Serotonergic mechanisms contributing to arousal and alerting

  • Larry D. Sanford
  • Richard J. Ross
  • Adrian R. Morrison


Serotonin (5-HT) is implicated in the regulation of both behavioral arousal and a brainstem alerting system that operates in wakefulness and in rapid eye movement sleep (REM). Activation of the brainstem alerting system is marked by the presence of ponto-geniculooccipital (PGO) waves that occur in association with orienting in wakefulness and spontaneously in REM. Local application of serotonergic agents into REM and PGO wave regulatory regions can alter REM, but there is conflicting evidence as to whether 5-HT in the brainstem can independently influence PGO wave generation. A potential site of action of 5-HT outside the brainstem is the amygdala, which can influence arousal as well as neurobiological responses to novel and significant stimuli. The amygdala also modulates the occurrence and amplitude of PGO waves. We discuss the linkages between arousal and alerting systems and the role 5-HT may play in their regulation at brainstem and amygdalar sites.


Dorsal Raphe Nucleus Serotonergic Neuron Paradoxical Sleep Lateral Geniculate Body Serotonergic Mechanism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: 569–575PubMedCrossRefGoogle Scholar
  2. 2.
    Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: 135–150PubMedCrossRefGoogle Scholar
  3. 3.
    Cespuglio R, Faradji H, Gomez ME, Jouvet M (1981) Single unit recordings in the nuclei raphe dorsalis and magnus during the sleep-waking cycle of semi-chronic prepared cats. Neurosci Lett 24: 133–138PubMedCrossRefGoogle Scholar
  4. 4.
    Morrison AR (1979) Relationships between phenomena of paradoxical sleep and their counterparts in wakefulness. Acta Neurobiol Exp (Wars) 39: 567–583Google Scholar
  5. 5.
    Morrison AR (1983) Paradoxical sleep and alert wakefulness: variations on a theme. In: M Chase, E Weitzman (eds): Sleep disorders: basic and clinical research. Spectrum, New York, 95–127Google Scholar
  6. 6.
    Morrison AR, Reiner PB (1985) A dissection of paradoxical sleep. In: D McGinty, R Drucker-Colin, AR Morrison, PL Parmeggiani (eds): Brain mechanisms of sleep. Raven Press, New York, 97–110Google Scholar
  7. 7.
    Hendricks JC, Morrison AR, Mann GL (1982) Different behaviors during paradoxical sleep without atonia depend on pontine lesion site. Brain Res 239: 81–105PubMedCrossRefGoogle Scholar
  8. 8.
    Henley K, Morrison AR (1974) A re-evaluation of the effects of lesions of the pontine tegmentum and locus coeruleus on phenomena of paradoxical sleep in the cat. Acta Neurobiol Exp (Wars) 34: 215–232Google Scholar
  9. 9.
    Jouvet M, Delorme F (1965) Locus coeruleus et sommeil paradoxal. CR Soc Biol (Paris) 159: 895–899Google Scholar
  10. 10.
    Sanford LD, Morrison AR, Mann GL, Harris JS, Yoo L, Ross RJ (1994) Sleep patterning and behaviour in cats with pontine lesions creating REM without atonia. J Sleep Res 3: 233–240PubMedGoogle Scholar
  11. 11.
    Soh K, Morita Y, Sei H (1992) Relationship between eye movements and oneiric behavior in cats. Physiol Behav 52: 553–558PubMedCrossRefGoogle Scholar
  12. 12.
    Morrison AR, Sanford LD, Ball WA, Mann GL, Ross RJ (1995) Stimulus-elicited behavior in rapid eye movement sleep without atonia. Behav Neurosci 109: 972–979PubMedCrossRefGoogle Scholar
  13. 13.
    Llinas RR, Pare D (1991) Of dreaming and wakefulness. Neuroscience 44: 521–535PubMedCrossRefGoogle Scholar
  14. 14.
    Sanford LD, Morrison AR, Ball WA, Ross RJ, Mann GL (1992) Varying expressions of alerting mechanisms in wakefulness and across sleep states. Electroencephalogr Clin Neurophysiol 82: 458–468PubMedCrossRefGoogle Scholar
  15. 15.
    Sanford LD, Morrison AR, Ball WA, Ross RJ, Mann GL (1992) Spontaneous phasic activity in the brain: differences between waves in lateral geniculate and central lateral nuclei across sleep states. J Sleep Res 1: 258–264PubMedGoogle Scholar
  16. 16.
    Sanford LD, Morrison AR, Ball WA, Ross RJ, Mann GL (1993) The amplitude of elicited PGO waves: a correlate of orienting. Electroencephalogr Clin Neurophysiol 86: 438–445PubMedCrossRefGoogle Scholar
  17. 17.
    Steriade M, McCarley R (1990) Brainstem control of wakefulness and sleep. Plenum Press, New YorkGoogle Scholar
  18. 18.
    Aston-Jones G, Bloom FE (1981) Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1: 887–900PubMedGoogle Scholar
  19. 19.
    Heym J, Trulson ME, Jacobs BL (1982) Raphe unit activity in freely moving cats: effects of phasic auditory and visual stimuli. Brain Res 232: 29–39PubMedCrossRefGoogle Scholar
  20. 20.
