Advertisement

Localization of 5-HT receptors in the mammalian cortex

  • Noemí Santana
  • Julián de Almeida
  • Guadalupe Mengod
  • Francesc Artigas

Abstract

Serotonergic neurons located in the dorsal and median raphe nuclei innervate the whole neuraxis and are critically involved in a large number of physiological functions, including sleep. Derangements of the serotonergic system are suspected in several psychiatric disorders, including mood and anxiety disorders. A large body of data supports a prominent role of dopamine in cortical function. However, much less is known on the role of serotonin (5-HT) in the neocortex, despite a very dense serotonergic innervation of some areas, such as the frontal lobe. Among other 5-HT receptors, this area contains a high density of 5-HT1A and 5-HT2A receptors in the rodent, primate and human brains. Using double in situ hybridization, we reported on the presence of both receptor subtypes in a high proportion of pyramidal neurons and a smaller, yet significant proportion of GABAergic neurons. These data indicate that 5-HT can modulate the activity of cortical networks in a number of ways, including the activation of receptors on projection pyramidal neurons and on local inhibitory interneurons.

Keywords

Prefrontal Cortex Pyramidal Neuron Receptor mRNA Raphe Nucleus Dorsal Raphe Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71: 533–554PubMedGoogle Scholar
  2. 2.
    Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152PubMedGoogle Scholar
  3. 3.
    Adell A, Celada P, Abellan MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Brain Res Rev 39: 154–180PubMedGoogle Scholar
  4. 4.
    Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 165–229PubMedGoogle Scholar
  5. 5.
    Clarke HF, Dalley JW, Crofts HS, Robbins TW, Roberts AC (2004) Cognitive inflexibility after prefrontal serotonin depletion. Science 304: 878–880PubMedGoogle Scholar
  6. 6.
    Williams GV, Goldman-Rakic PS (1995) Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 376: 572–575PubMedGoogle Scholar
  7. 7.
    Williams GV, Rao SG, Goldman-Rakic PS (2002) The physiological role of 5-HT2A receptors in working memory. J Neurosci 22: 2843–2854PubMedGoogle Scholar
  8. 8.
    de Quervain DJ, Henke K, Aerni A, Coluccia D, Wollmer MA, Hock C, Nitsch RM, Papassotiropoulos A (2003) A functional genetic variation of the 5-HT2a receptor affects human memory. Nat Neurosci 6: 1141–1142PubMedGoogle Scholar
  9. 9.
    De Vry J (1995) 5-HT1A receptor agonists: recent developments and controversial issues. Psychopharmacology (Berl) 121: 1–26Google Scholar
  10. 10.
    Mello e Souza, Rodrigues C, Souza MM, Vinade E, Coitinho A, Choi H, Izquierdo I (2001) Involvement of the serotonergic type 1A (5-HT1A) receptor in the agranular insular cortex in the consolidation of memory for inhibitory avoidance in rats. Behav Pharmacol 12: 349–353Google Scholar
  11. 11.
    Harder JA, Ridley RM (2000) The 5-HT1A antagonist, WAY 100635, alleviates cognitive impairments induced by dizocilpine (MK-801) in monkeys. Neuropharmacology 39: 547–552PubMedGoogle Scholar
  12. 12.
    Misane I, Ogren SO (2003) Selective 5-HT1A antagonists WAY 100635 and NAD-299 attenuate the impairment of passive avoidance caused by scopolamine in the rat. Neuropsychopharmacology 28: 253–264PubMedGoogle Scholar
  13. 13.
    Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X, el Mestikawy S, Hamon M, Descarries L (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 417: 181–194PubMedGoogle Scholar
  14. 14.
    Pazos A, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346: 205–230PubMedGoogle Scholar
  15. 15.
    Pompeiano M, Palacios JM, Mengod G (1992) Distribution and cellular localization of mRNA coding for 5-HT1A receptor in the rat brain: correlation with receptor binding. J Neurosci 12: 440–453PubMedGoogle Scholar
  16. 16.
    Chalmers DT, Watson SJ (1991) Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain — A combined in situ hybridisation/in vitro receptor autoradiographic study. Brain Res 561: 51–60PubMedGoogle Scholar
  17. 17.
    Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikstrom H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]way-100635. Brain Res 745: 96–108PubMedGoogle Scholar
  18. 18.
    Varnas K, Halldin C, Hall H (2004) Autoradiographic distribution of serotonin transporters and receptor subtypes in human brain. Hum Brain Mapp 22: 246–260PubMedGoogle Scholar
  19. 19.
    Marcinkiewicz M, Vergé D, Gozlan H, Pichat L, Hamon M (1984) Autoradiographic evidence for the heterogeneity of 5-HT1 sites in the rat brain. Brain Res 291: 159–163PubMedGoogle Scholar
  20. 20.
    Mengod G, Vilaró MT, Raurich A, López-Giménez JF, Cortés R, Palacios JM (1996) 5-HT receptors in mammalian brain: receptor autoradiography and in situ hybridization studies of new ligands and newly identified receptors. Histochem J 28: 747–758PubMedGoogle Scholar
  21. 21.
    Palacios JM, Pazos A, Hoyer D (1987) Characterization and mapping of 5-HT1A sites in the brain of animals and man. In: CT Dourish, S Ahlenius, PH Hutson (eds): Brain 5-HT1A Receptors. Ellis Horwood and VCH, Chichester, 67–81Google Scholar
  22. 22.
    Hoyer D, Pazos A, Probst A, Palacios JM (1986) Serotonin receptors in the human brain. I. Characterization and autoradiographic localization of 5-HT1A recognition sites. Apparent absence of 5-HT1B recognition sites. Brain Res 376: 85–96PubMedGoogle Scholar
  23. 23.
    Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain. III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21: 97–122PubMedGoogle Scholar
  24. 24.
    Zhou FC, Patel TD, Swartz D, Xu Y, Kelley MR (1999) Production and characterization of an anti-serotonin 1A receptor antibody which detects functional 5-HT1A binding sites. Brain Res Mol Brain Res 69: 186–201PubMedGoogle Scholar
  25. 25.
    Sotelo C, Cholley B, el Mestikawy S, Gozlan H, Hamon M (1990) Direct immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur J Neurosci 2: 1144–1154PubMedGoogle Scholar
  26. 26.
    el Mestikawy S, Riad M, Laporte AM, Verge D, Daval G, Gozlan H, Hamon M (1990) Production of specific anti-rat 5-HT1A receptor antibodies in rabbits injected with a synthetic peptide. Neurosci Lett 118: 189–192PubMedGoogle Scholar
  27. 27.
    Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM (2003) The 5-HT1A serotonin receptor is located on calbindin-and parvalbumin-containing neurons in the rat brain. Brain Res 959: 58–67PubMedGoogle Scholar
  28. 28.
    Azmitia EC, Gannon PJ, Kheck NM, Whitaker-Azmitia PM (1996) Cellular localization of the 5-HT1A receptor in primate brain neurons and glial cells. Neuropsychopharmacology 14: 35–46PubMedGoogle Scholar
  29. 29.
    Kirby LG, Pernar L, Valentino RJ, Beck SG (2003) Distinguishing characteristics of serotonin and non-serotonin-containing cells in the dorsal raphe nucleus: electrophysiological and immunohistochemical studies. Neuroscience 116: 669–683PubMedGoogle Scholar
  30. 30.
    Santana N, Bortolozzi A, Serrats J, Mengod G, Artigas F (2004) Expression of serotonin1A and serotonin2A receptors in pyramidal and GABAergic neurons of the rat prefrontal cortex. Cereb Cortex 14: 1100–1109PubMedGoogle Scholar
  31. 31.
    Burnet PW, Eastwood SL, Lacey K, Harrison PJ (1995) The distribution of 5-HT1A and 5-HT2A receptor mRNA in human brain. Brain Res 676: 157–168PubMedGoogle Scholar
  32. 32.
    Pasqualetti M, Nardi I, Ladinsky H, Marazziti D, Cassano GB (1996) Comparative anatomical distribution of serotonin 1A, 1D alpha and 2A receptor mRNAs in human brain postmortem. Mol Brain Res 39: 223–233PubMedGoogle Scholar
  33. 33.
