors really homomeric complexes? Trends Pharmacol Sci 19: 212–215

    Article  PubMed  CAS  Google Scholar 

  131. Hanna MC, Davies PA, Hales TG, Kirkness EF (2000) Evidence for expression of heteromeric serotonin 5-HT3 receptors in rodents. J Neurochem 75: 240–247

    Article  PubMed  CAS  Google Scholar 

  132. Monk SA, Desai K, Brady CA, Williams JM, Lin L, Princivalle A, Hope AG, Barnes NM (2001) Generation of a selective 5-HT3B subunit-recognising polyclonal antibody; identification of immunoreactive cells in rat hippocampus. Neuropharmacology 41: 1013–1016

    Article  PubMed  CAS  Google Scholar 

  133. Morales M, McCollum N, Kirkness EF (2001) 5-HT3-receptor subunits A and B are co-expressed in neurons of the dorsal root ganglion. J Comp Neurol 438: 163–172

    Article  PubMed  CAS  Google Scholar 

  134. Morales M, Wang SD (2002) Differential composition of 5-hydroxytryptamine(3) receptors synthesized in the rat CNS and peripheral nervous system. J Neurosci 22: 6732–6741

    PubMed  CAS  Google Scholar 

  135. Stewart A, Davies PA, Kirkness EF, Safa P, Hales TG (2003) Introduction of the 5-HT3B subunit alters the functional properties of 5-HT3 receptors native to neuroblastoma cells. Neuropharmacology 44: 214–223

    Article  PubMed  CAS  Google Scholar 

  136. van Hooft JA, Yakel JL (2003) 5-HT3 receptors in the CNS: 3B or not 3B? Trends Pharmacol Sci 24: 157–160

    Article  PubMed  CAS  Google Scholar 

  137. Dubin AE, Erlander MG, Huvar A, Huvar R, Buehler LK (2001) Protein and cDNA sequences of a human subunit 5-HT 3C of the 5-HT 3 serotonin receptor and uses thereof. PCT Int Appl pp. 80, CODEN: PIXXD2 WO 2001016297

    Google Scholar 

  138. Niesler B, Frank B, Kapeller J, Rappold GA (2003) Cloning, physical mapping and expression analysis of the human 5-HT3 serotonin receptor-like genes HTR3C, HTR3D and HTR3E. Gene 310: 101–111

    Article  PubMed  CAS  Google Scholar 

  139. Dumuis A, Bouhelal R, Sebben M, Cory R, Bockaert J (1988) A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate-cyclase in the central nervous-system. Mol Pharmacol 34: 880–887

    PubMed  CAS  Google Scholar 

  140. Bockaert J, Sebben M, Dumuis A (1990) Pharmacological characterization of 5-hydroxytryptamine4(5-HT4) receptors positively coupled to adenylate-cyclase in adult guinea-pig hippocampal membranes — Effect of substituted benzamide derivatives. Mol Pharmacol 37: 408–411

    PubMed  CAS  Google Scholar 

  141. Ford A, Baxter GS, Eglen RM, Clarke DE (1992) 5-Hydroxytryptamine stimulates cyclic-amp formation in the tunica muscularis mucosae of the rat esophagus via 5-HT(4) receptors. Eur J Pharmacol 211: 117–120

    Article  PubMed  CAS  Google Scholar 

  142. Kaumann AJ, Sanders L, Brown AM, Murray KJ, Brown MJ (1990) A 5-hydroxytryptamine receptor in human atrium. Br J Pharmacol 100: 879–885

    PubMed  CAS  Google Scholar 

  143. Fillion G, Rousselle JC, Beaudoin D, Pradelles P, Goiny M, Dray F, Jacob J (1979) Serotonin sensitive adenylate-cyclase in horse brain synaptosomal membranes. Life Sciences 24:1813–1821

    Article  PubMed  CAS  Google Scholar 

  144. Gerald C, Adham N, Kao HT, Olsen MA, Laz TM, Schechter LE, Bard JA, Vaysse PJJ, Hartig PR, Branchek TA et al (1995) The 5-HT4 receptor — molecular-cloning and pharmacological characterization of 2 splice variants. EMBO J 14: 2806–2815