    Koyama Y, Jodo E, Kayama Y (1994) Sensory responsiveness of “broad-spike” neurons in the laterodorsal tegmental nucleus, locus coeruleus and dorsal raphe of awake rats: implications for cholinergic and monoaminergic neuron-specific responses. Neuroscience 63: 1021–1031PubMedCrossRefGoogle Scholar
  21. 21.
    Pascoe JP, Kapp BS (1993) Electrophysiology of the dorsolateral mesopontine reticular formation during Pavlovian conditioning in the rabbit. Neuroscience 54: 753–772PubMedCrossRefGoogle Scholar
  22. 22.
    Rasmussen K, Strecker RE, Jacobs BL (1986) Single unit response of noradrenergic, serotonergic and dopaminergic neurons in freely moving cats to simple sensory stimuli. Brain Res 369: 336–340PubMedCrossRefGoogle Scholar
  23. 23.
    Aston-Jones G, Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28: 403–450PubMedCrossRefGoogle Scholar
  24. 24.
    Aston-Jones G, Rajkowski J, Cohen J (1999) Role of locus coeruleus in attention and behavioral flexibility. Biol Psychiatry 46: 1309–1320PubMedCrossRefGoogle Scholar
  25. 25.
    Kocsis B, Varga V, Dahan L, Sik A (2006) Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci USA 103: 1059–1064PubMedCrossRefGoogle Scholar
  26. 26.
    Fornal CA, Metzler CW, Marrosu F, Ribiero-do-Valle LE, Jacobs BL (1996) A subgroup of dorsal raphe serotonergic neurons in the cat is strongly activated during oralbuccal movements. Brain Res 716: 123–133PubMedCrossRefGoogle Scholar
  27. 27.
    Trulson ME, Jacobs BL, Morrison AR (1981) Raphe unit activity during REM sleep in normal cats and in pontine lesioned cats displaying REM sleep without atonia. Brain Res 226: 75–91PubMedCrossRefGoogle Scholar
  28. 28.
    Lydic R, McCarley RW, Hobson JA (1983) The time-course of dorsal raphe discharge, PGO waves, and muscle tone averaged across multiple sleep cycles. Brain Res 274: 365–370PubMedCrossRefGoogle Scholar
  29. 29.
    Jacobs BL, Fornal CA, Wilkinson LO (1995) Serotonin and behavior: a general hypothesis. In: FE Bloom, DJ Kupfer (eds): Pschyopharmacology: the fourth generation of progress. Raven Press, New York, 461–469Google Scholar
  30. 30.
    Barbeau H, Rossignol S (1991) Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res 546: 250–260PubMedCrossRefGoogle Scholar
  31. 31.
    Jacobs BL (1976) An animal behavior model for studying central serotonergic synapses. Life Sci 19: 777–785PubMedCrossRefGoogle Scholar
  32. 32.
    White SR, Neuman RS (1980) Facilitation of spinal motoneurone excitability by 5-hydroxytryptamine and noradrenaline. Brain Res 188: 119–127PubMedCrossRefGoogle Scholar
  33. 33.
    McCall RB, Aghajanian GK (1979) Serotonergic facilitation of facial motoneuron excitation. Brain Res 169: 11–27PubMedCrossRefGoogle Scholar
  34. 34.
    Kita H, Chiken S, Tachibana Y, Nambu A (2007) Serotonin modulates pallidal neuronal activity in the awake monkey. J Neurosci 27: 75–83PubMedCrossRefGoogle Scholar
  35. 35.
    Urbain N, Creamer K, Debonnel G (2006) Electrophysiological diversity of the dorsal raphe cells across the sleep-wake cycle of the rat. J Physiol (Lond) 573: 679–695CrossRefGoogle Scholar
  36. 36.
    Kocsis B, Vertes RP (1992) Dorsal raphe neurons: synchronous discharge with the theta rhythm of the hippocampus in the freely behaving rat. J Neurophysiol 68: 1463–1467PubMedGoogle Scholar
  37. 37.
    Allers KA, Sharp T (2003) Neurochemical and anatomical identification of fast-and slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo. Neuroscience 122: 193–204PubMedCrossRefGoogle Scholar
  38. 38.
    Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133: 983–997PubMedCrossRefGoogle Scholar
  39. 39.
    Abrams JK, Johnson PL, Hollis JH, Lowry CA (2004) Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci 1018: 46–57PubMedCrossRefGoogle Scholar
  40. 40.
    Jouvet M, Michel F (1959) Correlations electromyographique du sommeil chez le chat decortique et mesencephalique chronique. C R Soc Biol 153: 422–425Google Scholar
  41. 41.
    Mikiten TH, Niebyl PH, Hendley CD (1961) EEG desynchronization during behavioral sleep associated with spike discharges from the thalamus of the cat. Fed Proc 20: 327Google Scholar
  42. 42.
    Bizzi E, Brooks DC (1963) Pontine reticular formation: relation to lateral geniculate nucleus during deep sleep. Science 141: 270–272PubMedCrossRefGoogle Scholar
  43. 43.
    Brooks DC, Bizzi, E (1963) Brain stem electrical activity during deep sleep. Arch Ital Biol 101: 648–665PubMedGoogle Scholar
  44. 44.
    Kaufman LS, Morrison AR (1981) Spontaneous and elicited PGO spikes in rats. Brain Res 214: 61–72PubMedCrossRefGoogle Scholar
  45. 45.
