Topographic organization and chemoarchitecture of the dorsal raphe nucleus and the median raphe nucleus

  • Christopher A. Lowry
  • Andrew K. Evans
  • Paul J. Gasser
  • Matthew W. Hale
  • Daniel R. Staub
  • Anantha Shekhar


The role of serotonergic systems in regulation of behavioral arousal and sleep-wake cycles is complex and may depend on both the receptor subtype and brain region involved. Increasing evidence points toward the existence of multiple topographically organized subpopulations of serotonergic neurons that receive unique afferent connections, give rise to unique patterns of projections to forebrain systems, and have unique functional properties. A better understanding of the properties of these subpopulations of serotonergic neurons may aid in the understanding of the role of serotonergic systems in regulation of behavioral arousal, sleep-wake cycles and other physiological and behavioral responses attributed to serotonin. In this chapter, we outline evidence for multiple serotonergic systems within the midbrain and pontine raphe complex that can be defined based on cytoarchitectonic and hodological properties. In addition, we describe how these topographically organized groups of serotonergic neurons correspond to the six major ascending serotonergic tracts innervating the forebrain.


Raphe Nucleus Dorsal Raphe Nucleus Paradoxical Sleep Median Raphe Medial Longitudinal Fasciculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ursin R (2002) Serotonin and sleep. Sleep Med Rev 6: 55–69PubMedCrossRefGoogle Scholar
  2. 2.
    Rasmussen K, Heym J, Jacobs BL (1984) Activity of serotonin-containing neurons in nucleus centralis superior of freely moving cats. Exp Neurol 83: 302–317PubMedGoogle Scholar
  3. 3.
    Beck SG, Pan YZ, Akanwa AC, Kirby LG (2004) Median and dorsal raphe neurons are not electrophysiologically identical. J Neurophysiol 91: 994–1005PubMedCrossRefGoogle Scholar
  4. 4.
    Blier P, Serrano A, Scatton B (1990) Differential responsiveness of the rat dorsal and median raphe 5-HT systems to 5-HT receptor agonists and p-chloroamphetamine. Synapse 5: 120–133PubMedCrossRefGoogle Scholar
  5. 5.
    Sinton CM, Fallon SL (1988) Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT receptor. Eur J Pharmacol 157: 173–181PubMedCrossRefGoogle Scholar
  6. 6.
    Kocsis B, Varga V, Dahan L, Sik A (2006) Serotonergic neuron diversity: identification of raphe neurons with discharges time-locked to the hippocampal theta rhythm. Proc Natl Acad Sci USA 103: 1059–1064PubMedCrossRefGoogle Scholar
  7. 7.
    Buzsaki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31: 551–570PubMedCrossRefGoogle Scholar
  8. 8.
    Vandermaelen CP, Aghajanian GK (1983) Electrophysiological and pharmacological characterization of serotonergic dorsal raphe neurons recorded extracellularly and intracellularly in rat brain slices. Brain Res 289: 109–119PubMedCrossRefGoogle Scholar
  9. 9.
    Sakai K, Crochet S (2001) Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states. Neuroscience 104: 1141–1155PubMedCrossRefGoogle Scholar
  10. 10.
    Allers KA, Sharp T (2003) Neurochemical and anatomical identification of fast-and slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo. Neuroscience 122: 193–204PubMedCrossRefGoogle Scholar
  11. 11.
    Shima K, Nakahama H, Yamamoto M (1986) Firing properties of two types of nucleus raphe dorsalis neurons during the sleep-waking cycle and their responses to sensory stimuli. Brain Res 399: 317–326PubMedCrossRefGoogle Scholar
  12. 12.
    Hajos M, Allers KA, Jennings K, Sharp T, Charette G, Sik A, Kocsis B (1995) Neurochemical identification of stereotypic burst-firing neurons in the rat dorsal raphe nucleus using juxtacellular labelling methods. Eur J Neurosci 25: 119–126CrossRefGoogle Scholar
  13. 13.
    Urbain N, Creamer K, Debonnel G (2006) Electrophysiological diversity of the dorsal raphe cells across the sleep-wake cycle of the rat. J Physiol 573: 679–695PubMedCrossRefGoogle Scholar
  14. 14.
    Peyron C, Petit J-M, Rampon C, Jouvet M, Luppi P-H (1998) Forebrain afferents to the rat dorsal raphe nucleus demonstrated by retrograde and anterograde tracing methods. Neuroscience 82: 443–468PubMedCrossRefGoogle Scholar
  15. 15.
    Peyron C, Luppi PH, Fort P, Rampon C, Jouvet M (1996) Lower brainstem catecholamine afferents to the rat dorsal raphe nucleus. J Comp Neurol 364: 402–413PubMedCrossRefGoogle Scholar
  16. 16.
    Imai H, Steindler da, Kitai ST (1986) The organization of divergent axonal projections from the midbrain raphe nuclei in the rat. J Comp Neurol 243: 363–380PubMedCrossRefGoogle Scholar
  17. 17.