    PubMed  CAS  Google Scholar 

  145. Adham N, Gerald C, Schechter L, Vaysse P, Weinshank R, Branchek T (1996) [3H]5-Hydroxytryptamine labels the agonist high affinity state of the cloned rat 5-HT4 receptor. Eur J Pharmacol 304: 231–235

    Article  PubMed  CAS  Google Scholar 

  146. Bockaert J, Claeysen S, Sebben M, Dumuis A (1998) 5-HT4 receptors: Gene, transduction and effects on olfactory memory. Ann N Y Acad Sci 861: 1–15

    Article  PubMed  CAS  Google Scholar 

  147. Bach T, Syversveen T, Kvingedal AM, Krobert KA, Brattelid T, Kaumann AJ, Levy FO (2001) 5-HT4(a) and 5-HT4(b) receptors have nearly identical pharmacology and are both expressed in human atrium and ventricle. Naunyn-Schmiedebergs Arch Pharmacol 363: 146–160

    Article  PubMed  CAS  Google Scholar 

  148. Claeysen S, Sebben M, Journot L, Bockaert J, Dumuis A (1996) Cloning, expression and pharmacology of the mouse 5-HT4L receptor. FEBS Lett 398: 19–25

    Article  PubMed  CAS  Google Scholar 

  149. Claeysen S, Faye P, Sebben M, Taviaux S, Bockaert J, Dumuis A (1998) 5-HT4 receptors: Cloning and expression of new splice variants. Ann N Y Acad Sci 861:49–56

    Article  PubMed  CAS  Google Scholar 

  150. Blondel O, Vandecasteele G, Gastineau M, Leclerc S, Dahmoune Y, Langlois M, Fischmeister R (1997) Molecular and functional characterization of a 5-HT4 receptor cloned from human atrium. FEBS Lett 412: 465–474

    Article  PubMed  CAS  Google Scholar 

  151. Van den Wyngaert I, Gommeren W, Verhasselt P, Jurzak M, Leysen J, Luyten W, Bender E (1997) Cloning and expression of a human serotonin 5-HT4 receptor cDNA. J Neurochem 69: 1810–1819

    PubMed  Google Scholar 

  152. Blondel O, Gastineau M, Dahmoune Y, Langlois M, Fischmeister R (1998) Cloning, expression, and pharmacology of four human 5-hydroxytryptamine(4) receptor isoforms produced by alternative splicing in the carboxyl terminus. J Neurochem 70: 2252–2261

    PubMed  CAS  Google Scholar 

  153. Mialet J, Berque-Bestel I, Sicsic S, Langlois M, Fischmeister R, Lezoualc’h F (2000) Pharmacological characterization of the human 5-HT4(d) receptor splice variant stably expressed in Chinese hamster ovary cells. Br J Pharmacol 131: 827–835

    Article  PubMed  CAS  Google Scholar 

  154. Mialet J, Berque-Bestel I, Eftekhari P, Gastineau M, Giner M, Dahmoune Y, Donzeau-Gouge P, Hoebeke J, Langlois M, Sicsic S et al (2000) Isolation of the serotoninergic 5-HT4(e) receptor from human heart and comparative analysis of its pharmacological profile in C6-glial and CHO cell lines. Br J Pharmacol 129: 771–781

    Article  PubMed  CAS  Google Scholar 

  155. Bender E, Pindon A, van Oers I, Zhang YB, Gommeren W, Verhasselt P, Jurzak M, Leysen J, Luyten W (2000) Structure of the human serotonin 5-HT4 receptor gene and cloning of a novel 5-HT4 splice variant. J Neurochem 74: 478–489

    Article  PubMed  CAS  Google Scholar 

  156. Medhurst AD, Lezoualc’h F, Fischmeister R, Middlemiss DN, Sanger GJ (2001) Quantitative mRNA analysis of five C-terminal splice variants of the human 5-HT4 receptor in the central nervous system by TaqMan real time RT-PCR. Mol Brain Res 90: 125–134