    Morrison AR, Pompeiano O (1966) Vestibular influences during sleep. IV. Functional relations between vestibular nuclei and lateral geniculate nucleus during desynchronized sleep. Arch Ital Biol 104: 425–458PubMedGoogle Scholar
  46. 46.
    Datta S (1997) Cellular basis of pontine ponto-geniculo-occipital wave generation and modulation. Cell Mol Neurobiol 17: 341–365PubMedCrossRefGoogle Scholar
  47. 47.
    Reiner PB, Morrison AR (1980) Pontine-geniculate-occipital spikes in the albino rat: evidence for the presence of the pontine component as revealed by cerebellar lesions. Exp Neurol 69: 61–73PubMedCrossRefGoogle Scholar
  48. 48.
    Gottesman C (1969) Etude sur les activites electrophysiologiques phasiques chez le rat. Physiol Behav 4: 495–504CrossRefGoogle Scholar
  49. 49.
    Farber J, Marks GA, Roffwarg HP (1980) Rapid eye movement sleep PGO-type waves are present in the dorsal pons of the albino rat. Science 209: 615–617PubMedCrossRefGoogle Scholar
  50. 50.
    Datta S, Siwek DF, Patterson EH, Cipolloni PB (1998) Localization of pontine PGO wave generation sites and their anatomical projections in the rat. Synapse 30: 409–423PubMedCrossRefGoogle Scholar
  51. 51.
    Bowker RM, Morrison AR (1976) The startle reflex and PGO spikes. Brain Res 102: 185–190PubMedCrossRefGoogle Scholar
  52. 52.
    Bowker RM, Morrison AR (1977) The PGO spike: An indicator of hyperalertness. In: WP Koell, P Levin (eds): Sleep. Karger, Basel, 1976, 23–27Google Scholar
  53. 53.
    Hu B, Steriade M, Deschenes M (1989) The cellular mechanism of thalamic pontogeniculo-occipital waves. Neuroscience 31: 25–35PubMedCrossRefGoogle Scholar
  54. 54.
    Singer W, Drager U (1972) Postsynaptic potentials in relay neurons of cat lateral geniculate nucleus after stimulation of the mesencephalic reticular formation. Brain Res 41: 214–220PubMedCrossRefGoogle Scholar
  55. 55.
    Singer W (1973) The effect of mesencephalic reticular stimulation on intracellular potentials of cat lateral geniculate neurons. Brain Res 61: 35–54PubMedCrossRefGoogle Scholar
  56. 56.
    Sanford LD, Silvestri AJ, Ross RJ, Morrison AR (2001) Influence of fear conditioning on elicited ponto-geniculo-occipital waves and rapid eye movement sleep. Arch Ital Biol 139: 169–183PubMedGoogle Scholar
  57. 57.
    LeDoux J (1992) Emotion and the amygdala. In: J Affleton (ed): The amygdala: Neurobiological aspects of emotion, memory and mental dysfunction. Wiley-Liss, New York, 339–351Google Scholar
  58. 58.
    Deboer T, Sanford LD, Ross RJ, Morrison AR (1998) Effects of electrical stimulation in the amygdala on ponto-geniculo-occipital waves in rats. Brain Res 793: 305–310PubMedCrossRefGoogle Scholar
  59. 59.
    Davis M (1992) The role of the amygdala in fear and anxiety. Annu Rev Neurosci 15: 353–375PubMedCrossRefGoogle Scholar
  60. 60.
    Davis M (1992) The role of the amygdala in fear-potentiated startle: implications for animal models of anxiety. Trends Pharmacol Sci 13: 35–41PubMedCrossRefGoogle Scholar
  61. 61.
    Rogawski MA, Aghajanian GK (1980) Norepinephrine and serotonin: opposite effects on the activity of lateral geniculate neurons evoked by optic pathway stimulation. Exp Neurol 69: 678–694PubMedCrossRefGoogle Scholar
  62. 62.
    Kayama Y, Shimada S, Hishikawa Y, Ogawa T (1989) Effects of stimulating the dorsal raphe nucleus of the rat on neuronal activity in the dorsal lateral geniculate nucleus. Brain Res 489: 1–11PubMedCrossRefGoogle Scholar
  63. 63.
    Brooks DC, Gershon MD (1971) Eye movement potentials in the oculomotor and visual systems of the cat: a comparison of reserpine induced waves with those present during wakefulness and rapid eye movement sleep. Brain Res 27: 223–239PubMedCrossRefGoogle Scholar
  64. 64.
    Brooks DC, Gershon MD (1972) An analysis of the effect of reserpine upon pontogeniculo-ooccipital wave activity in the cat. Neuropharmacology 11: 499–510PubMedCrossRefGoogle Scholar
  65. 65.
    Brooks DC, Gershon MD, Simon RP (1972) Brain stem serotonin depletion and ponto-geniculo-occipital wave activity in the cat treated with reserpine. Neuropharmacology 11: 511–520PubMedCrossRefGoogle Scholar
  66. 66.
    Jacobs BL, Henriksen SJ, Dement WC (1972) Neurochemical bases of the PGO wave. Brain Res 48: 406–411PubMedCrossRefGoogle Scholar
  67. 67.
    Delorme F, Jeannerod M, Jouvet M (1965) Effets remarquables de la reserpine sur l’activites EEG phasique ponto-geniculo-occipitale. C R Soc Biol (Paris) 159: 900–903Google Scholar
  68. 68.
