Contribution of chemosensitive serotonergic neurons to interactions between the sleep-wake cycle and respiratory control

  • Gordon F. Buchanan
  • Matthew R. Hodges
  • George B. Richerson


Serotonergic neurons in the midbrain and medulla are sensitive to changes in serum CO2 concentrations. Medullary serotonergic neurons project to brainstem respiratory control centers and stimulate breathing. Midbrain serotonergic neurons project to thalamocortical circuitry responsible for sleep-wake modulation. There is state-dependent modulation of these medullary serotonergic neurons that may be responsible for state-dependent changes in respiratory rate and breathing regularity. Thus, with projections to both respiratory control centers and thalamocortical arousal circuits, chemosensitive serotonergic neurons are poised to induce both arousal and increased ventilation in response to potentially lifethreatening increases in PCO2. This may have important implications for such clinical conditions as sudden infant death syndrome, obstructive sleep apnea, and panic disorder; disorders in which serotonin is thought to contribute to the underlying pathophysiology.


Obstructive Sleep Apnea Panic Disorder Ventilatory Response Dorsal Raphe Dorsal Raphe Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: 569–575PubMedCrossRefGoogle Scholar
  2. 2.
    Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: 135–150PubMedCrossRefGoogle Scholar
  3. 3.
    Richerson GB (2004) Serotonergic neurons as carbon dioxide sensors that maintain pH homeostasis. Nat Rev Neurosci 5: 449–461PubMedCrossRefGoogle Scholar
  4. 4.
    Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand Suppl 64: 39–85Google Scholar
  5. 5.
    Holtman JR Jr, Norman WP, Skirboll L, Dretchen KL, Cuello C, Visser TJ, Hokfelt T, Gillis RA (1984) Evidence for 5-hydroxytryptamine, substance P, and thyrotropinreleasing hormone in neurons innervating the phrenic motor nucleus. J Neurosci 4: 1064–1071PubMedGoogle Scholar
  6. 6.
    Holtman JR Jr, Norman WP, Gillis RA (1984) Projections from the raphe nuclei to the phrenic motor nucleus in the cat. Neurosci Lett 44: 105–111PubMedCrossRefGoogle Scholar
  7. 7.
    Holtman JR Jr (1988) Immunohistochemical localization of serotonin-and substance P-containing fibers around respiratory muscle motoneurons in the nucleus ambiguus of the cat. Neuroscience 26: 169–178PubMedCrossRefGoogle Scholar
  8. 8.
    Holtman JR Jr, Vascik DS, Maley BE (1990) Ultrastructural evidence for serotoninimmunoreactive terminals contacting phrenic motoneurons in the cat. Exp Neurol 109: 269–272PubMedCrossRefGoogle Scholar
  9. 9.
    Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 165–229PubMedGoogle Scholar
  10. 10.
    Pilowsky PM, DeCastro D, Llewellyn-Smith I, Lipski J, Voss MD (1990) Serotonin immunoreactive boutons make synapses with feline phrenic motoneurons. J Neurosci 10: 1091–1098PubMedGoogle Scholar
  11. 11.
    Voss MD, DeCastro D, Lipski J, Pilowsky PM, Jiang C (1990) Serotonin immunoreactive boutons form close appositions with respiratory neurons of the dorsal respiratory group in the cat. J Comp Neurol 295: 208–218PubMedCrossRefGoogle Scholar
  12. 12.
    Zhan WZ, Ellenberger HH, Feldman JL (1989) Monoaminergic and GABAergic terminations in phrenic nucleus of rat identified by immunohistochemical labeling. Neuroscience 31: 105–113PubMedCrossRefGoogle Scholar
  13. 13.
    Cao Y, Matsuyama K, Fujito Y, Aoki M (2006) Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: electrophysiological and immunohistochemical studies in rats. Neurosci Res 56: 322–331PubMedCrossRefGoogle Scholar
  14. 14.
    Connelly CA, Ellenberger HH, Feldman JL (1989) Are there serotonergic projections from raphe and retrotrapezoid nuclei to the ventral respiratory group in the rat? Neurosci Lett 105: 34–40PubMedCrossRefGoogle Scholar
  15. 15.
    Henry JN, Manaker S (1998) Colocalization of substance P or enkephalin in serotonergic neuronal afferents to the hypoglossal nucleus in the rat. J Comp Neurol 391: 491–505PubMedCrossRefGoogle Scholar
  16. 16.
    Manaker S, Tischler LJ (1993) Origin of serotoninergic afferents to the hypoglossal nucleus in the rat. J Comp Neurol 334: 466–476PubMedCrossRefGoogle Scholar
  17. 17.
    Thor KB, Helke CJ (1989) Serotonin and substance P colocalization in medullary projections to the nucleus tractus solitarius: dual-colour immunohistochemistry combined with retrograde tracing. J Chem Neuroanat 2: 139–148PubMedGoogle Scholar
  18. 18.
    Manaker S, Verderame HM (1990) Organization of serotonin 1A and 1B receptors in the nucleus of the solitary tract. J Comp Neurol 301: 535–553PubMedCrossRefGoogle Scholar
  19. 19.
    Fonseca MI, Ni YG, Dunning DD, Miledi R (2001) Distribution of serotonin 2A, 2C and 3 receptor mRNA in spinal cord and medulla oblongata. Brain Res Mol Brain Res 89: 11–19PubMedCrossRefGoogle Scholar
  20. 20.
    Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW (2003) 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301: 226–229PubMedCrossRefGoogle Scholar
  21. 21.
    Champagnat J, Denavit-Saubie M, Henry JL, Leviel V (1979) Catecholaminergic depressant effects on bulbar respiratory mechanisms. Brain Res 160: 57–68PubMedCrossRefGoogle Scholar
  22. 22.