    Abrams JK, Johnson PL, Hollis JH, Lowry CA (2004) Anatomical and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci 1018: 46–57PubMedCrossRefGoogle Scholar
  18. 18.
    Lowry CA, Johnson PL, Hay-Schmidt A, Mikkelsen J, Shekhar A (2005) Modulation of anxiety circuits by serotonergic systems. Stress 8: 233–246PubMedCrossRefGoogle Scholar
  19. 19.
    Azmitia EC (1978) The serotonin-producing neurons of the midbrain median and dorsal raphe nuclei. In LL Iversen, SD Iversen, SH Snyder (eds) Handbook of psychoparmacology, vol. 9. (Chemical Pathways in the Brain) Plenum Press, New York, 233–314Google Scholar
  20. 20.
    Azmitia EC Jr, Segal M (1978) An autoradiographic analysis of the differential ascending projection of the dorsal and median raphe nuclei in the rat. J Comp Neurol 179: 651–668CrossRefGoogle Scholar
  21. 21.
    Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 232: 1–55Google Scholar
  22. 22.
    Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn.Google Scholar
  23. 23.
    Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 165–229PubMedGoogle Scholar
  24. 24.
    Lidov HG, Molliver ME (1982) Immunohistochemical study of the development of serotonergic neurons in the rat CNS. Brain Res Bull 9: 559–604PubMedCrossRefGoogle Scholar
  25. 25.
    Wallace JA, Lauder JM (1983) Development of the serotonergic system in the rat embryo: An immunocytochemical study. Brain Res Bull 10: 459–479PubMedCrossRefGoogle Scholar
  26. 26.
    Azmitia EC, Gannon PJ (1986) Anatomy of the serotonergic system in the primate and sub-primate brain. Adv Neurol 43: 407–468PubMedGoogle Scholar
  27. 27.
    Steinbusch HWM (1984) Serotonin-immunoreactive neurons and their projections in the CNS. In: A Björklund, T Hökfelt, MJ Kuhar (eds): Handbook of chemical neuroanatomy, Vol. 3, Part II. Classical transmitters and transmitter receptors in the CNS. Elsevier, Amsterdam, 68–125Google Scholar
  28. 28.
    Vertes RP, Crane AM (1997) Distribution, quantification, and morphological characteristics of serotonin-immunoreactive cells of the supralemniscal nucleus (B9) and pontomesencephalic reticular formation in the rat. J Comp Neurol 378: 411–424PubMedCrossRefGoogle Scholar
  29. 29.
    Groenewegen HJ, Ahlenius S, Haber SN, Kowall NW, Nauta WJH (1986) Cytoarchitecture, fiber connections, and some histochemical aspects of the interpeduncular nucleus in the rat. J Comp Neurol 249: 65–102PubMedCrossRefGoogle Scholar
  30. 30.
    Montone KT, Fass B, Hamill GS (1988) Serotonergic and nonserotonergic projections from the rat interpeduncular nucleus to the septum, hippocampal formation, and raphe: A combined immunocytochemical and fluorescent retrograde labelling study of neurons in the apical subnucleus. Brain Res Bull 20: 233–240PubMedCrossRefGoogle Scholar
  31. 31.
    Li Y-Q, Jai H-G, Rao Z-R, Shi J-W (1990) Serotonin-, substance P-or leucine-enkephalin-containing neurons in the midbrain periaqueductal gray and nucleus raphe dorsalis send projection fibers to the central amygdaloid nucleus in the rat. Neurosci Lett 120: 124–127PubMedCrossRefGoogle Scholar
  32. 32.
    Shipley MT, McLean JH, Behbehani MM (1987) Heterogeneous distribution of neurotensin-like immunoreactive neurons and fibers in the midbrain periaqueductal gray of the rat. J Neurosci 7: 2025–2034PubMedGoogle Scholar
  33. 33.
    Moss MS, Glazer EJ, Basbaum AI (1983) The peptidergic organization of the cat periaqueductal gray. I. The distribution of immunoreactive enkephalin-containing neurons and terminals. J Neurosci 3: 603–616PubMedGoogle Scholar
  34. 34.
    Beitz AJ, Shepard RD, Wells WE (1983) The periaqueductal gray-raphe magnus projection contains somatostatin, neurotensin, and serotonin but not cholecystokinin. Brain Res 261: 132–137PubMedCrossRefGoogle Scholar
  35. 35.
    Andrezik JA, Beitz AJ (1985) Reticular formation, central gray and related tegmental nuclei. In Paxinos G (ed): The rat nervous system, vol. 2. Academic Press, San Diego, 1–28Google Scholar
  36. 36.
    Reichling DB, Basbaum AI (1990) Contribution of brainstem GABAergic circuitry to descending antinociceptive controls: I. GABA-immunoreactive projection neurons in the periaqueductal gray and nucleus raphe magnus. J Comp Neurol 302: 370–377PubMedCrossRefGoogle Scholar
  37. 37.
    Beitz AJ (1990) Relationship of glutamate and aspartate to the periaqueductal grayraphe magnus projection: analysis using immunocytochemistry and microdialysis. J Histochem Cytochem 38: 1755–1765PubMedGoogle Scholar
  38. 38.