    Kaufman LS (1983) Parachlorophenylalanine does not affect pontine-geniculate-occipital waves in rats despite significant effects on other sleep-waking parameters. Exp Neurol 80: 410–417PubMedCrossRefGoogle Scholar
  69. 69.
    Marks GA, Roffwarg HP (1988) PGO waves and insomnia in PCPA-treated rats. Pharmacol Biochem Behav 31: 509–513PubMedCrossRefGoogle Scholar
  70. 70.
    Depoortere H, Riou-Merle F (1988) Electropharmacological characterization of serotonin receptors by PGO spikes in cats and by sleep-wakefulness cycle in rats. In: WP Koella, F Obal, H Schulz, P Visser (eds): Sleep’ 86. Gustav Fischer, Stuttgart, 349–351Google Scholar
  71. 71.
    Simon RP, Gershon MD, Brooks DC (1973) The role of the raphe nuclei in the regulation of ponto-geniculo-occipital wave activity. Brain Res 58: 313–330PubMedCrossRefGoogle Scholar
  72. 72.
    Jacobs BL, Asher R, Dement WC (1973) Electrophysiological and behavioral effects of electrical stimulation on the raphe nuclei in cats. Physiol Behav 11: 489–495CrossRefGoogle Scholar
  73. 73.
    Portas CM, Thakkar M, Rainnie D, McCarley RW (1996) Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci 16: 2820–2828PubMedGoogle Scholar
  74. 74.
    Quattrochi JJ, Mamelak AN, Binder D, Williams J, Hobson JA (1993) Dose-related suppression of REM sleep and PGO waves by the serotonin-1 agonist eltoprazine. Neuropsychopharmacology 8: 7–13PubMedGoogle Scholar
  75. 75.
    Jones BE (1991) Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40: 637–656PubMedCrossRefGoogle Scholar
  76. 76.
    Steriade M, Pare D, Datta S, Oakson G, Curro Dossi R (1990) Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J Neurosci 10: 2560–2579PubMedGoogle Scholar
  77. 77.
    McCarley RW, Nelson JP, Hobson JA (1978) Ponto-geniculo-occipital (PGO) burst neurons: correlative evidence for neuronal generators of PGO waves. Science 201: 269–272PubMedCrossRefGoogle Scholar
  78. 78.
    Kayama Y, Ohta M, Jodo E (1992) Firing of “possibly” cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Res 569: 210–220PubMedCrossRefGoogle Scholar
  79. 79.
    el Mansari M, Sakai K, Jouvet M (1989) Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp Brain Res 76: 519–529PubMedCrossRefGoogle Scholar
  80. 80.
    Sakai K, Jouvet M (1980) Brain stem PGO-on cells projecting directly to the cat dorsal lateral geniculate nucleus. Brain Res 194: 500–505PubMedCrossRefGoogle Scholar
  81. 81.
    McCarley R, Hobson J (1975 ) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189: 58–60PubMedCrossRefGoogle Scholar
  82. 82.
    McCarley R, Massaquoi S (1992 ) Neurobiological structure of the revised limit cycle reciprocal interaction model of REM cycle control J Sleep Res 1: 132–137PubMedGoogle Scholar
  83. 83.
    Luebke JI, Greene RW, Semba K, Kamondi A, McCarley RW, Reiner PB (1992) Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci USA 89: 743–747PubMedCrossRefGoogle Scholar
  84. 84.
    Sakai K, el Mansari M, Jouvet M (1990) Inhibition by carbachol microinjections of presumptive cholinergic PGO-on neurons in freely moving cats. Brain Res 527: 213–223PubMedCrossRefGoogle Scholar
  85. 85.
    Koyama Y, Sakai K (2000) Modulation of presumed cholinergic mesopontine tegmental neurons by acetylcholine and monoamines applied iontophoretically in unanesthetized cats. Neuroscience 96: 723–733PubMedCrossRefGoogle Scholar
  86. 86.
    Nelson JP, McCarley RW, Hobson JA (1983) REM sleep burst neurons, PGO waves, and eye movement information. J Neurophysiol 50: 784–797PubMedGoogle Scholar
  87. 87.
    Sanford LD, Ross RJ, Seggos AE, Morrison AR, Ball WA, Mann GL (1994) Central administration of two 5-HT receptor agonists: effect on REM sleep initiation and PGO waves. Pharmacol Biochem Behav 49: 93–100PubMedCrossRefGoogle Scholar
  88. 88.
    Horner RL, Sanford LD, Annis D, Pack AI, Morrison AR (1997) Serotonin at the laterodorsal tegmental nucleus suppresses rapid-eye-movement sleep in freely behaving rats. J Neurosci 17: 7541–7552PubMedGoogle Scholar
  89. 89.
    Sanford LD, Tejani-Butt SM, Ross RJ, Morrison AR (1996) Elicited PGO waves in rats: lack of 5-HT1A inhibition in putative pontine generator region. Pharmacol Biochem Behav 53: 323–327PubMedCrossRefGoogle Scholar
  90. 90.
    Datta S, Mavanji V, Patterson EH, Ulloor J (2003) Regulation of rapid eye movement sleep in the freely moving rat: local microinjection of serotonin, norepinephrine, and adenosine into the brainstem. Sleep 26: 513–520PubMedGoogle Scholar
  91. 91.