    Kent JM, Coplan JD, Martinez J, Karmally W, Papp LA, Gorman JM (1996) entilatory effects of tryptophan depletion in panic disorder: a preliminary report. Psychiatry Res 64: 83–90PubMedCrossRefGoogle Scholar
  23. 23.
    Lalley PM (1986) Responses of phrenic motoneurones of the cat to stimulation of medullary raphe nuclei. J Physiol 380: 349–371PubMedGoogle Scholar
  24. 24.
    Lalley PM (1986) Serotoninergic and non-serotoninergic responses of phrenic motoneurones to raphe stimulation in the cat. J Physiol 380: 373–385PubMedGoogle Scholar
  25. 25.
    Lalley PM, Benacka R, Bischoff AM, Richter DW (1997) Nucleus raphe obscurus evokes 5-HT1A receptor-mediated modulation of respiratory neurons. Brain Res 747: 156–159PubMedCrossRefGoogle Scholar
  26. 26.
    Lundberg DB, Mueller RA, Breese GR (1980) An evaluation of the mechanism by which serotonergic activation depresses respiration. J Pharmacol Exp Ther 212: 397–404PubMedGoogle Scholar
  27. 27.
    Olson Jr EB, Dempsey JA, McCrimmon DR (1979) Serotonin and the control of ventilation in awake rats. J Clin Invest 64: 689–693PubMedCrossRefGoogle Scholar
  28. 28.
    Brodin E, Linderoth B, Goiny M, Yamamoto Y, Gazelius B, Millhorn DE, Hokfelt T, Ungerstedt U (1990) In vivo release of serotonin in cat dorsal vagal complex and cervical ventral horn induced by electrical stimulation of the medullary raphe nuclei. Brain Res 535: 227–236PubMedCrossRefGoogle Scholar
  29. 29.
    Cayetanot F, Gros F, Larnicol N (2002) Postnatal changes in the respiratory response of the conscious rat to serotonin 2A/2C receptor activation are reflected in the developmental pattern of fos expression in the brainstem. Brain Res 942: 51–57PubMedCrossRefGoogle Scholar
  30. 30.
    Garner SJ, Eldridge FL, Wagner PG, Dowell RT (1989) Buspirone, an anxiolytic drug that stimulates respiration. Am Rev Respir Dis 139: 946–950PubMedGoogle Scholar
  31. 31.
    Gillis RA, Hill KJ, Kirby JS, Quest JA, Hamosh P, Norman WP, Kellar KJ (1989) Effect of activation of central nervous system serotonin 1A receptors on cardiorespiratory function. J Pharmacol Exp Ther 248: 851–857PubMedGoogle Scholar
  32. 32.
    Mendelson WB, Martin JV, Rapoport DM (1990) Effects of buspirone on sleep and respiration. Am Rev Respir Dis 141: 1527–1530PubMedGoogle Scholar
  33. 33.
    Rose D, Khater-Boidin J, Toussaint P, Duron B (1995) Central effects of 5-HT on respiratory and hypoglossal activities in the adult cat. Respir Physiol 101: 59–69PubMedCrossRefGoogle Scholar
  34. 34.
    Teng YD, Bingaman M, Taveira-DaSilva AM, Pace PP, Gillis RA, Wrathall JR (2003) Serotonin 1A receptor agonists reverse respiratory abnormalities in spinal cord-injured rats. J Neurosci 23: 4182–4189PubMedGoogle Scholar
  35. 35.
    Sahibzada N, Ferreira M, Wasserman AM, Taveira-DaSilva AM, Gillis RA (2000) Reversal of morphine-induced apnea in the anesthetized rat by drugs that activate 5-hydroxytryptamine(1A) receptors. J Pharmacol Exp Ther 292: 704–713PubMedGoogle Scholar
  36. 36.
    Suzue T (1984) Respiratory rhythm generation in the in vitro brain stem-spinal cord preparation of the neonatal rat. J Physiol 354: 173–183PubMedGoogle Scholar
  37. 37.
    Ballanyi K, Onimaru H, Homma I (1999) Respiratory network function in the isolated brainstem-spinal cord of newborn rats. Prog Neurobiol 59: 583–634PubMedCrossRefGoogle Scholar
  38. 38.
    Hilaire G, Duron B (1999) Maturation of the mammalian respiratory system. Physiol Rev 79: 325–360PubMedGoogle Scholar
  39. 39.
    Lindsay AD, Feldman JL (1993) Modulation of respiratory activity of neonatal rat phrenic motoneurones by serotonin. J Physiol 461: 213–233PubMedGoogle Scholar
  40. 40.
    Morin D, Hennequin S, Monteau R, Hilaire G (1990) Serotonergic influences on central respiratory activity: an in vitro study in the newborn rat. Brain Res 535: 281–287PubMedCrossRefGoogle Scholar
  41. 41.
    Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL (1991) Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals. Science 254: 726–729PubMedCrossRefGoogle Scholar
  42. 42.
    Pena F, Ramirez JM (2002) Endogenous activation of serotonin-2A receptors is required for respiratory rhythm generation in vitro. J Neurosci 22: 11055–11064PubMedGoogle Scholar
  43. 43.
    Arvidsson U, Cullheim S, Ulfhake B, Luppi PH, Kitahama K, Jouvet M, Hokfelt T (1994) Quantitative and qualitative aspects on the distribution of 5-HT and its coexistence with substance P and TRH in cat ventral medullary neurons. J Chem Neuroanat 7: 3–12PubMedCrossRefGoogle Scholar
  44. 44.
    Yamamoto Y, Lagercrantz H, von Euler C (1981) Effects of substance P and TRH on ventilation and pattern of breathing in newborn rabbits. Acta Physiol Scand 113: 541–543PubMedGoogle Scholar
  45. 45.
    Dekin MS, Richerson GB, Getting PA (1985) Thyrotropin-releasing hormone induces rhythmic bursting in neurons of the nucleus tractus solitarius. Science 229: 67–69PubMedCrossRefGoogle Scholar
  46. 46.