    Johnson MD, Ma PM (1993) Localization of NADPH diaphorase activity in monoaminergic neurons of the rat brain. J Comp Neurol 332: 391–406PubMedCrossRefGoogle Scholar
  39. 39.
    Rodrigo J, Springall DR, Uttenthal O, Bentura ML, Abadia-Molina F, Riveros-Moreno V, Martinez-Murillo R, Polak JM, Moncada S (1994) Localization of nitric oxide synthase in the adult rat brain. Philos Trans R Soc Lond B Biol Sci 29: 175–221Google Scholar
  40. 40.
    Okere CO, Waterhouse BD (2006) Acute restraint increases NADPH-diaphorase staining in distinct subregions of the rat dorsal raphe nucleus: Implications for raphe serotonergic and nitrergic transmission. Brain Res 1119: 174–181PubMedCrossRefGoogle Scholar
  41. 41.
    Simpson KL, Waterhouse BD, Lin RCS (2003) Differential expression of nitric oxide in serotonergic projection neurons: neurochemical identification of dorsal raphe inputs to rodent trigeminal somatosensory targets. J Comp Neurol 466: 495–512PubMedCrossRefGoogle Scholar
  42. 42.
    Clark MS, McDevitt RA, Neumaier JF (2006) Quantitative mapping of tryptophan hydroxylase-2, 5-HT1A, 5-HT1B, and serotonin transporter expression across the anteroposterior axis of the rat dorsal and median raphe nuclei. J Comp Neurol 498: 611–623PubMedCrossRefGoogle Scholar
  43. 43.
    Ochi J, Shimizu K (1978) Occurrence of dopamine-containing neurons in the midbrain raphe nuclei of the rat. Neurosci Lett 8: 317–320CrossRefPubMedGoogle Scholar
  44. 44.
    Paxinos G, Carrive P, Wang H, Wang P-Y (1999) Chemoarchitectonic Atlas of the Rat Brainstem, Academic Press, San DiegoGoogle Scholar
  45. 45.
    Descarries L, Berthelet F, Garcia S, Beaudet A (1986) Dopaminergic projection from nucleus raphe dorsalis to neostriatum in the rat. J Comp Neurol 249: 511–520PubMedCrossRefGoogle Scholar
  46. 46.
    Jayaraman A, Nishimori T, Dobner P, Uhl GR (1990) Cholecystokinin and neurotensin mRNAs are differentially expressed in subnuclei of the ventral tegmental area. J Comp Neurol 296: 291–302PubMedCrossRefGoogle Scholar
  47. 47.
    van der Kooy D, Hunt SP, Steinbusch HWM, Verhofstad AAJ (1981) Separate populations of cholecystokinin and 5-hydroxytryptamine-containing neuronal cells in the rat dorsal raphe, and their contribution to the ascending raphe projections. Neurosci Lett 26: 25–30PubMedCrossRefGoogle Scholar
  48. 48.
    Nemoto C, Hida T, Arai R (1999) Calretinin and calbindin-D-28k in dopaminergic neurons of the rat midbrain: a triple-labeling immunohistochemical study. Brain Res 846: 129–136PubMedCrossRefGoogle Scholar
  49. 49.
    Wang QP, Guan JL, Shioda S (2001) Immunoelectron microscopic study of beta-endorphinergic synaptic innervation of GABAergic neurons in the dorsal raphe nucleus. Synapse 42: 234–241PubMedCrossRefGoogle Scholar
  50. 50.
    Köhler C, Chan-Palay V, Steinbusch H (1982) The distribution and origin of serotonin-containing fibers in the septal area: a combined immunohistochemical and fluorescent retrograde tracing study in the rat. J Comp Neurol 209: 91–111PubMedCrossRefGoogle Scholar
  51. 51.
    Daugherty WP, Corley KC, Phan TH, Boadle-Biber MC (2001) Further studies on the activation of rat median raphe serotonergic neurons by inescapable sound stress. Brain Res 923: 103–111PubMedCrossRefGoogle Scholar
  52. 52.
    Tao R, Auerbach SB (1995) Involvement of the dorsal raphe but not median raphe nucleus in morphine-induced increases in serotonin release in the rat forebrain. Neuroscience 68: 553–561PubMedCrossRefGoogle Scholar
  53. 53.
    Jolas T, Aghajanian GK (1997) Opioids suppress spontaneous and NMDA-induced inhibitory postsynaptic currents in the dorsal raphe nucleus of the rat in vitro. Brain Res 755: 229–245PubMedCrossRefGoogle Scholar
  54. 54.
    Tao R, Ma Z, Auerbach SB (1996) Differential regulation of 5-hydroxytryptamine release by GABAA and GABAB receptors in midbrain raphe nuclei and forebrain of rats. Br J Pharmacol 119: 1375–1384PubMedGoogle Scholar
  55. 55.