    Datta S (2000) Avoidance task training potentiates phasic pontine-wave density in the rat: A mechanism for sleep-dependent plasticity. J Neurosci 20: 8607–8613PubMedGoogle Scholar
  92. 92.
    Datta S, Saha S, Prutzman SL, Mullins OJ, Mavanji V (2005) Pontine-wave generator activation-dependent memory processing of avoidance learning involves the dorsal hippocampus in the rat. J Neurosci Res 80: 727–737PubMedCrossRefGoogle Scholar
  93. 93.
    Mavanji V, Ulloor J, Saha S, Datta S (2004) Neurotoxic lesions of phasic pontinewave generator cells impair retention of 2-way active avoidance memory. Sleep 27: 1282–1292PubMedGoogle Scholar
  94. 94.
    Marks GA, Farber J, Roffwarg HP (1980) Metencephalic localization of ponto-geniculo-occipital waves in the albino rat. Exp Neurol 69: 667–677PubMedCrossRefGoogle Scholar
  95. 95.
    Marks GA, Farber J, Rubinstein M, Roffwarg HP (1980) Demonstration of pontogeniculo-occipital waves in the albino rat. Exp Neurol 69: 648–666PubMedCrossRefGoogle Scholar
  96. 96.
    Sanford LD, Tejani-Butt SM, Ross RJ, Morrison AR (1995) Amygdaloid control of alerting and behavioral arousal in rats: involvement of serotonergic mechanisms. Arch Ital Biol 134: 81–99PubMedGoogle Scholar
  97. 97.
    Morilak DA, Ciaranello RD (1993) 5-HT2 receptor immunoreactivity on cholinergic neurons of the pontomesencephalic tegmentum shown by double immunofluorescence. Brain Res 627: 49–54PubMedCrossRefGoogle Scholar
  98. 98.
    Morilak DA, Somogyi P, Lujan-Miras R, Ciaranello RD (1994) Neurons expressing 5-HT2 receptors in the rat brain: neurochemical identification of cell types by immunocytochemistry. Neuropsychopharmacology 11: 157–166PubMedCrossRefGoogle Scholar
  99. 99.
    Fay R, Kubin L (2001) 5-HT(2A) receptor-like protein is present in small neurons located in rat mesopontine cholinergic nuclei, but absent from cholinergic neurons. Neurosci Lett 314: 77–81PubMedCrossRefGoogle Scholar
  100. 100.
    Andrade R (1998) Regulation of membrane excitability in the central nervous system by serotonin receptor subtypes. Ann N Y Acad Sci 861: 190–203PubMedCrossRefGoogle Scholar
  101. 101.
    Amici R, Sanford LD, Kearney K, McInerney B, Ross RJ, Horner RL, Morrison AR (2004) A serotonergic (5-HT2) receptor mechanism in the laterodorsal tegmental nucleus participates in regulating the pattern of rapid-eye-movement sleep occurrence in the rat. Brain Res 996: 9–18PubMedCrossRefGoogle Scholar
  102. 102.
    Ross RJ, Peymer SI, Sanford LD, Ball WA, Morrison AR (1991) REM sleep suppression induced by serotonin uptake blockage: Evidence for a type 2 receptor mechanism. Soc Neuroscience Abstr 17: 879Google Scholar
  103. 103.
    Sommerfelt L, Ursin R (1993) The 5-HT2 antagonist ritanserin decreases sleep in cats. Sleep 16: 15–22PubMedGoogle Scholar
  104. 104.
    Sanford LD, Hunt WK, Ross RJ, Pack AI, Morrison AR (1998) Central administration of a 5-HT2 receptor agonist and antagonist: lack of effect on rapid eye movement sleep and PGO waves. Sleep Res Online 1: 80–86PubMedGoogle Scholar
  105. 105.
    Humphrey PP, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14: 233–236PubMedCrossRefGoogle Scholar
  106. 106.
    Beer MS, Middlemiss DN, McAllister G (1993) 5-HT1-like receptors: six down and still counting. Trends Pharmacol Sci 14: 228–231PubMedCrossRefGoogle Scholar
  107. 107.
    Cornwall J, Cooper JD, Phillipson OT (1990) Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res Bull 25: 271–284PubMedCrossRefGoogle Scholar
  108. 108.
    Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro-and antero-grade transport and immunohistochemical study. J Comp Neurol 323: 387–410PubMedCrossRefGoogle Scholar
  109. 109.
    Steininger TL, Wainer BH, Blakely RD, Rye DB (1997) Serotonergic dorsal raphe nucleus projections to the cholinergic and noncholinergic neurons of the pedunculopontine tegmental region: a light and electron microscopic anterograde tracing and immunohistochemical study. J Comp Neurol 382: 302–322PubMedCrossRefGoogle Scholar
  110. 110.
    Honda T, Semba K (1994) Serotonergic synaptic input to cholinergic neurons in the rat mesopontine tegmentum. Brain Res 647: 299–306PubMedCrossRefGoogle Scholar
  111. 111.
    Rodriquez-Veiga E, Rodrigo-Angulo ML, deAndres I, Reinoso-Suarez F (1992) Connections of the raphe nuclei with the dorsolateral mesopontine tegmentum. J Sleep Res 1: 197CrossRefGoogle Scholar
  112. 112.