    Snyder F, Hobson JA, Morrison DF, Goldfrank F (1964) Changes in respiration, heart rate, and systolic blood pressure in human sleep. J Appl Physiol 19: 417–422PubMedGoogle Scholar
  47. 47.
    Trinder J, Whitworth F, Kay A, Wilkin P (1992) Respiratory instability at sleep onset. J Appl Physiol 73: 2462–2469PubMedGoogle Scholar
  48. 48.
    Webb P (1974) Periodic breathing during sleep. J Appl Physiol 37: 899–903PubMedGoogle Scholar
  49. 49.
    Nattie E (1999) CO2, brainstem chemoreceptors and breathing. Prog Neurobiol 59: 299–331PubMedCrossRefGoogle Scholar
  50. 50.
    Kuna ST, Smickley JS, Insalaco G (1990) Posterior cricoarytenoid muscle activity during wakefulness and sleep in normal adults. J Appl Physiol 68: 1746–1754PubMedGoogle Scholar
  51. 51.
    Tangel DJ, Mezzanotte WS, White DP (1991) Influence of sleep on tensor palatine EMG and upper airway resistance in normal men. J Appl Physiol 70: 2574–2581PubMedGoogle Scholar
  52. 52.
    Wiegand DA, Latz B, Zwillich CW, Wiegand L (1990) Upper airway resistance and geniohyoid muscle activity in normal men during wakefulness and sleep. J Appl Physiol 69: 1252–1261PubMedGoogle Scholar
  53. 53.
    Tabachnik E, Muller NL, Bryan AC, Levison H (1981) Changes in ventilation and chest wall mechanics during sleep in normal adolescents. J Appl Physiol 51: 557–561PubMedGoogle Scholar
  54. 54.
    Lopes LM, Trabachnik E, Muller NL, Levison H, Bryan AC (1983) Total airway resistance and respiratory muscle activity during sleep. J Appl Physiol 54: 773–777PubMedGoogle Scholar
  55. 55.
    Kubin L, Tojima H, Davies RO, Pack AI (1992) Serotonergic excitatory drive to hypoglossal motoneurons in the decerebrate cat. Neurosci Lett 139: 243–248PubMedCrossRefGoogle Scholar
  56. 56.
    Sakai K, Takada T, Nakayama H, Kubota Y, Nakamata M, Satoh M, Suzuki E, Akazawa K, Gejyo F (2005) Serotonin-2A and 2C receptor gene polymorphisms in Japanese patients with obstructive sleep apnea. Intern Med 44: 928–933PubMedCrossRefGoogle Scholar
  57. 57.
    Heym J, Steinfels GF, Jacobs BL (1982) Activity of serotonin-containing neurons in the nucleus raphe pallidus of freely moving cats. Brain Res 251: 259–276PubMedCrossRefGoogle Scholar
  58. 58.
    Okabe S, Kubin L (1996) Role of 5HT1 receptors in the control of hypoglossal motoneurons in vivo. Sleep 19: S150–S153PubMedGoogle Scholar
  59. 59.
    Ramirez JM, Viemari JC (2005) Determinants of inspiratory activity. Respir Physiol Neurobiol 147: 145–157PubMedCrossRefGoogle Scholar
  60. 60.
    Orem J (1980) Neural mechanisms of respiration in REM sleep. Sleep 3: 251–252PubMedGoogle Scholar
  61. 61.
    Aserinsky E (1965) Periodic respiratory pattern occurring in conjunction with eye movements during sleep. Science 150: 763–766PubMedCrossRefGoogle Scholar
  62. 62.
    Spreng LF, Johnson CL, Lubin A (1968) Autonomic correlates of eye movement bursts during stage REM sleep. Psychophysiology 4: 311–323PubMedCrossRefGoogle Scholar
  63. 63.
    Stradling JR, Chadwick GT, Frew AJ (1985) Changes in ventilation and its components in normal subjects during sleep. Thorax 40: 364–370PubMedGoogle Scholar
  64. 64.
    Tusiewicz K, Moldofsky H, Bryan AC, Bryan MH (1977) Mechanics of the rib cage and diaphragm during sleep. J Appl Physiol 43: 600–602PubMedGoogle Scholar
  65. 65.
    Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility and concurrent phenomena during sleep. Science 118: 273–274PubMedCrossRefGoogle Scholar
  66. 66.
    Parmeggiani PL, Sabattini L (1972) Electromyographic aspect of postural respiratory and thermoregulatory mechanisms in sleeping cats. Electroencephalogr Clin Neurol 33: 1–13CrossRefGoogle Scholar
  67. 67.
    Phillipson EA, Kozar LF, Rebuck AS, Murphy E (1977) Ventilatory and waking responses to CO2 in sleeping dogs. Am Rev Respir Dis 115: 251–259PubMedGoogle Scholar
  68. 68.
    Berthon-Jones M, Sullivan CE (1984) Ventilation and arousal responses to hypercapnia in normal sleeping humans. J Appl Physiol 57: 59–67PubMedGoogle Scholar
  69. 69.
    Douglas NJ, White DP, Weil JV, Pickett CK, Zwillich CW (1982) Hypercapnic ventilatory response in sleeping adults. Am Rev Respir Dis 126: 758–762PubMedGoogle Scholar
  70. 70.
    Hedemark LL, Kronenberg RS (1982) Ventilatory and heart rate responses to hypoxia and hypercapnia during sleep in adults. J Appl Physiol 53: 307–312PubMedGoogle Scholar
  71. 71.
    Bulow K (1963) Respiration and wakefulness in man. Acta Physiol Scand Suppl 59: 1–110Google Scholar
  72. 72.
    Gothe B, Altose MD, Goldman MD, Cherniack NS (1981) Effect of sleep on resting and CO2-stimulated breathing in humans. J Neurosci 50: 724–730Google Scholar
  73. 73.