    Article  PubMed  CAS  Google Scholar 

  157. Claeysen S, Sebben M, Becamel C, Bockaert J, Dumuis A (1999) Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: Role of the C-terminal intracellular domain. Mol Pharmacol 55: 910–920

    PubMed  CAS  Google Scholar 

  158. Vilaro MT, Domenech T, Palacios JM, Mengod G (2002) Cloning and characterization of a novel human 5-HT4 receptor variant that lacks the alternatively spliced carboxy terminal exon. RT-PCR distribution in human brain and periphery of multiple 5-HT4 receptor variants. Neuropharmacology 42: 60–73

    Article  PubMed  CAS  Google Scholar 

  159. Brattelid T, Kvingedal AM, Krobert KA, Andressen KW, Bach T, Hystad ME, Kaumann AJ, Levy FO (2004) Cloning, pharmacological characterisation and tissue distribution of a novel 5-HT4 receptor splice variant, 5-HT4(i). Naunyn-Schmiedebergs Arch Pharmacol 369: 616–628

    Article  PubMed  CAS  Google Scholar 

  160. Ouadid H, Seguin J, Dumuis A, Bockaert J, Nargeot J (1992) Serotonin increases calcium current in human atrial myocytes via the newly described 5-hydroxytryptamine4 receptors. Mol Pharmacol 41: 346–351

    PubMed  CAS  Google Scholar 

  161. Bockaert J, Fozard JR, Dumuis A, Clarke DE (1992) The 5-HT4 receptor — A place in the sun. Trends Pharmacol Sci 13: 141–145

    Article  PubMed  CAS  Google Scholar 

  162. Claeysen S, Sebben M, Becamel C, Parmentier ML, Dumuis A, Bockaert J (2001) Constitutively active mutants of 5-HT4 receptors are they in unique active states? EMBO Rep 2: 61–67

    Article  PubMed  CAS  Google Scholar 

  163. Erlander MG, Lovenberg TW, Baron BM, Delecea L, Danielson PE, Racke M, Slone AL, Siegel BW, Foye PE, Cannon K et al (1993) Two members of a distinct subfamily of 5-hydroxytryptamine receptors differentially expressed in rat brain. Proc Natl Acad Sci USA 90: 3452–3456

    Article  PubMed  CAS  Google Scholar 

  164. Matthes H, Boschert U, Amlaiky N, Grailhe R, Plassat JL, Muscatelli F, Mattei MG, Hen R (1993) Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new family of serotonin receptors — Cloning, functional expression, and chromosomal localization. Mol Pharmacol 43: 313–319

    PubMed  CAS  Google Scholar 

  165. Schanen NC, Scherer SW, Tsui LC, Francke U (1996) Assignment of the 5-hydroxytryptamine (serotonin) receptor 5A gene (HTR5A) to human chromosome band 7q36.1. Cytogenet Cell Genet 72: 187–188

    Article  PubMed  CAS  Google Scholar 

  166. Grailhe R, Grabtree GW, Hen R (2001) Human 5-HT5 receptors: the 5-HT5A receptor is functional but the 5-HT5B receptor was lost during mammalian evolution. Eur J Pharmacol 418: 157–167

    Article  PubMed  CAS  Google Scholar 

  167. Kohen R, Metcalf MA, Khan N, Druck T, Huebner K, Lachowicz JE, Meltzer HY, Sibley DR, Roth BL, Hamblin MW (1996) Cloning, characterization, and chromosomal localization of a human 5-HT6 serotonin receptor. J Neurochem 66: 47–56

    PubMed  CAS  Google Scholar 

  168. Sebben M, Ansanay H, Bockaert J, Dumuis A (1994) 5-HT6 receptors positively coupled to adenylyl-cyclase in striatal neurons in culture. Neuroreport 5: 2553–2557

    Article  PubMed  CAS  Google Scholar 

  169. Hirst WD, Minton JAL, Bromidge SM, Moss SF, Latter AJ, Riley G, Routledge C, Middlemiss DN, Price GW (2000) Characterization of [125I]-SB-258585 binding to human recombinant and native 5-HT6 receptors in rat, pig and human brain tissue. Br J Pharmacol 130: 1597–1605