    Rodrigo-Angulo ML, Rodriguez-Veiga E, Reinoso-Suarez F (2000) Serotonergic connections to the ventral oral pontine reticular nucleus: implication in paradoxical sleep modulation. J Comp Neurol 418: 93–105PubMedCrossRefGoogle Scholar
  113. 113.
    Petrov T, Krukoff TL, Jhamandas JH (1992) The hypothalamic paraventricular and lateral parabrachial nuclei receive collaterals from raphe nucleus neurons: a combined double retrograde and immunocytochemical study. J Comp Neurol 318: 18–26PubMedCrossRefGoogle Scholar
  114. 114.
    Datta S, Calvo JM, Quattrochi J, Hobson JA (1992) Cholinergic microstimulation of the peribrachial nucleus in the cat. I. Immediate and prolonged increases in ponto-geniculo-occipital waves. Arch Ital Biol 130: 263–284PubMedGoogle Scholar
  115. 115.
    Calvo JM, Badillo S, Morales-Ramirez M, Palacios-Salas P (1987) The role of the temporal lobe amygdala in ponto-geniculo-occipital activity and sleep organization in cats. Brain Res 403: 22–30PubMedCrossRefGoogle Scholar
  116. 116.
    Morrison AR, Sanford LD, Ross RJ (2000) The amygdala: a critical modulator of sensory influence on sleep. Biol Signals Recept 9: 283–296PubMedCrossRefGoogle Scholar
  117. 117.
    Rueter LE, Jacobs BL (1996) Changes in forebrain serotonin at the light-dark transition: correlation with behaviour. Neuroreport 7: 1107–1111PubMedCrossRefGoogle Scholar
  118. 118.
    Jha SK, Ross RJ, Morrison AR (2005) Sleep-related neurons in the central nucleus of the amygdala of rats and their modulation by the dorsal raphe nucleus. Physiol Behav 86: 415–426PubMedCrossRefGoogle Scholar
  119. 119.
    LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23: 155–184PubMedCrossRefGoogle Scholar
  120. 120.
    Rolls E (1992) Neurophysiology and functions of the primate amygdala. In: J Aggleton (ed): The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, 143–165Google Scholar
  121. 121.
    Rosen JB, Schulkin J (1998) From normal fear to pathological anxiety. Psychol Rev 105: 325–350PubMedCrossRefGoogle Scholar
  122. 122.
    Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6: 13–34PubMedCrossRefGoogle Scholar
  123. 123.
    Rosen JB, Donley MP (2006) Animal studies of amygdala function in fear and uncertainty: relevance to human research. Biol Psychol 73: 49–60PubMedCrossRefGoogle Scholar
  124. 124.
    Ursin H (1960) Subcortical structures mediating the attention response induced by amygdala stimulation. Exp Neurol 2: 109–122PubMedCrossRefGoogle Scholar
  125. 125.
    Applegate CD, Kapp BS, Underwood MD, McNall CL (1983) Autonomic and somatomotor effects of amygdala central N. stimulation in awake rabbits. Physiol Behav 31: 353–360PubMedCrossRefGoogle Scholar
  126. 126.
    Ursin H, Kaada BR (1960) Functional localization within the amygdaloid complex in the cat. Electroencephalogr Clin Neurophysiol 12: 1–20PubMedCrossRefGoogle Scholar
  127. 127.
    Cape EG, Manns ID, Alonso A, Beaudet A, Jones BE (2000) Neurotensin-induced bursting of cholinergic basal forebrain neurons promotes gamma and theta cortical activity together with waking and paradoxical sleep. J Neurosci 20: 8452–8461PubMedGoogle Scholar
  128. 128.
    Amaral D, Price J, Pitkanen A, Carmichael S (1992) Anatomical organization of the primate amydaloid complex. In: J Aggleton (ed): The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, 1–66Google Scholar
  129. 129.
    Kapp B, Whalen P, Supple W, Pascoe J (1992) Amygdaloid contributions to conditioned arousal and sensory information processing. In: J Aggleton (ed): The amygdala: Neurobiological aspects of emotion, memory, and mental dysfunction. Wiley-Liss, New York, 229–254Google Scholar
  130. 130.
    Holland PC, Gallagher M (1999) Amygdala circuitry in attentional and representational processes. Trends Cogn Sci 3: 65–73PubMedCrossRefGoogle Scholar
  131. 131.
    LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20: 937–945PubMedCrossRefGoogle Scholar
  132. 132.
    Knight DC, Smith CN, Cheng DT, Stein EA, Helmstetter FJ (2004) Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning. Cogn Affect Behav Neurosci 4: 317–325PubMedGoogle Scholar
  133. 133.
    Sterpenich V, D’Argembeau A, Desseilles M, Balteau E, Albouy G, Vandewalle G, Degueldre C, Luxen A, Collette F, Maquet P (2006) The locus ceruleus is involved in the successful retrieval of emotional memories in humans. J Neurosci 26: 7416–7423PubMedCrossRefGoogle Scholar
  134. 134.
    Smith CT, Miskiman DE (1975) Increases in paradoxical sleep as a result of amygdaloid stimulation. Physiol Behav 15: 17–19PubMedCrossRefGoogle Scholar
  135. 135.
    Sanford LD, Parris B, Tang X (2002) GABAergic regulation of the central nucleus of the amygdala: implications for sleep control. Brain Res 956: 276–284PubMedCrossRefGoogle Scholar
  136. 136.