    Austin MC, Weikel JA, Arango V, Mann JJ (1994) Localization of serotonin 5-HT1A receptor mRNA in neurons of the human brainstem. Synapse 18: 276–279PubMedGoogle Scholar
  34. 34.
    Pazos A, Cortés R, Palacios JM (1985) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346: 231–249PubMedGoogle Scholar
  35. 35.
    Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Mol Brain Res 23: 163–178PubMedGoogle Scholar
  36. 36.
    Martinez D, Hwang D, Mawlawi O, Slifstein M, Kent J, Simpson N, Parsey RV, Hashimoto T, Huang Y, Shinn A et al (2001) Differential occupancy of somatodendritic and postsynaptic 5HT(1A) receptors by pindolol: a dose-occupancy study with [11C]WAY 100635 and positron emission tomography in humans. Neuropsychopharmacology 24: 209–229PubMedGoogle Scholar
  37. 37.
    Leysen JE, Niemegeers CJ, Van Nueten JM, Laduron PM (1982) [3H]Ketanserin (R41 468), a selective 3H-ligand for serotonin2 receptor binding sites. Binding properties, brain distribution, and functional role. Mol Pharmacol 21: 301–314PubMedGoogle Scholar
  38. 38.
    Schotte A, Leysen JE (1989) Identification of 5-HT2 receptors, alpha 1-adrenoceptors and amine release sites in rat brain by autoradiography with [125I]7-amino-8-iodo-ketanserin. Eur J Pharmacol 172: 99–106PubMedGoogle Scholar
  39. 39.
    Lyon RA, Davis KH, Titeler M (1987) 3H-DOB (4-bromo-2,5-dimethoxyphenylisopropylamine) labels a guanyl nucleotide-sensitive state of cortical 5-HT2 receptors. Mol Pharmacol 31: 194–199PubMedGoogle Scholar
  40. 40.
    Pazos A, Probst A, Palacios JM (1987) Serotonin receptors in the human brain. IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21: 123–139PubMedGoogle Scholar
  41. 41.
    Palacios JM, Niehoff DL, Kuhar MJ (1981) [3H]Spiperone binding sites in brain: autoradiographic localization of multiple receptors. Brain Res 213: 277–289PubMedGoogle Scholar
  42. 42.
    McKenna DJ, Mathis CA, Shulgin AT, Sargent T, Saavedra JM (1987) Autoradiographic localization of binding sites for 125I-DOI, a new psychotomimetic radioligand, in the rat brain. Eur J Pharmacol 137: 289–290PubMedGoogle Scholar
  43. 43.
    Teitler M, Leonhardt S, Weisberg EL, Hoffman BJ (1990) 4-[125I]iodo-(2,5-dimethox y)phenylisopropylamine and [3H]ketanserin labeling of 5-hydroxytryptamine2 (5HT2) receptors in mammalian cells transfected with a rat 5HT2 cDNA: evidence for multiple states and not multiple 5HT2 receptor subtypes. Mol Pharmacol 38: 594–598PubMedGoogle Scholar
  44. 44.
    Malgouris C, Flamand F, Doble A (1993) Autoradiographic studies of RP 62203, a potent 5-HT2 receptor antagonist. In vitro and ex vivo selectivity profile. Eur J Pharmacol 233: 29–35PubMedGoogle Scholar
  45. 45.
    Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid die ethylamide and [3H]spiroperidol. Mol Pharmacol 16: 687–699PubMedGoogle Scholar
  46. 46.
    Johnson MP, Siegel BW, Carr AA (1996) [3H]MDL 100,907: a novel selective 5-HT2A receptor ligand. Naunyn Schmiedebergs Arch Pharmacol 354: 205–209PubMedGoogle Scholar
  47. 47.
    Kehne JH, Baron BM, Carr AA, Chaney SF, Elands J, Feldman DJ, Frank RA, van Giersbergen PL, McCloskey TC, Johnson MP et al (1996) Preclinical characterization of the potential of the putative atypical antipsychotic MDL 100,907 as a potent 5-HT2A antagonist with a favorable CNS safety profile. J Pharmacol Exp Ther 277: 968–981PubMedGoogle Scholar
  48. 48.