    Krieger J (2000) Respiratory physiology: breathing in normal subjects. In: MH Kryger, T Roth, WC Dement (eds.): Principles practice of sleep medicine. Saunders, New York, 229–241Google Scholar
  74. 74.
    McCormick DA, Bal T (1997) Sleep and arousal: thalamocortical mechanisms. Annu Rev Neurosci 20: 185–215PubMedCrossRefGoogle Scholar
  75. 75.
    Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685PubMedCrossRefGoogle Scholar
  76. 76.
    McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex and their modulation of thalamocortical activity. Prog Neurobiol 39: 337–388PubMedCrossRefGoogle Scholar
  77. 77.
    McCormick DA, Wang Z (1991) Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. J Physiol 442: 235–255PubMedGoogle Scholar
  78. 78.
    Pape H-C, McCormick DA (1989) Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current. Nature 340: 715–718PubMedCrossRefGoogle Scholar
  79. 79.
    McCormick DA, Pape H-C (1990) Noradrenergic and serotonergic modulation of a hyperpolarization-activated cation current in thalamic relay neurones. J Physiol 431: 319–342PubMedGoogle Scholar
  80. 80.
    McCormick DA, Pape H-C (1990) Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol 431: 291–318PubMedGoogle Scholar
  81. 81.
    Borbely AA, Achermann P (1992) Concepts and models of sleep regulation: an overview. J Sleep Res 2: 63–79Google Scholar
  82. 82.
    Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurol 1: 455–473Google Scholar
  83. 83.
    Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: reciprocal discharge by two brainstem neuronal groups. Science 189: 55–58PubMedCrossRefGoogle Scholar
  84. 84.
    Loughlin SE, Foote SL, Fallon JH (1982) Locus coeruleus projections to cortex: topography, morphology, and collateralization. Brain Res Bull 9: 287–294PubMedCrossRefGoogle Scholar
  85. 85.
    Saper CB, Cano G, Scammell T (2005) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 493: 92–98PubMedCrossRefGoogle Scholar
  86. 86.
    Takeda N, Inagaki S, Taguchi Y, Tohyama M, Watanabe T, Wada H (1984) Origins of histamine-containing fibers in the cerebral cortex of rats studied by immunohistochemistry with histidine decarboxylase as a marker and transection. Brain Res 323: 55–63PubMedCrossRefGoogle Scholar
  87. 87.
    Sobel E, Corbett D (1984) Axonal branching of ventral tegmental and raphe projections to the frontal cortex in the rat. Neurosci Lett 48: 121–125PubMedCrossRefGoogle Scholar
  88. 88.
    Vertes RP (1991) A PHP-L analysis of ascending projections of the dorsal raphe in the rat. J Comp Neurol 313: 643–668PubMedCrossRefGoogle Scholar
  89. 89.
    Aston-Jones G, Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1: 876–886PubMedGoogle Scholar
  90. 90.
    Sakai K, Crochet S (2001) Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states. Neuroscience 104: 1141–1155PubMedCrossRefGoogle Scholar
  91. 91.
    Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25: 6716–6720PubMedCrossRefGoogle Scholar
  92. 92.
    Horvath TL, Peyron C, Diano S, Ivanov A, Aston-Jones G, Kilduff TS, van den Pol AN (1999) Hypocretin (orexin) activation and synaptic innervation or the locus coeruleus monoaminergic system. J Comp Neurol 415: 145–159PubMedCrossRefGoogle Scholar
  93. 93.
    Eriksson H, Sergeeva O, Brown RE, Haas HL (2001) Orexin/hypocretin excites the histaminergic neurons of the tuberomammilary nucleus. J Neurosci 21: 9273–9279PubMedGoogle Scholar
  94. 94.
    Takahashi K, Wang QP, Guan JL, Kayama Y, Shioda S, Koyama Y (2005) State-dependent effects of orexins on the serotonergic dorsal raphe neurons in the rat. Regul Pept 126: 43–47PubMedCrossRefGoogle Scholar
  95. 95.
    Torrealba F, Yanagisawa M, Saper CB (2003) Colocalization of orexin a and glutamate immunoreactivity in axon terminals in the tubomammilary nucleus in rats. Neuroscience 119: 1033–1044PubMedCrossRefGoogle Scholar
  96. 96.
    Szymusiak R, McGinty DJ (1986) Sleep-related neuronal discharges in the basal forebrain of cats. Brain Res 370: 82–92PubMedCrossRefGoogle Scholar
  97. 97.
    Szymusiak R, Alam N, Steininger TL, McGinty DJ (1998) Sleep-waking discharge patterns of ventrolateral peroptic/anterior hypothalamic neurons in rats. Brain Res 803: 178–188PubMedCrossRefGoogle Scholar
  98. 98.
    Sherin JE, Shiromami PJ, McCarley RW, Saper CB (1996) Activation of the ventrolateral preoptic neurons during sleep. Science 271: 216–219PubMedCrossRefGoogle Scholar
  99. 99.
    Saper CB, Chou TC, Scammell T (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 28: 152–157CrossRefGoogle Scholar
  100. 100.
    Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22: 990Google Scholar
  101. 101.
    Gallopin T, Fort P, Eggerman E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlenhalter M, Serafin M (2000) Identification of sleep-promoting neurons in vivo. Nature 404: 992–995PubMedCrossRefGoogle Scholar
  102. 102.
    Portas CM, McCarley RW (1994) Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat. Brain Res 648: 306–312PubMedCrossRefGoogle Scholar
  103. 103.
    Portas CM, Bjorvatn B, Fagerland S, Gronli J, Mundal V, Sorensen E, Ursin R (1998) On-line detection of extracellular levels of serotoin in dorsal raphe and frontal cortex over the sleep/wake cycle in the freely moving cat. Neuroscience 83: 807–814PubMedCrossRefGoogle Scholar
  104. 104.