    Zheng Z, Leger L, Cespuglio R, Jouvet M (1991) Distribution of the pro-opiomelanocortin-immunoreactive axons in relation to the serotoninergic neurons in the dorsal raphe nucleus of the rat. Neurosci Lett 130: 17–21PubMedCrossRefGoogle Scholar
  56. 56.
    Steinbusch HW, Nieuwenhuys R, Verhofstad AA, van der Kooy D (1981) The nucleus raphe dorsalis of the rat and its projection upon the caudatoputamen. A combined cytoarchitectonic, immunohistochemical and retrograde transport study. J Physiol (Paris) 77: 157–174Google Scholar
  57. 57.
    Steinbusch HW, van der Kooy D, Verhofstad AA, Pellegrino A (1980) Serotonergic and non-serotonergic projections from the nucleus raphe dorsalis to the caudate-putamen complex in the rat, studied by a combined immunofluorescence and fluorescent retrograde axonal labeling technique. Neurosci Lett 19: 137–142PubMedCrossRefGoogle Scholar
  58. 58.
    Miller JJ, Richardson TL, Fibiger HC, McLennan H (1975) Anatomical and electrophysiological identification of a projection from the mesencephalic raphe to the caudate-putamen in the rat. Brain Res 97: 133–138PubMedCrossRefGoogle Scholar
  59. 59.
    Köhler C, Steinbusch H (1982) Identification of serotonin and non-serotonin-containing neurons of the mid-brain raphe projecting to the entorhinal area and the hippocampal formation. A combined immunohistochemical and fluorescent retrograde tracing study in the rat brain. Neuroscience 7: 951–975PubMedCrossRefGoogle Scholar
  60. 60.
    van der Kooy D, Hattori T (1980) Dorsal raphe cells with collateral projections to the caudate-putamen and substantia nigra: a fluorescent retrograde double labeling study in the rat. Brain Res 186: 1–7PubMedCrossRefGoogle Scholar
  61. 61.
    Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA (1990) Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 513: 43–59PubMedCrossRefGoogle Scholar
  62. 62.
    Grove EA (1988) Neural associations of the substantia innominata in the rat: Afferent connections. J Comp Neurol 277: 315–346PubMedCrossRefGoogle Scholar
  63. 63.
    Waterhouse BD, Mihailoff GA, Baack JC, Woodward DJ (1986) Topographical distribution of dorsal and median raphe neurons projecting to motor, sensorimotor, and visual cortical areas in the rat. J Comp Neurol 249: 460–481PubMedCrossRefGoogle Scholar
  64. 64.
    Stratford TR, Wirtshafter D (1990) Ascending dopaminergic projections from the dorsal raphe nucleus in the rat. Brain Res 511: 173–176PubMedCrossRefGoogle Scholar
  65. 65.
    Corbett D, Wise RA (1979) Intracranial self-stimulation in relation to the ascending noradrenergic fiber systems of the pontine tegmentum and caudal midbrain: A moveable electrode mapping study. Brain Res 177: 423–436PubMedCrossRefGoogle Scholar
  66. 66.
    Rompe PP, Miliaressis E (1985) Pontine and mesencephalic substrates of self-stimulation. Brain Res 359: 246–259CrossRefGoogle Scholar
  67. 67.
    Greenwood BN, Foley TE, Day HEW, Burhans D, Brooks L, Campeau S, Fleshner M (2005) Wheel running alters serotonin (5-HT) transporter, 5-HT1A, 5-HT1B, and alpha1b-adrenergic receptor mRNA in the rat raphe nuclei. Biol Psychiatry 57: 559–568PubMedCrossRefGoogle Scholar
  68. 68.
    Greenwood BN, Foley TE, Day HEW, Campisi J, Hammack SH, Campeau S, Maier SF, Fleshner M (2003) Freewheel running prevents learned helplessness/behavioral depression: Role of dorsal raphe serotonergic neurons. J Neurosci 23: 2889–2898PubMedGoogle Scholar
  69. 69.
    Lee HS, Kim MA, Valentino RJ, Waterhouse BD (2003) Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Res 963: 57–71PubMedCrossRefGoogle Scholar
  70. 70.
    Swanson LW, Petrovich GD (1998) What is the amygdala? Trends Neurosci 21: 323–331PubMedCrossRefGoogle Scholar
  71. 71.
    Coffield JA, Bowen KK, Miletic V (1992) Retrograde tracing of projections between the nucleus submedius, the ventrolateral orbital cortex, and the midbrain in the rat. J Comp Neurol 321: 488–499PubMedCrossRefGoogle Scholar
  72. 72.
    Kazakov VN, Kravtsov PY, Krakhotkina ED, Maisky VA (1993) Sources of cortical, hypothalamic and spinal serotonergic projections: topical organization within the nucleus raphe dorsalis. Neuroscience 56: 157–164PubMedCrossRefGoogle Scholar
  73. 73.
    Waterhouse BD, Border B, Wahl L, Mihailoff GA (1993) Topographic organization of rat locus coeruleus and dorsal raphe nuclei: distribution of cells projecting to visual system structures. J Comp Neurol 336: 345–361PubMedCrossRefGoogle Scholar
  74. 74.