    Hall H, Farde L, Halldin C, Lundkvist C, Sedvall G (2000) Autoradiographic localization of 5-HT(2A) receptors in the human brain using [(3)H]M100907 and [(11)C]M100907. Synapse 38: 421–431PubMedGoogle Scholar
  49. 49.
    López-Giménez JF, Vilaró MT, Palacios JM, Mengod G (1998) [3H]MDL 100,907 labels 5-HT2A serotonin receptors selectively in primate brain. Neuropharmacology 37: 1147–1158PubMedGoogle Scholar
  50. 50.
    López-Giménez JF, Mengod G, Palacios JM, Vilaró MT (1997) Selective visualization of rat brain 5-HT2A receptors by autoradiography with [3H]MDL 100,907. Naunyn Schmiedebergs Arch Pharmacol 356: 446–454PubMedGoogle Scholar
  51. 51.
    López-Giménez JF, Vilaró MT, Palacios JM, Mengod G (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429: 571–589PubMedGoogle Scholar
  52. 52.
    Blue ME, Yagaloff KA, Mamounas LA, Hartig PR, Molliver ME (1988) Correspondence between 5-HT2 receptors and serotonergic axons in rat neocortex. Brain Res 453: 315–328PubMedGoogle Scholar
  53. 53.
    Morilak DA, Garlow SJ, Ciaranello RD (1993) Immunocytochemical localization and description of neurons expressing serotonin2 receptors in the rat brain. Neuroscience 54: 701–717PubMedGoogle Scholar
  54. 54.
    Willins DL, Deutch AY, Roth BL (1997) Serotonin 5-HT2A receptors are expressed on pyramidal cells and interneurons in the rat cortex. Synapse 27: 79–82PubMedGoogle Scholar
  55. 55.
    Hamada S, Senzaki K, Hamaguchi-Hamada K, Tabuchi K, Yamamoto H, Yamamoto T, Yoshikawa S, Okano H, Okado N (1998) Localization of 5-HT2A receptor in rat cerebral cortex and olfactory system revealed by immunohistochemistry using two antibodies raised in rabbit and chicken. Mol Brain Res 54: 199–211PubMedGoogle Scholar
  56. 56.
    Cornea-Hebert V, Riad M, Wu C, Singh SK, Descarries L (1999) Cellular and subcellular distribution of the serotonin 5-HT2A receptor in the central nervous system of adult rat. J Comp Neurol 409: 187–209PubMedGoogle Scholar
  57. 57.
    Jakab RL, Goldman-Rakic PS (1998) 5-Hydroxytryptamine2A serotonin receptors in the primate cerebral cortex: possible site of action of hallucinogenic and antipsychotic drugs in pyramidal cell apical dendrites. Proc Natl Acad Sci USA 95: 735–740PubMedGoogle Scholar
  58. 58.
    Nocjar C, Roth BL, Pehek EA (2002) Localization of 5-HT(2A) receptors on dopamine cells in subnuclei of the midbrain A10 cell group. Neuroscience 111: 163–176PubMedGoogle Scholar
  59. 59.
    Ikemoto K, Nishimura A, Okado N, Mikuni M, Nishi K, Nagatsu I (2000) Human midbrain dopamine neurons express serotonin 2A receptor: an immunohistochemical demonstration. Brain Res 853: 377–380PubMedGoogle Scholar
  60. 60.
    Mengod G, Pompeiano M, Martinez-Mir MI, Palacios JM (1990) Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites. Brain Res 524: 139–143PubMedGoogle Scholar
  61. 61.
    Wright DE, Seroogy KB, Lundgren KH, Davis BM, Jennes L (1995) Comparative localization of serotonin1A, 1C, and 2 receptor subtype mRNAs in rat brain. J Comp Neurol 351: 357–373PubMedGoogle Scholar
  62. 62.
    Gundlah C, Pecins-Thompson M, Schutzer WE, Bethea CL (1999) Ovarian steroid effects on serotonin 1A, 2A and 2C receptor mRNA in macaque hypothalamus. Mol Brain Res 63: 325–339PubMedGoogle Scholar
  63. 63.