    Park SP, Lopez-Rodriguez F, Wilson CL, Maidment N, Matsumoto Y, Engel J Jr (1999) In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep-wakefulness. Brain Res 833: 291–296PubMedCrossRefGoogle Scholar
  105. 105.
    Strecker RE, Thakkar MM, Porkka-Heiskanen T, Dauphin LJ, Bjorkum AA, McCarley RW (1999) Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: a microdialysis study in freely moving animals. Sleep Re Online 2: 21–27Google Scholar
  106. 106.
    Zeitzer JM, Maidment NT, Behnke EJ, Ackerson LC, Fried I, Engel J Jr, Wilson CL (2002) Ultradian sleep-cycle variation of serotonin in the human lateral ventricle. Neurology 59: 1272–1274PubMedGoogle Scholar
  107. 107.
    Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic S, Zimmer L, Costes N, Mulligan R, Reutens D (2005) Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy. Neuroimage 30: 341–348PubMedCrossRefGoogle Scholar
  108. 108.
    Dzoljic MR, Ukponmwan OE, Saxena PR (1992) 5-HT1-like receptor agonists enhance wakefulness. Neuropharmacology 31: 623–633PubMedCrossRefGoogle Scholar
  109. 109.
    Monti JM, Pineyro G, Orellana C, Boussard M, Jantos H, Labraga P, Olivera S, Alvarino F (1990) 5-HT receptor agonists 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and 8-OH-DPAT increase wakefulness in the rat. Biogen Amine 7: 145–151Google Scholar
  110. 110.
    Tissier MH, Lainey E, Fattaccini CM, Hamon M, Adrien J (1993) Effects of ipsapirone, a 5-HT1A agonist, on sleep/wakefulness cycles: probable post-synaptic action. J Sleep Res 2: 103–109PubMedCrossRefGoogle Scholar
  111. 111.
    Darnall RA, Harris MB, Gill WH, Hoffman JM, Brown JW, Niblock MM (2005) Inhibition of serotonergic neurons in the nucleus paragigantocellularis lateralis fragments sleep and decreases rapid eye movement sleep in the piglet: implications for sudden infant death syndrome. J Neurosci 25: 8322–8332PubMedCrossRefGoogle Scholar
  112. 112.
    Gillin JC, Jernajczyk W, Valladares-Neto D de C, Golshan S, Lardon M, Stahl S (1994) Inhibition of REM sleep by ipsapirone, a 5-HT1A agonist, in normal volunteers. Psychopharmacology 116: 433–436PubMedCrossRefGoogle Scholar
  113. 113.
    Thakkar MM, Strecker RE, McCarley RW (1998) Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: a simultaneous unit recording and microdialysis study. J Neurosci 18: 5490–5497PubMedGoogle Scholar
  114. 114.
    Dugovic C, Wauqier A (1987) 5-HT2 receptors could be primarily involved in the regulation of slow wave sleep in the rat. Eur J Pharmacol 137: 145–146PubMedCrossRefGoogle Scholar
  115. 115.
    Monti JM, Jantos H (2006) Effects of the serotonin 5-HT2A/2C receptor agonist DOI and of the selective 5-HT2A or 5-HT2C receptor antagonists EMD 281014 and SB-243213, respectively, on sleep and waking in the rat. Eur J Pharmacol 553: 163–170PubMedCrossRefGoogle Scholar
  116. 116.
    Idzikowski C, Mills FJ, Glennard R (1986) 5-Hydroxytryptamine-2 antagoinist increases human slow wave sleep. Brain Res 378: 164–168PubMedCrossRefGoogle Scholar
  117. 117.
    Kirov R, Moyanova S (1998) Age-dependent effect of ketanserin on the sleep-waking phases in rats. Int J Neurosci 93: 257–264PubMedCrossRefGoogle Scholar
  118. 118.
    Kirov R, Moyanova S (1998) Age-dependent effect of ritanserin on the sleep-waking phases in rats. Int J Neurosci 93: 265–278PubMedCrossRefGoogle Scholar
  119. 119.
    Pastel RH, Fernstrom JD (1987) Short-term effects of fluoxetine and trifluoromethylphenylpiperazine on electroencephalographic sleep in the rat. Brain Res 436: 92–102PubMedCrossRefGoogle Scholar
  120. 120.
    Slater IH, Jones GT, Moore RA (1978) Inhibition of REM sleep by fluoxetine, a specific inhibitor of serotonin uptake. Neuropharmacology 17: 383–389PubMedCrossRefGoogle Scholar
  121. 121.
    Nicholson AN, Pascoe PA (1988) Studies on the modulation of the sleep-wakefulness continuum in man by fluoxetine, a 5-HT uptake inhibitor. Neuropharmacology 27: 597–602PubMedCrossRefGoogle Scholar
  122. 122.
    Boutrel B, Franc B, Hen R, Hamon M, Adrien J (1999) Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J Neurosci 19: 3204–3212PubMedGoogle Scholar
  123. 123.
    Popa D, Lena C, Fabre V, Prenat C, Gingrich J, Escourrou P, Hamon M, Adrien J (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25: 11231–11238PubMedCrossRefGoogle Scholar
  124. 124.
    Frank MG, Stryker MP, Tecott LH (2002) Sleep and sleep homeostasis in mice lacking the 5-HT2C receptor. Neuropsychopharmacology 27: 869–873PubMedCrossRefGoogle Scholar
  125. 125.
    Solomon IC, Edelman NH, Neubauer JA (2000) Pre-Botzinger complex functions as a central hypoxia chemosensor for respiration in vivo. J Neurophysiol 83: 2854–2868PubMedGoogle Scholar
  126. 126.