    Kirifides ML, Simpson KL, Lin RC, Waterhouse BD (2001) Topographic organization and neurochemical identity of dorsal raphe neurons that project to the trigeminal somatosensory pathway in the rat. J Comp Neurol 435: 325–340PubMedCrossRefGoogle Scholar
  75. 75.
    Liu X, Powell DK, Wang H, Gold BT, Corbly CR, Joseph JE (2007) Functional dissociation in frontal and striatal areas for processing of positive and negative reward information. J Neurosci 27: 4587–4597PubMedCrossRefGoogle Scholar
  76. 76.
    Holland PC, Gallagher M (2004) Amygdala-frontal interactions and reward expectancy. Curr Opin Neurobiol 14: 148–155PubMedCrossRefGoogle Scholar
  77. 77.
    Mataix-Cols D, Wooderson S, Lawrence N, Brammer MJ, Speckens A, Phillips ML (2004) Distinct neural correlates of washing, checking, and hoarding symptom dimensions in obsessive-compulsive disorder. Arch Gen Psychiatry 61: 564–576PubMedCrossRefGoogle Scholar
  78. 78.
    Stein DJ, Liu Y, Shapira NA, Goodman WK (2001) The psychobiology of obsessive-compulsive disorder: how important is the role of disgust? Curr Psychiatry Rep 3: 281–287PubMedCrossRefGoogle Scholar
  79. 79.
    Jeffries KJ, Schooler C, Schoenbach C, Herscovitch P, Chase TN, Braun AR (2002) The functional neuroanatomy of Tourette’s syndrome: an FDG PET study. III: Functional coupling of regional cerebral metabolic rates. Neuropsychopharmacology 27: 92–104PubMedCrossRefGoogle Scholar
  80. 80.
    Nordstrom EJ, Burton FH (2002) A transgenic model of comorbid Tourette’s syndrome and obsessive-compulsive disorder circuitry. Mol Psychiatry 7: 617–25, 524PubMedCrossRefGoogle Scholar
  81. 81.
    Bailer UF, Frank GK, Henry SE, Price JC, Meltzer CC, Weissfeld L, Mathis CA, Drevets WC, Wagner A, Hoge J et al (2005) Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl 11C]WAY-100635. Arch Gen Psychiatry 62: 1032–1041PubMedCrossRefGoogle Scholar
  82. 82.
    Bailer UF, Frank GK, Henry SE, Price JC, Meltzer CC, Mathis CA, Wagner A, Thornton L, Hoge J, Ziolko SK et al (2007) Exaggerated 5-HT1A but normal 5-HT2A receptor activity in individuals ill with anorexia nervosa. Biol Psychiatry 61: 1090–1099PubMedCrossRefGoogle Scholar
  83. 83.
    Murphy DL, Zohar J, Benkelfat C, Pato MT, Pigott TA, Insel TR (1989) Obsessivecompulsive disorder as a 5-HT subsystem-related behavioural disorder. Br J Psychiatry Suppl 15–24Google Scholar
  84. 84.
    Abrams JK, Johnson PL, Hay-Schmidt A, Mikkelsen JD, Shekhar A, Lowry CA (2005) Serotonergic systems associated with arousal and vigilance behaviors following administration of anxiogenic drugs. Neuroscience 133: 983–997PubMedCrossRefGoogle Scholar
  85. 85.
    Commons KG, Connolley KR, Valentino RJ (2003) A neurochemically distinct dorsal raphe-limbic circuit with a potential role in affective disorders. Neuropsychopharmacology 28: 206–215PubMedCrossRefGoogle Scholar
  86. 86.
    Davis M (1992) A neural systems approach to the study of the amygdala, fear and anxiety. In: Elliot JM, Heal DJ, Marsden CA (eds): Experimental Approaches to Anxiety and Depression. John Wiley and sons, Chichester: 45–71Google Scholar
  87. 87.
    DiMicco JA, Samuels BC, Zaretskaia MV, Zaretsky D (2002) The dorsomedial hypothalamus and the response to stress: part renaissance, part revolution. Pharmacol Biochem Behav 71: 469–480PubMedCrossRefGoogle Scholar
  88. 88.
    Davis M (1998) Are different parts of the extended amygdala involved in fear versus anxiety? Biol Psychiatry 44: 1239–1247PubMedCrossRefGoogle Scholar
  89. 89.
    Stezhka VV, Lovick TA (1997) Projections from dorsal raphe nucleus to the periaqueductal grey matter: studies in slices of rat midbrain maintained in vitro. Neurosci Lett 230: 57–60PubMedCrossRefGoogle Scholar
  90. 90.
    Bandler R, Keay KA, Floyd N, Price J (2000) Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull 53: 95–104PubMedCrossRefGoogle Scholar
  91. 91.
    Van Bockstaele EJ, Biswas A, Pickel M (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624: 188–198PubMedCrossRefGoogle Scholar
  92. 92.
    Ottersen OP (1981) Afferent connections of the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brain stem. J Comp Neurol 202: 335–356PubMedCrossRefGoogle Scholar
  93. 93.