    Mijnster MJ, Raimundo AG, Koskuba K, Klop H, Docter GJ, Groenewegen HJ, Voorn P (1997) Regional and cellular distribution of serotonin 5-hydroxytryptamine2a receptor mRNA in the nucleus accumbens, olfactory tubercle, and caudate putamen of the rat. J Comp Neurol 389: 1–11PubMedGoogle Scholar
  64. 64.
    de Almeida J, Mengod G (2007) Quantitative analysis of glutamatergic and GABAergic neurons expressing 5-HT(2A) receptors in human and monkey prefrontal cortex. J Neurochem 103: 475–486PubMedGoogle Scholar
  65. 65.
    Amargós-Bosch M, Bortolozzi A, Puig MV, Serrats J, Adell A, Celada P, Toth M, Mengod G, Artigas F (2004) Co-expression and in vivo interaction of serotonin1A and serotonin2A receptors in pyramidal neurons of prefrontal cortex. Cereb Cortex 14: 281–299PubMedGoogle Scholar
  66. 66.
    Puig MV, Artigas F, Celada P (2005) Modulation of the activity of pyramidal neurons in rat prefrontal cortex by raphe stimulation in vivo: involvement of serotonin and GABA. Cereb Cortex 15: 1–14PubMedGoogle Scholar
  67. 67.
    Jakab RL, Goldman-Rakic PS (2000) Segregation of serotonin 5-HT2A and 5-HT3 receptors in inhibitory circuits of the primate cerebral cortex. J Comp Neurol 417: 337–348PubMedGoogle Scholar
  68. 68.
    Jansson A, Tinner B, Bancila M, Verge D, Steinbusch HW, Agnati LF, Fuxe K (2001) Relationships of 5-hydroxytryptamine immunoreactive terminal-like varicosities to 5-hydroxytryptamine-2A receptor-immunoreactive neuronal processes in the rat forebrain. J Chem Neuroanat 22: 185–203PubMedGoogle Scholar
  69. 69.
    Martin-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21: 9856–9866PubMedGoogle Scholar
  70. 70.
    Kia HK, Brisorgueil MJ, Hamon M, Calas A, Verge D (1996) Ultrastructural localization of 5-hydroxytryptamine1A receptors in the rat brain. J Neurosci Res 46: 697–708PubMedGoogle Scholar
  71. 71.
    DeFelipe J, Arellano JI, Gomez A, Azmitia EC, Munoz A (2001) Pyramidal cell axons show a local specialization for GABA and 5-HT inputs in monkey and human cerebral cortex. J Comp Neurol 433: 148–155PubMedGoogle Scholar
  72. 72.
    Czyrak A, Czepiel K, Mackowiak M, Chocyk A, Wedzony K (2003) Serotonin 5-HT1A receptors might control the output of cortical glutamatergic neurons in rat cingulate cortex. Brain Res 989: 42–51PubMedGoogle Scholar
  73. 73.
    Cruz DA, Eggan SM, Azmitia EC, Lewis DA (2004) Serotonin1A receptors at the axon initial segment of prefrontal pyramidal neurons in schizophrenia. Am J Psychiatry 161: 739–742PubMedGoogle Scholar
  74. 74.
    Aghajanian GK, Marek GJ (1997) Serotonin induces excitatory postsynaptic potentials in apical dendrites of neocortical pyramidal cells. Neuropharmacology 36: 589–599PubMedGoogle Scholar
  75. 75.
    Puig MV, Celada P, Diaz-Mataix L, Artigas F (2003) In vivo modulation of the activity of pyramidal neurons in the rat medial prefrontal cortex by 5-HT2A receptors: relationship to thalamocortical afferents. Cereb Cortex 13: 870–882PubMedGoogle Scholar
  76. 76.
    Koek W, Jackson A, Colpaert FC (1992) Behavioral pharmacology of antagonists at 5-HT2/5-HT1C receptors. Neurosci Biobehav Rev 16: 95–105PubMedGoogle Scholar
  77. 77.