    Article  PubMed  CAS  Google Scholar 

  170. To ZP, Bonhaus DW, Eglen RM, Jakeman LB (1995) Characterization and distribution of putative 5-HT(7) receptors in guinea-pig brain. Br J Pharmacol 115: 107–116

    PubMed  CAS  Google Scholar 

  171. Bard JA, Zgombick J, Adham N, Vaysse P, Branchek TA, Weinshank RL (1993) Cloning of a novel human serotonin receptor (5-HT7) positively linked to adenylate-cyclase. J Biol Chem 268: 23422–23426

    PubMed  CAS  Google Scholar 

  172. Lovenberg TW, Baron BM, Delecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW et al (1993) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) Implicated in the regulation of mammalian circadian-rhythms. Neuron 11: 449–458

    Article  PubMed  CAS  Google Scholar 

  173. Adham N, Zgombick JM, Bard J, Branchek TA (1998) Functional characterization of the recombinant human 5-hydroxytryptamine7(a) receptor isoform coupled to adenylate cyclase stimulation. J Pharmacol Exp Ther 287: 508–514

    PubMed  CAS  Google Scholar 

  174. Errico H, Crozier RA, Plummer MR, Cowen DS (2001) 5-HT7 receptors activate the mitogen activated protein kinase extracellular signal related kinase in cultured rat hippocampal neurons. Neuroscience 102: 361–367

    Article  PubMed  CAS  Google Scholar 

  175. Shen Y, Monsma FJ, Metcalf MA, Jose PA, Hamblin MW, Sibley DR (1993) Molecular-cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J Biol Chem 268: 18200–18204

    PubMed  CAS  Google Scholar 

  176. Ruat M, Traiffort E, Leurs R, Tardivellacombe J, Diaz J, Arrang JM, Schwartz JC (1993) Molecular-cloning, characterization, and localization of a high-affinity serotonin receptor (5-HT7) activating camp formation. Proc Natl Acad Sci USA 90: 8547–8551

    Article  PubMed  CAS  Google Scholar 

  177. Heidmann DEA, Metcalf MA, Kohen R, Hamblin MW (1997) Four 5-hydroxytryptamine(7) (5-HT7) receptor isoforms in human and rat produced by alternative splicing: Species differences due to altered intron-exon organization. J Neurochem 68: 1372–1381

    Article  PubMed  CAS  Google Scholar 

  178. Heidmann DEA, Szot P, Kohen R, Hamblin MW (1998) Function and distribution of three rat 5-hydroxytryptamine(7) (5-HT7) receptor isoforms produced by alternative splicing. Neuropharmacology 37: 1621–1632

    Article  PubMed  CAS  Google Scholar 

  179. Jasper JR, Kosaka A, To ZP, Chang DJ, Eglen RM (1997) Cloning, expression and pharmacology of a truncated splice variant of the human 5-HT7 receptor (h5-HT7(b)). Br J Pharmacol 122: 126–132

    Article  PubMed  CAS  Google Scholar 

  180. Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152

    Article  PubMed  CAS  Google Scholar 

  181. Martin GR, Humphrey PPA (1994) Receptors for 5-hydroxytryptamine — Current perspectives on classification and nomenclature. Neuropharmacology 33: 261–273

    Article  PubMed  CAS  Google Scholar 

  182. Thomas DR, Atkinson PJ, Ho M, Bromidge SM, Lovell PJ, Villani AJ, Hagan JJ, Middlemiss DN, Price GW (2000) [3H]-SB-269970 — A selective antagonist radioligand for 5-HT7 receptors. Br J Pharmacol 130: 409–417

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Hannon, J., Hoyer, D. (2008). Molecular biology of 5-HT receptors. In: Monti, J.M., Pandi-Perumal, S.R., Jacobs, B.L., Nutt, D.J. (eds) Serotonin and Sleep: Molecular, Functional and Clinical Aspects. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8561-3_6

Download citation

Publish with us

Policies and ethics