    Tang X, Yang L, Liu X, Sanford LD (2005) Influence of tetrodotoxin inactivation of the central nucleus of the amygdala on sleep and arousal. Sleep 28: 923–930PubMedGoogle Scholar
  137. 137.
    Deboer T, Ross RJ, Morrison AR, Sanford LD (1999) Electrical stimulation of the amygdala increases the amplitude of elicited ponto-geniculo-occipital waves. Physiol Behav 66: 119–124PubMedCrossRefGoogle Scholar
  138. 138.
    Silvestri AJ, Kapp BS (1998) Amygdaloid modulation of mesopontine peribrachial neuronal activity: implications for arousal. Behav Neurosci 112: 571–588PubMedCrossRefGoogle Scholar
  139. 139.
    Sanford LD, Yang L, Liu X, Tang X (2006) Effects of tetrodotoxin (TTX) inactivation of the central nucleus of the amygdala (CNA) on dark period sleep and activity. Brain Res 1084: 80–88PubMedCrossRefGoogle Scholar
  140. 140.
    Zhu GQ, Zhong MZ, Zhang JX, Zhao LZ, Ke DP, Wang M, Shi L (1998) Role of basolateral amygdaloid nuclei in sleep and wakeful state regulation. Sheng Li Xue Bao 50: 688–692PubMedGoogle Scholar
  141. 141.
    Dringenberg HC, Vanderwolf CH (1996) Cholinergic activation of the electrocorticogram: an amygdaloid activating system. Exp Brain Res 108: 285–296PubMedCrossRefGoogle Scholar
  142. 142.
    Kreindler A, Steriade M (1964) EEG patterns of arousal and sleep induced by stimulating various amygdaloid levels in the cat. Arch Ital Biol 102: 576–586PubMedGoogle Scholar
  143. 143.
    Benca RM, Obermeyer WH, Shelton SE, Droster J, Kalin NH (2000) Effects of amygdala lesions on sleep in rhesus monkeys. Brain Res 879: 130–138PubMedCrossRefGoogle Scholar
  144. 144.
    Bordi F, LeDoux J, Clugnet MC, Pavlides C (1993) Single-unit activity in the lateral nucleus of the amygdala and overlying areas of the striatum in freely behaving rats: rates, discharge patterns, and responses to acoustic stimuli. Behav Neurosci 107: 757–7691PubMedCrossRefGoogle Scholar
  145. 45.
    Jacobs BL, McGinty DJ (1971) Amygdala unit activity during sleep and waking. Exp Neurol 33: 1–15PubMedCrossRefGoogle Scholar
  146. 146.
    Jacobs BL, McGinty DJ (1972) Participation of the amygdala in complex stimulus recognition and behavioral inhibition: Evidence from unit studies. Brain Res 36: 431–436PubMedCrossRefGoogle Scholar
  147. 147.
    Gaudreau H, Pare D (1996) Projection neurons of the lateral amygdaloid nucleus are virtually silent throughout the sleep-waking cycle. J Neurophysiol 75: 1301–1305PubMedGoogle Scholar
  148. 148.
    Pare D, Gaudreau H (1996) Projection cells and interneurons of the lateral and basolateral amygdala: distinct firing patterns and differential relation to theta and delta rhythms in conscious cats. J Neurosci 16: 3334–3350PubMedGoogle Scholar
  149. 149.
    Frysinger RC, Zhang JX, Harper RM (1988) Cardiovascular and respiratory relationships with neuronal discharge in the central nucleus of the amygdala during sleep-waking states. Sleep 11: 317–332PubMedGoogle Scholar
  150. 150.
    Maquet P, Peters J, Aerts J, Delfiore G, Degueldre C, Luxen A, Franck G (1996) Functional neuroanatomy of human rapid-eye-movement sleep and dreaming. Nature 383: 163–166PubMedCrossRefGoogle Scholar
  151. 151.
    Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22: 977–990PubMedGoogle Scholar
  152. 152.
    Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24: 726–731PubMedCrossRefGoogle Scholar
  153. 153.
    Lee HS, Eum YJ, Jo SM, Waterhouse BD (2007) Projection patterns from the amygdaloid nuclear complex to subdivisions of the dorsal raphe nucleus in the rat. Brain Res 1143: 116–125PubMedCrossRefGoogle Scholar
  154. 154.
    Fisher PM, Meltzer CC, Ziolko SK, Price JC, Moses-Kolko EL, Berga SL, Hariri AR (2006) Capacity for 5-HT1A-mediated autoregulation predicts amygdala reactivity. Nat Neurosci 9: 1362–1363PubMedCrossRefGoogle Scholar
  155. 155.
    Wang RY, Aghajanian GK (1977) Inhibition of neurons in the amygdala by dorsal raphe stimulation: mediation through a direct serotonergic pathway. Brain Res 120: 85–102PubMedCrossRefGoogle Scholar
  156. 156.
    Steinbusch HW (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6: 557–618PubMedCrossRefGoogle Scholar
  157. 157.
    Peyron C, Petit JM, Rampon C, Jouvet M, Luppi PH (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82: 443–468PubMedCrossRefGoogle Scholar
  158. 158.
    Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60: 13–35PubMedCrossRefGoogle Scholar
  159. 159.
    Freedman LJ, Shi C (2001) Monoaminergic innervation of the macaque extended amygdala. Neuroscience 104: 1067–1084PubMedCrossRefGoogle Scholar
  160. 160.