    Biscoe TJ, Purves MJ, Sampson SR (1970) The frequency of nerve impulses in single carotid body chemoreceptor afferent fibres recorded in vivo with intact circulation. J Physiol 208: 121–131PubMedGoogle Scholar
  127. 127.
    Edelman NH, Epstein PE, Lahiri S, Cherniack NS (1973) Ventilatory responses to transient hypoxia and hypercapnia in man. Respir Physiol 17: 302–314PubMedCrossRefGoogle Scholar
  128. 128.
    Bellville JW, Whipp BJ, Kaufman RD, Swanson GD, Aqleh KA, Wiberg DM (1979) Central and peripheral chemoreflex loop gain in normal and carotid body-resected subjects. J Appl Physiol 46: 843–853PubMedGoogle Scholar
  129. 129.
    Pan LG, Forster HV, Martino P, Strecker PJ, Beales J, Serra A, Lowry TF, Forster MM, Forster AL (1998) Important role of carotid afferents in control of breathing. J Appl Physiol 85: 1299–1306PubMedGoogle Scholar
  130. 130.
    Rodman JR, Curran AK, Henderson KS, Dempsey JA, Smith CA (2001) Carotid body denervation in dogs: eupnea and the ventilatory response to hyperoxic hypercapnia. J Appl Physiol 91: 328–335PubMedGoogle Scholar
  131. 131.
    Smith CA, Rodman JR, Chenuel BJ, Henderson KS, Dempsey JA (2006) Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors. J Appl Physiol 100: 13–19PubMedCrossRefGoogle Scholar
  132. 132.
    Guyenet PG, Stornetta RL, Bayliss DA, Mulkey DK (2005) Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors. Exp Physiol 90: 247–253PubMedCrossRefGoogle Scholar
  133. 133.
    Richerson GB, Wang W, Hodges MR, Dohle CI, Diez-Sampedro A (2005) Homing in on the specific phenotype(s) of central respiratory chemoreceptors. Exp Physiol 90: 259–266PubMedCrossRefGoogle Scholar
  134. 134.
    Dean JB, Bayliss DA, Erickson JT, Lawing WL, Millhorn DE (1990) Depolarization and stimulation of neurons in nucleus tractus solitarii by carbon dioxide does not require chemical synaptic input. Neuroscience 36: 207–216PubMedCrossRefGoogle Scholar
  135. 135.
    Pineda J, Aghajanian GK (1997) Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton-and polyamine-sensitive inward rectifier potassium current. Neuroscience 77: 723–743PubMedCrossRefGoogle Scholar
  136. 136.
    Mulkey DK, Stornetta RL, Weston MC, Simmons JR, Parker A, Bayliss DA, Guyenet PG (2004) Respiratory control by ventral surface chemoreceptor neurons in rats. Nat Neurosci 7: 1360–1369PubMedCrossRefGoogle Scholar
  137. 137.
    Nattie EE, Li A (2001) CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. J Appl Physiol 90: 1247–1257PubMedGoogle Scholar
  138. 138.
    Hodges MR, Martino P, Davis S, Opansky C, Pan LG, Forster HV (2004) Effects on breathing of focal acidosis at multiple medullary raphe sites in awake goats. J Appl Physiol 97: 2303–2309PubMedCrossRefGoogle Scholar
  139. 139.
    Nattie EE, Li A, Richerson G, Lappi DA (2004) Medullary serotonergic neurones and adjacent neurones that express neurokinin-1 receptors are both involved in chemoreception in vivo. J Physiol 556: 235–253PubMedCrossRefGoogle Scholar
  140. 140.
    Richerson GB (1995) Response to CO2 of neurons in the rostral ventral medulla in vitro. J Neurophysiol 73: 933–944PubMedGoogle Scholar
  141. 141.
    Veasey SC, Fornal CA, Metzler CW, Jacobs BL (1995) Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats. J Neurosci 15: 5346–5359PubMedGoogle Scholar
  142. 142.
    Wang W, Pizzonia JH, Richerson GB (1998) Chemosensitivity of rat medullary raphe neurones in primary tissue culture. J Physiol 511: 433–450PubMedCrossRefGoogle Scholar
  143. 143.
    Wang W, Tiwari JK, Bradley SR, Zaykin RV, Richerson GB (2001) Acidosis-stimulated neurons of the medullary raphe are serotonergic. J Neurophysiol 85: 2224–2235PubMedGoogle Scholar
  144. 144.
    Scott MM, Wylie CJ, Lerch JK, Murphy R, Lobur K, Herlitze S, Jiang W, Conlon RA, Strowbridge BW, Deneris ES (2005) A genetic approach to access serotonin neurons for in vivo and in vitro studies. Proc Natl Acad Sci USA 102: 16472–16477PubMedCrossRefGoogle Scholar
  145. 145.
    Severson CA, Wang W, Pieribone VA, Dohle CI, Richerson GB (2003) Midbrain serotonergic neurons are central pH chemoreceptors. Nat Neurosci 6: 1139–1140PubMedCrossRefGoogle Scholar
  146. 146.
    Bradley SR, Pieribone VA, Wang W, Severson CA, Jacobs RA, Richerson GB (2002) Chemosensitive serotonergic neurons are closely associated with large medullary arteries. Nat Neurosci 5: 401–402PubMedCrossRefGoogle Scholar
  147. 147.
    Wang W, Richerson GB (1999) Development of chemosensitivity of rat medullary raphe neurons. Neuroscience 90: 1001–1011PubMedCrossRefGoogle Scholar
  148. 148.
    Stunden CE, Filosa JA, Garcia AJ, Dean JB, Putnam RW (2001) Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. Respir Physiol 127: 135–155PubMedCrossRefGoogle Scholar
  149. 149.
    Serra A, Brozoski D, Hedin N, Franciosi R, Forster HV (2001) Mortality after carotid body denervation in rats. J Appl Physiol 91: 1298–1306PubMedGoogle Scholar
  150. 150.