    Russchen FT (1982) Amygdalopetal projections in the cat. II. Subcortical afferent connections. A study with retrograde tracing techniques. J Comp Neurol 207: 157–176PubMedCrossRefGoogle Scholar
  94. 94.
    Rizvi TA, Ennis M, Behbehani MM, Shipley MT (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J Comp Neurol 303: 121–131PubMedCrossRefGoogle Scholar
  95. 95.
    Petit J-M, Luppi P-H, Peyron C, Rampon C, Jouvet M (1995) IP-like immunoreactive projections from the dorsal raphe and caudal linear nuclei to the bed nucleus of the stria terminalis demonstrated by a double immunohistochemical method in the rat. Neurosci Lett 193: 77–80PubMedCrossRefGoogle Scholar
  96. 96.
    Gardner KL, Thrivikraman KV, Lightman SL, Plotsky PM, Lowry CA (2005) Early life experience alters behavior during social defeat: Focus on serotonergic systems. Neuroscience 136: 181–191PubMedCrossRefGoogle Scholar
  97. 97.
    Staub DR, Spiga F, Lowry CA (2005) Urocortin 2 increases c-Fos expression in topographically organized subpopulations of serotonergic neurons in the rat dorsal raphe nucleus. Brain Res 1044: 176–189PubMedCrossRefGoogle Scholar
  98. 98.
    Staub DR, Evans AK, Lowry CA (2006) Evidence supporting a role for corticotropin-releasing factor type 2 (CRF2) receptors in the regulation of subpopulations of serotonergic neurons. Brain Res 1070: 77–89PubMedCrossRefGoogle Scholar
  99. 99.
    Amat J, Baratta MV, Paul E, Bland ST, Watkins LR, Maier SF (2005) Medial prefrontal cortex determines how stressor controllability affects behavior and dorsal raphe nucleus. Nat Neurosci 8: 365–371PubMedCrossRefGoogle Scholar
  100. 100.
    Grahn RE, Will MJ, Hammack SE, Maswood S, McQueen MB, Watkins LR, Maier SF (1999) Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor. Brain Res 826: 35–43PubMedCrossRefGoogle Scholar
  101. 101.
    Maier SF, Watkins LF (1998) Stressor controllability, anxiety, and serotonin. Cogn Ther Res 22: 595–613CrossRefGoogle Scholar
  102. 102.
    Bouwknecht JA, Spiga F, Staub DR, Hale MW, Shekhar A, Lowry CA (2007) Differential effects of exposure to low-light or high-light open-field on anxiety-related behaviors: Relationship to c-Fos expression in serotonergic and non-serotonergic neurons in the dorsal raphe nucleus. Brain Res Bull 72: 32–43PubMedCrossRefGoogle Scholar
  103. 103.
    Maier SF, Watkins LR (2005) Stressor controllability and learned helplessness: the roles of the dorsal raphe nucleus, serotonin, and corticotropin-releasing factor. Neurosci Biobehav Rev 29: 829–841PubMedCrossRefGoogle Scholar
  104. 104.
    Bonkale WL, Turecki G, Austin MC (2006) Increased tryptophan hydroxylase immunoreactivity in the dorsal raphe nucleus of alcohol-dependent, depressed suicide subjects is restricted to the dorsal subnucleus. Synapse 60: 81–85PubMedCrossRefGoogle Scholar
  105. 105.
    Bach-Mizrachi H, Underwood MD, Kassir SA, Bakalian MJ, Sibille E, Tamir H, Mann JJ, Arango V (2006) Neuronal tryptophan hydroxylase mRNA expression in the human dorsal and median raphe nuclei: major depression and suicide. Neuropsychopharmacology 31: 814–824PubMedCrossRefGoogle Scholar
  106. 106.
    Johnson PL, Lightman SL, Lowry CA (2004) A functional subset of serotonergic neurons in the rat ventrolateral periaqueductal gray implicated in the inhibition of sympathoexcitation and panic. Ann N Y Acad Sci 1018: 58–64PubMedCrossRefGoogle Scholar
  107. 107.
    Day HE, Greenwood BN, Hammack SE, Watkins LR, Fleshner M, Maier SF, Campeau S (2004) Differential expression of 5HT-1A, alpha(1b) adrenergic, CRF-R1, and CRF-R2 receptor mRNA in serotonergic, gamma-aminobutyric acidergic, and catecholaminergic cells of the rat dorsal raphe nucleus. J Comp Neurol 474: 364–378PubMedCrossRefGoogle Scholar
  108. 108.
    Roche M, Commons KG, Peoples A, Valentino RJ (2003) Circuitry underlying regulation of the serotonergic system by swim stress. J Neurosci 23: 970–977PubMedGoogle Scholar
  109. 109.
    Boothman LJ, Sharp T (2005) A role for midbrain raphe γ aminobutyric acid neurons in 5-hydroxytryptamine feedback control. Neuroreport 16: 891–896PubMedCrossRefGoogle Scholar
  110. 110.