    Bruinvels AT, Landwehrmeyer B, Gustafson EL, Durkin MM, Mengod G, Branchek TA, Hoyer D, Palacios JM (1994) Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33: 367–386PubMedGoogle Scholar
  78. 78.
    Bruinvels AT, Palacios JM, Hoyer D (1993) Autoradiographic characterisation and localisation of 5-HT1D compared to 5-HT1B binding sites in rat brain. Naunyn Schmiedebergs Arch Pharmacol 347: 569–582PubMedGoogle Scholar
  79. 79.
    Waeber C, Dietl MM, Hoyer D, Probst A, Palacios JM (1988) isualization of a novel serotonin recognition site (5-HT1D) in the human brain by autoradiography. Neurosci Lett 88: 11–16PubMedGoogle Scholar
  80. 80.
    Barone P, Jordan D, Atger F, Kopp N, Fillion G (1994) Quantitative autoradiography of 5-HT1D and 5-HT1E binding sites labelled by [3H]5-HT, in frontal cortex and the hippocampal region of the human brain. Brain Res 638: 85–94PubMedGoogle Scholar
  81. 81.
    Bonaventure P, Schotte A, Cras P, Leysen JE (1997) Autoradiographic mapping of 5-HT1B and 5-HT1D receptors in human brain using 3H-alniditan, a new radioligand. Receptors Channels 5: 225–230PubMedGoogle Scholar
  82. 82.
    Castro ME, Pascual J, Romon T, del Arco C, del Olmo E, Pazos A (1997) Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brainstem and spinal cord. Neuropharmacology 36: 535–542PubMedGoogle Scholar
  83. 83.
    Pascual J, del Arco C, Romon T, del Olmo E, Pazos A (1996) [3H]Sumatriptan binding sites in human brain: regional-dependent labelling of 5-HT1D and 5-HT1F receptors. Eur J Pharmacol 295: 271–274PubMedGoogle Scholar
  84. 84.
    Varnas K, Hall H, Bonaventure P, Sedvall G (2001) Autoradiographic mapping of 5-HT(1B) and 5-HT(1D) receptors in the post mortem human brain using [(3)H]GR 125743. Brain Res 915: 47–57PubMedGoogle Scholar
  85. 85.
    Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Verge D (1999) Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88: 899–915PubMedGoogle Scholar
  86. 86.
    Langlois X, Gerard C, Darmon M, Chauveau J, Hamon M, el Mestikawy S (1995) Immunolabeling of central serotonin 5-HT1D beta receptors in the rat, mouse, and guinea pig with a specific anti-peptide antiserum. J Neurochem 65: 2671–2681PubMedGoogle Scholar
  87. 87.
    Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58: 167–182PubMedGoogle Scholar
  88. 88.
    Bonaventure P, Langlois X, Leysen JE (1998) Co-localization of 5-HT1B and 5-HT1D receptor mRNA in serotonergic cell bodies in guinea pig dorsal raphe: a double labeling in situ hybridization histochemistry study. Neurosci Lett 254: 113–116PubMedGoogle Scholar
  89. 89.
    Jin H, Oksenberg D, Ashkenazi A, Peroutka SJ, Duncan AM, Rozmahel R, Yang Y, Mengod G, Palacios JM, O’Dowd BF (1992) Characterization of the human 5-hydroxytryptamine1B receptor. J Biol Chem 267: 5735–5738PubMedGoogle Scholar
  90. 90.
    Bidmon HJ, Schleicher A, Wicke K, Gross G, Zilles K (2001) Localisation of mRNA for h5-HT1B and h5-HT1D receptors in human dorsal raphe. Naunyn Schmiedebergs Arch Pharmacol 363: 364–368PubMedGoogle Scholar
  91. 91.
    Offord SJ, Ordway GA, Frazer A (1988) Application of [125I]iodocyanopindolol to measure 5-hydroxytryptamine1B receptors in the brain of the rat. J Pharmacol Exp Ther 244: 144–153PubMedGoogle Scholar
  92. 92.
    Sari Y (2004) Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28: 565–582PubMedGoogle Scholar
  93. 93.