    Oyamada Y, Yamaguchi K, Murai M, Hakuno H, Ishizaka A (2005) Role of Kir2.2 in hypercapnic ventilatory response during postnatal development of mouse. Respir Physiol Neurobiol 145: 143–151PubMedCrossRefGoogle Scholar
  151. 151.
    Larnicol N, Wallois F, Berquin P, Gros F, Rose D (1994) C-fos-like immunoreactivity in the cat’s neuraxis following moderate hypoxia or hypercapnia. J Physiol Paris 88: 81–88PubMedCrossRefGoogle Scholar
  152. 152.
    Johnston RV, Grant DA, Wilkinson MH, Walker AM (2007) The effects of repeated exposure to hypercapnia on arousal and cardiorespiratory responses during sleep in lambs. J Physiol 582: 369–378PubMedCrossRefGoogle Scholar
  153. 153.
    Haxhiu MA, Tolentino-Silva F, Pete G, Kc P, Mack SO (2001) Monoaminergic neurons, chemosensation and arousal. Respir Physiol 129: 191–209PubMedCrossRefGoogle Scholar
  154. 154.
    Pete G, Mack SO, Haxhiu MA, Walbaum S, Gauda EB (2002) CO(2)-induced c-Fos expression in brainstem preprotachykinin mRNA containing neurons. Respir Physiol Neurobiol 130: 265–274PubMedCrossRefGoogle Scholar
  155. 155.
    Bernard DG, Li A, Nattie EE (1996) Evidence for central chemoreception in the midline raphe. J Appl Physiol 80: 108–115PubMedGoogle Scholar
  156. 156.
    Mueller RA, Towle AC, Breese GR (1984) Supersensitivity to the respiratory stimulatory effect of TRH in 5,7-dihydroxytryptamine-treated rats. Brain Res 298: 370–373PubMedCrossRefGoogle Scholar
  157. 157.
    Mueller RA, Towle AC, Breese GR (1985) The role of vagal afferents and carbon dioxide in the respiratory response to thyrotropin-releasing hormone. Regul Pept 10: 157–166PubMedCrossRefGoogle Scholar
  158. 158.
    Messier ML, Li A, Nattie EE (2002) Muscimol inhibition of medullary raphe neurons decreases the CO2 response and alters sleep in newborn piglets. Respir Physiol Neurobiol 133: 197–214PubMedCrossRefGoogle Scholar
  159. 159.
    Dreshaj IA, Haxhiu MA, Martin RJ (1998) Role of the medullary raphe nuclei in the respiratory response to CO2. Respir Physiol 111: 15–23PubMedCrossRefGoogle Scholar
  160. 160.
    Hodges MR, Opansky C, Qian B, Davis S, Bonis J, Bastasic J, Leekley T, Pan LG, Forster HV (2004) Transient attenuation of CO2 sensitivity after neurotoxic lesions in the medullary raphe area of awake goats. J Appl Physiol 97: 2236–2247PubMedCrossRefGoogle Scholar
  161. 161.
    Messier ML, Li A, Nattie EE (2004) Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets. J Appl Physiol 96: 1909–1919PubMedCrossRefGoogle Scholar
  162. 162.
    Harris MB, Richerson GB, St John WM (2002) Serotonergic modulation of ventilatory pattern in the perfused rat brainstem. Soc Neurosci Abstr 28Google Scholar
  163. 163.
    Hendricks TJ, Fyodorov DV, Wegman LJ, Lelutiu NB, Pehek EA, Yamamoto B, Silver J, Weeber EJ, Sweatt JD, Deneris ES (2003) Pet-1 ETS gene plays a critical role in 5-HT neuron development and is required for normal anxiety-like and aggressive behavior. Neuron 37: 233–247PubMedCrossRefGoogle Scholar
  164. 164.
    Hodges MR, Best S, Deneris ES, Richerson GB (2005) Adult Pet-1 knockout mice exhibit an attenuated hypercapnic ventilatory response. Soc Neurosci Abstr Google Scholar
  165. 165.
    Zhao ZQ, Scott M, Chiechio S, Wang JS, Renner KJ, Gereau RW, Johnson RL, Deneris ES, Chen ZF (2006) Lmx1b is required for maintenance of central serotonergic neurons and mice lacking central serotonergic system exhibit normal locomotor activity. J Neurosci 26: 12781–12788PubMedCrossRefGoogle Scholar
  166. 166.
    Lahiri S, DeLaney RG (1975) Stimulus interaction in the responses of carotid body chemoreceptor single afferent fibers. Respir Physiol 24: 249–266PubMedCrossRefGoogle Scholar
  167. 167.
    Ursino M, Magosso E, Avanzolini G (2001) An integrated model of the human ventilatory control system: the response to hypercapnia. Clin Physiol 21: 447–464PubMedCrossRefGoogle Scholar
  168. 168.
    Buchanan GF, Hodges MR, Richerson GB (2007) Deficiency in hypercapnia-induced arousal in mice with genetic deletion of 5-HT neurons. Soc Neurosci Abstr, 33: 736.12Google Scholar
  169. 169.
    Task Force on Sudden Infant Death Syndrome (2005) The changing concept of sudden infant death syndrome: diagnostic coding shifts, controversies regarding the sleeping environment, and new variables to consider in reducing risk. Pediatrics 116: 1245–1255CrossRefGoogle Scholar
  170. 170.
    Filiano JJ, Kinney HC (1994) A perspective on neuropathologic findings in victims of the sudden infant death syndrome: the triple-risk model. Biol Neonate 65: 194–197PubMedCrossRefGoogle Scholar
  171. 171.
    Hunt CE, Brouillette RT (1987) Sudden infant death syndrome: 1987 perspective. J Pediatr 110: 669–678PubMedCrossRefGoogle Scholar
  172. 172.