    Herbert H (1992) Evidence for projections from medullary nuclei onto serotonergic and dopaminergic neurons in the midbrain dorsal raphe nucleus of the rat. Cell Tissue Res 270: 149–156PubMedCrossRefGoogle Scholar
  111. 111.
    Herbert J, Saper CB (1992) Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol 315: 34–52PubMedCrossRefGoogle Scholar
  112. 112.
    Shapiro RE, Miselis RR (1985) The central organization of the vagus nerve innervating the stomach of the rat. J Comp Neurol 238: 473–488PubMedCrossRefGoogle Scholar
  113. 113.
    Rogers RC, Hermann GH (1983) Central connections of the hepatic branch of the vagus nerve: a horseradish peroxidase histochemical study. J Autonom Nerv Syst 7: 165–174CrossRefGoogle Scholar
  114. 114.
    Leslie RA, Gwyn DG, Hopkins DA (1982) The central distribution of the cervical vagus nerve and gastric afferent and efferent projections in the rat. Brain Res Bull 8: 37–44PubMedCrossRefGoogle Scholar
  115. 115.
    Housley GD, Martin-Body RL, Dawson NJ, Sinclair JD (1987) Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience 22: 237–250PubMedCrossRefGoogle Scholar
  116. 116.
    Higgins GA, Hoffman GE, Wray S, Schwaber JS (1984) Distribution of neurotensin-immunoreactivity within baroreceptive portions of the nucleus of the tractus solitarius and the dorsal vagal nucleus of the rat. J Comp Neurol 226: 155–164PubMedCrossRefGoogle Scholar
  117. 117.
    Hurley KM, Herbert H, Moga MM, Saper CB (1991) Efferent projections of the in-fralimbic cortex of the rat. J Comp Neurol 308: 249–276PubMedCrossRefGoogle Scholar
  118. 118.
    Gray TS, Magnuson DJ (1992) Peptide immunoreactive neurons in the amygdala and the bed nucleus of the stria terminalis project to the midbrain central gray in the rat. Peptides 13: 451–460PubMedCrossRefGoogle Scholar
  119. 119.
    Holstege G, Meiners L, Tan K (1985) Projections of the bed nucleus of the stria terminalis to the mesencephalon, pons, and medulla oblongata in the cat. Exp Brain Res 58: 379–391PubMedCrossRefGoogle Scholar
  120. 120.
    Gray TS, Magnuson DJ (1987) Galanin-like immunoreactivity within amygdaloid and hypothalamic neurons that project to the midbrain central grey in rat. Neurosci Lett 83: 264–268PubMedCrossRefGoogle Scholar
  121. 121.
    Swanson LW, Mogenson GJ, Simerly RB, Wu M (1987) Anatomical and electrophysiological evidence for a projection from the medial preoptic area to the “mesencephalic and subthalamic locomotor regions” in the rat. Brain Res 405: 108–122PubMedCrossRefGoogle Scholar
  122. 122.
    Simerly RB, Swanson LW (1988) Projections of the medial preoptic nucleus: a Phaseolus. vulgaris leucoagglutinin anterograde tract-tracing study in the rat. J Comp Neurol 270: 209–242PubMedCrossRefGoogle Scholar
  123. 123.
    Luiten PG, ter Horst GJ, Steffens AB (1987) The hypothalamus, intrinsic connections and outflow pathways to the endocrine system in relation to the control of feeding and metabolism. Prog Neurobiol 28: 1–54PubMedCrossRefGoogle Scholar
  124. 124.
    Saper CB, Swanson LW, Cowan WM (1979) An autoradiographic study of the efferent connections of the lateral hypothalamic area in the rat. J Comp Neurol 183: 689–706PubMedCrossRefGoogle Scholar
  125. 125.
    Saper CB, Loewy AD (1980) Efferent connections of the parabrachial nucleus in the rat. Brain Res 197: 291–317PubMedCrossRefGoogle Scholar
  126. 126.
    Beitz AJ (1982) The organization of afferent projections to the midbrain periaqueductal gray of the rat. Neuroscience 7: 133–159PubMedCrossRefGoogle Scholar
  127. 127.
    Petrov T, Jhamandas JH, Krukoff TL (1992) Characterization of peptidergic efferents from the lateral parabrachial nucleus to identified neurons in the rat dorsal raphe nucleus. J Chem Neuroanat 5: 367–373PubMedCrossRefGoogle Scholar
  128. 128.
    Dampney RAL (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74: 323–364PubMedGoogle Scholar
  129. 129.
    Saper CB (1995) Central autonomic system. 2nd edition In: Paxinos G (ed) The Rat Nervous System, Academic Press, San Diego: 107–135Google Scholar
  130. 130.
    Fite KV, Janusonis S, Foote W, Bengston L (1999) Retinal afferents to the dorsal raphe nucleus in rats and Mongolian gerbils. J Comp Neurol 414: 469–484PubMedCrossRefGoogle Scholar
  131. 131.
    Kawano H, Decker K, Reuss S (1996) Is there a direct retina-raphe-suprachiasmatic nucleus pathway in the rat? Neurosci Lett 212: 143–146PubMedCrossRefGoogle Scholar
  132. 132.