    Hensler JG (2006) Serotonergic modulation of the limbic system. Neurosci Biobehav Rev 30: 203–214PubMedCrossRefGoogle Scholar
  161. 161.
    Bauman MD, Amaral DG (2005) The distribution of serotonergic fibers in the macaque monkey amygdala: an immunohistochemical study using antisera to 5-hydroxytryptamine. Neuroscience 136: 193–203PubMedCrossRefGoogle Scholar
  162. 162.
    O’Rourke H, Fudge JL (2006) Distribution of serotonin transporter labeled fibers in amygdaloid subregions: implications for mood disorders. Biol Psychiatry 60: 479–490PubMedCrossRefGoogle Scholar
  163. 163.
    Rainnie DG (1999) Serotonergic modulation of neurotransmission in the rat basolateral amygdala. J Neurophysiol 82: 69–85PubMedGoogle Scholar
  164. 164.
    Aznar S, Qian Z, Shah R, Rahbek B, Knudsen GM (2003) The 5-HT1A serotonin receptor is located on calbindin-and parvalbumin-containing neurons in the rat brain. Brain Res 959: 58–67PubMedCrossRefGoogle Scholar
  165. 165.
    Xu T, Pandey SC (2000) Cellular localization of serotonin2A (5HT2A) receptors in the rat brain. Brain Res Bull 51: 499–505PubMedCrossRefGoogle Scholar
  166. 166.
    McDonald AJ, Mascagni F (2007) Neuronal localization of 5-HT type 2A receptor immunoreactivity in the rat basolateral amygdala. Neuroscience 146: 306–320PubMedCrossRefGoogle Scholar
  167. 167.
    Mascagni F, McDonald AJ (2007) A novel subpopulation of 5-HT type 3A receptor subunit immunoreactive interneurons in the rat basolateral amygdala. Neuroscience 144: 1015–1024PubMedCrossRefGoogle Scholar
  168. 168.
    Davis M (1998) Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44: 1239–1247PubMedCrossRefGoogle Scholar
  169. 169.
    Levita L, Hammack SE, Mania I, Li XY, Davis M, Rainnie DG (2004) 5-hydroxytryptamine1 A-like receptor activation in the bed nucleus of the stria terminalis: electrophysiological and behavioral studies. Neuroscience 128: 583–596PubMedCrossRefGoogle Scholar
  170. 170.
    Stutzmann GE, LeDoux JE (1999) GABAergic antagonists block the inhibitory effects of serotonin in the lateral amygdala: a mechanism for modulation of sensory inputs related to fear conditioning. J Neurosci 19: RC8PubMedGoogle Scholar
  171. 171.
    Stein C, Davidowa H, Albrecht D (2000) 5-HT(1A) receptor-mediated inhibition and 5-HT(2) as well as 5-HT(3) receptor-mediated excitation in different subdivisions of the rat amygdala. Synapse 38: 328–337PubMedCrossRefGoogle Scholar
  172. 172.
    Kishimoto K, Koyama S, Akaike N (2000) Presynaptic modulation of synaptic gamma-aminobutyric acid transmission by tandospirone in rat basolateral amygdala. Eur J Pharmacol 407: 257–265PubMedCrossRefGoogle Scholar
  173. 173.
    Koyama S, Kubo C, Rhee JS, Akaike N (1999) Presynaptic serotonergic inhibition of GABAergic synaptic transmission in mechanically dissociated rat basolateral amygdala neurons. J Physiol 518: 525–538PubMedCrossRefGoogle Scholar
  174. 174.
    Huang YY, Kandel ER (2007) 5-Hydroxytryptamine induces a protein kinase A/mitogen-activated protein kinase-mediated and macromolecular synthesis-dependent late phase of long-term potentiation in the amygdala. J Neurosci 27: 3111–3119PubMedCrossRefGoogle Scholar
  175. 175.
    Cheng LL, Wang SJ, Gean PW (1998) Serotonin depresses excitatory synaptic transmission and depolarization-evoked Ca2+ influx in rat basolateral amygdala via 5-HT1A receptors. Eur J Neurosci 10: 2163–2172PubMedCrossRefGoogle Scholar
  176. 176.
    Gao J, Zhang JX, Xu TL (2002) Modulation of serotonergic projection from dorsal raphe nucleus to basolateral amygdala on sleep-waking cycle of rats. Brain Res 945: 60–70PubMedCrossRefGoogle Scholar
  177. 177.
    Rueter LE, Jacobs BL (1996) A microdialysis examination of serotonin release in the rat forebrain induced by behavioral/environmental manipulations. Brain Res 739: 57–69PubMedCrossRefGoogle Scholar
  178. 178.
    Pare D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92: 1–9PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Larry D. Sanford
    • 1
  • Richard J. Ross
    • 2
    • 3
    • 4
  • Adrian R. Morrison
    • 2
    • 3
  1. 1.Sleep Research Laboratory, Department of Pathology and AnatomyEastern Virginia Medical SchoolNorfolkUSA
  2. 2.Laboratory for Study of the Brain in Sleep, Department of Animal Biology, The School of Veterinary MedicineThe University of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Psychiatry, The School of MedicineThe University of PennsylvaniaPhiladelphiaUSA
  4. 4.VA Medical CenterPhiladelphiaUSA

Personalised recommendations