    Panigraphy A, Filiano J, Sleeper LA, Mandell F, Valdes-Dapena M, Krous HF, Rava LA, Foley E, White WF, Kinney HC (2000) Decreased serotonergic receptor binding in rhombic lip-derived regions of the medulla oblongata in the sudden infant death syndrome. J Neuropathol Exp Neurol 59: 377–384Google Scholar
  173. 173.
    Paterson DS, Trachtenberg FL, Thompson EG, Belliveau RA, Beggs AH, Darnall R, Chadwick AE, Kous HF, Kinney HC (2006) Multiple serotonergic brainstem abnormalities in sudden infant death syndrome. JAMA 296: 2124–2132PubMedCrossRefGoogle Scholar
  174. 174.
    Yaggi H, Mohsenin V (2004) Obstructive sleep apnoea and stroke. Lancet Neurol 3: 333–342PubMedCrossRefGoogle Scholar
  175. 175.
    Yaggi H, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V (2005) Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 353: 2034–2041PubMedCrossRefGoogle Scholar
  176. 176.
    Young T, Peppard P, Gottlieb D (2002) Epidemiology of obstructive sleep apnea: a population health perspective. Am J Respir Crit Care Med 165: 1217–1239PubMedCrossRefGoogle Scholar
  177. 177.
    Beebe D (2005) Neurobehavioral effects of obstructive sleep apnea: an overview and heuristic model. Curr Opin Pulm Med 11: 494–500PubMedCrossRefGoogle Scholar
  178. 178.
    Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328: 1230–1235PubMedCrossRefGoogle Scholar
  179. 179.
    Quintana-Gallego E, Carmona-Bernal C, Capote F, Sanchez-Armengol A, Botebol-Benhamou G, Polo-Padillo J, Castillo-Gomez J (2004) Gender differences in obstructive sleep apnea syndrome: a clinical study of 1166 patients. Respir Med 98: 984–989PubMedCrossRefGoogle Scholar
  180. 180.
    Ferini-Strambi L, Fantini ML, Castronovo C (2004) Epidemiology of obstructive sleep apnea syndrome. Minerva Med 95: 187–202PubMedGoogle Scholar
  181. 181.
    Veasey SC (2003) Serotonin agonists and antagonists in obstructive sleep apnea: therapeutic potential. Am J Respir Med 2: 21–29PubMedGoogle Scholar
  182. 182.
    Sood S, Liu X, Liu H, Nolan P, Horner RL (2003) 5-HT at hypoglossal motor nucleus and respiratory control of genioglossus muscle in anesthetized rats. Respir Physiol Neurobiol 138: 205–221PubMedCrossRefGoogle Scholar
  183. 183.
    Bell C, Forshall S, Adrover M, Nash J, Hood S, Argyropoulos S, Rich A, Nutt DJ (2002) Does 5-HT restrain panic? A tryptophan depletion study in panic disorder patients recovered on paroxetine. J Psychopharmacol 16: 5–14PubMedGoogle Scholar
  184. 184.
    Bell CJ, Nutt DJ (1998) Serotonin and panic. Br J Psychiatry 172: 465–471PubMedGoogle Scholar
  185. 185.
    Coplan JD, Lydiard RB (1998) Brain circuits in panic disorder. Biol Psychiatry 44: 1264–1276PubMedCrossRefGoogle Scholar
  186. 186.
    Dahlstroem A, Fuxe K (1964) Evidence for the existence of monamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 62: 1–55Google Scholar
  187. 187.
    Hensler JG (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30: 203–214PubMedCrossRefGoogle Scholar
  188. 188.
    Kohler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7: 951–975PubMedCrossRefGoogle Scholar
  189. 189.
    Parent A, Descarries L, Beaudet A (1981) Organization of ascending serotonin systems in the adult rat brain. A radioautographic study after intraventricular administration of [3H]5-hydroxytryptamine. Neuroscience 6: 115–138PubMedCrossRefGoogle Scholar
  190. 190.
    Rapaport MH, Wolkow R, Rubin A, Hackett E, Pollack M, Ota KY (2001) Sertraline treatment of panic disorder: results of a long-term study. Acta Psychiatr Scand 104: 289–298PubMedCrossRefGoogle Scholar
  191. 191.
    Ballenger JC, Wheadon DE, Steiner M, Bushnell W, Gergel IP (1998) Double-blind, fixed-dose, placebo-controlled study of paroxetine in the treatment of panic disorder. Am J Psychiatry 155: 36–42PubMedGoogle Scholar
  192. 192.
    Klein DF (1993) False suffocation alarms, spontaneous panics, and related conditions: an integrative hypothesis. Arch Gen Psych 50: 306–317Google Scholar
  193. 193.
    Schmidt NB, Telch MJ, Jaimez TL (1996) Biological challenge manipulation of PCO2 levels: a test of Klein’s (1993) suffocation alarm theory of panic. J Abnorm Psychol 105: 446–454PubMedCrossRefGoogle Scholar
  194. 194.
    Fyer MR, Uy J, Martinez J, Goetz R, Klein DF, Fyer A, Liebowitz MR, Gorman J (1987) CO2 challenge of patients with panic disorder. Am J Psychiatry 144: 1080–1082PubMedGoogle Scholar
  195. 195.
    Gorman JM, Papp LA, Coplan JD, Martinez JM, Lennon S, Goetz RR, Ross D, Klein DF (1994) Anxiogenic effects of CO2 and hyperventilation in patients with panic disorder. Am J Psychiatry 151: 547–553PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Gordon F. Buchanan
    • 1
  • Matthew R. Hodges
    • 1
  • George B. Richerson
    • 1
    • 2
    • 3
  1. 1.Department of NeurologyYale UniversityNew Haven
  2. 2.Department of Cellular and Molecular PhysiologyYale UniversityNew Haven
  3. 3.Veteran’s Affairs Medical CenterWest Haven

Personalised recommendations