    Compan V, Segu L, Buhot MC, Daszuta A (1998) Selective increases in serotonin 5-HT1B/1D and 5-HT2A/2C binding sites in adult rat basal ganglia following lesions of serotonergic neurons. Brain Res 793: 103–111PubMedGoogle Scholar
  94. 94.
    Tanaka E, North RA (1993) Actions of 5-hydroxytryptamine on neurons of the rat cingulate cortex. J Neurophysiol 69: 1749–1757PubMedGoogle Scholar
  95. 95.
    Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KC (2000) Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39: 123–132PubMedGoogle Scholar
  96. 96.
    Liu S, Bubar MJ, Lanfranco MF, Hillman GR, Cunningham KA (2007) Serotonin2C receptor localization in GABA neurons of the rat medial prefrontalcortex: Implications for understanding the neurobiology of addiction. Neuroscience 146: 1677–1688PubMedGoogle Scholar
  97. 97.
    Morales M, Bloom FE (1997) The 5-HT3 receptor is present in different subpopulations of GABAergic neurons in the rat telencephalon. J Neurosci 17: 3157–3167PubMedGoogle Scholar
  98. 98.
    Puig MV, Santana N, Celada P, Mengod G, Artigas F (2004) In vivo excitation of GABA interneurons in the medial prefrontal cortex through 5-HT3 receptors. Cereb Cortex 14: 1365–1375PubMedGoogle Scholar
  99. 99.
    Waeber C, Sebben M, Nieoullon A, Bockaert J, Dumuis A (1994) Regional distribution and ontogeny of 5-HT4 binding sites in rodent brain. Neuropharmacology 33: 527–541PubMedGoogle Scholar
  100. 100.
    Vilaró MT, Cortés R, Gerald C, Branchek TA, Palacios JM, Mengod G (1996) Localization of 5-HT4 receptor mRNA in rat brain by in situ hybridization histochemistry. Mol Brain Res 43: 356–360PubMedGoogle Scholar
  101. 101.
    Vilaró MT, Cortés R, Mengod G (2005) Serotonin 5-HT4 receptors and their mRNAs in rat and guinea pig brain: distribution and effects of neurotoxic lesions. J Comp Neurol 484: 418–439PubMedGoogle Scholar
  102. 102.
    Erlander MG, Lovenberg TW, Baron BM, de Lecea L, Sutcliffe JG (1993) Molecular approach to hypothalamic rhythms: isolation of novel indoleamine receptor genes. J Biol Rhythms 8Suppl: S25–S31PubMedGoogle Scholar
  103. 103.
    Gerard C, el Mestikawy S, Lebrand C, Adrien J, Ruat M, Traiffort E, Hamon M, Martres MP (1996) Quantitative RT-PCR distribution of serotonin 5-HT6 receptor mRNA in the central nervous system of control or 5,7-dihydroxytryptamine-treated rats. Synapse 23: 164–173PubMedGoogle Scholar
  104. 104.
    Gerard C, Martres MP, Lefevre K, Miquel MC, Verge D, Lanfumey L, Doucet E, Hamon M, el Mestikawy S (1997) Immuno-localization of serotonin 5-HT6 receptorlike material in the rat central nervous system. Brain Res 746: 207–219PubMedGoogle Scholar
  105. 105.
    Gustafson EL, Durkin MM, Bard JA, Zgombick J, Branchek TA (1996) A receptor autoradiographic and in situ hybridization analysis of the distribution of the 5-ht7 receptor in rat brain. Br J Pharmacol 117: 657–666PubMedGoogle Scholar
  106. 106.
    Martin-Cora FJ, Pazos A (2004) Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species. Br J Pharmacol 141: 92–104PubMedGoogle Scholar
  107. 107.
    Paxinos G, Huang X-F, Toga AW (2000) The Rhesus Monkey Brain, Academic Press, San DiegoGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Noemí Santana
    • 1
  • Julián de Almeida
    • 1
  • Guadalupe Mengod
    • 1
  • Francesc Artigas
    • 1
  1. 1.Department of Neurochemistry and NeuropharmacologyInstitut d’Investigacions Biomèdiques de Barcelona, CSIC-IDIBAPSBarcelonaSpain

Personalised recommendations