    Shen H, Semba K (1994) A direct retinal projection to the dorsal raphe nucleus in the rat. Brain Res 635: 159–168PubMedCrossRefGoogle Scholar
  133. 133.
    Foote WE, Taber-Pierce E, Edwards L (1978) Evidence for a retinal projection to the midbrain raphe of the cat. Brain Res 156: 135–140PubMedCrossRefGoogle Scholar
  134. 134.
    Reuss S, Fuchs E (2000) Anterograde tracing of retinal afferents to the tree shrew hypothalamus and raphe. Brain Res 874: 66–74PubMedCrossRefGoogle Scholar
  135. 135.
    Kerman IA, Shabrang C, Taylor L, Akil H, Watson SJ (2006) Relationship of presympathetic-premotor neurons to the serotonergic transmitter system in the rat brainstem. J Comp Neurol 499: 882–896PubMedCrossRefGoogle Scholar
  136. 136.
    Villar MJ, Vitale ML, Hökfelt T, Verhofstad AAJ (1988) Dorsal raphe serotonergic branching neurons projecting to both the lateral geniculate body and superior colliculus: A combined retrograde tracing-immunohistochemical study in the rat. J Comp Neurol 277: 126–140PubMedCrossRefGoogle Scholar
  137. 137.
    Janusonis S, Fite KV, Foote W (1999) Topographic organization of serotonergic dorsal raphe neurons projecting to the superior colliculus in the Mongolian gerbil (Meriones unguiculatus). J Comp Neurol 413: 342–355PubMedCrossRefGoogle Scholar
  138. 138.
    Villar MJ, Vitale ML, Parisi MN (1987) Dorsal raphe serotonergic projection to the retina. A combined peroxidase tracing-neurochemical/high performance liquid chromatography study in the rat. Neuroscience 22: 681–686PubMedCrossRefGoogle Scholar
  139. 139.
    Chen J, Zeng SL, Rao ZR, Shi JW (1992) Serotonergic projections from the midbrain periaqueductal gray and nucleus raphe dorsalis to the nucleus parafascicularis of the thalamus. Brain Res 584: 294–298PubMedCrossRefGoogle Scholar
  140. 140.
    Willoughby JO, Blessing WW (1987) Origin of serotonin innervation of the arcuate and ventromedial hypothalamic region. Brain Res 428: 170–173CrossRefGoogle Scholar
  141. 141.
    Beitz AJ (1982) The sites of origin of brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J Neurosci 2: 829–842PubMedGoogle Scholar
  142. 142.
    Dong XW, Shen E (1986) Origin of monoaminergic innervation of the nucleus raphe magnus — A combined monoamine histochemistry and fluorescent retrograde tracing study in the rat. Sci Sin [B] 29: 599–608Google Scholar
  143. 143.
    Ljubic-Thibal V, Morin A, Diksic M, Hamel E (1999) Origin of the serotonergic innervation to the rat dorsolateral hypothalamus: Retrograde transport of cholera toxin and upregulation of tryptophan hydroxylase mRNA expression following selective nerve terminals lesion. Synapse 32: 177–186PubMedCrossRefGoogle Scholar
  144. 144.
    Bago M, Marson L, Dean C (2002) Serotonergic projections to the rostroventrolateral medulla from midbrain and raphe nuclei. Brain Res 945: 249–258PubMedCrossRefGoogle Scholar
  145. 145.
    Underwood MD, Arango V, Bakalian MJ, Ruggiero DA, Mann JJ (1999) Dorsal raphe nucleus serotonergic neurons innervate the rostral ventrolateral medulla in rat. Brain Res 824: 45–55PubMedCrossRefGoogle Scholar
  146. 146.
    Vanderhaeghen JJ, Lotstra F, De MJ, Gilles C (1980) Immunohistochemical localization of cholecystokinin-and gastrin-like peptides in the brain and hypophysis of the rat. Proc Natl Acad Sci USA 77: 1190–1194PubMedCrossRefGoogle Scholar
  147. 147.
    Smith GST, Savery D, Marden C, Lopez Costa JJ, Averill S, Priestley JV, Rattray M (1994) Distribution of messenger RNAs encoding enkephalin, substance P, somatostatin, galanin, vasoactive intestinal polypeptide, neuropeptide Y, and calcitonin generelated peptide in the midbrain periaqueductal grey in the rat. J Comp Neurol 350: 23–40PubMedCrossRefGoogle Scholar
  148. 148.
    Sutin EL, Jacobowitz DM (1988) Immunocytochemical localization of peptides and other neurochemicals in the rat laterodorsal tegmental nucleus and adjacent area. J Comp Neurol 270: 243–270PubMedCrossRefGoogle Scholar
  149. 149.
    Simpson KL, Fisher TM, Waterhouse BD, Lin RC (1998) Projection patterns from the raphe nuclear complex to the ependymal wall of the ventricular system in the rat. J Comp Neurol 399: 61–72PubMedCrossRefGoogle Scholar
  150. 150.
    Mikkelsen JD, Hay-Schmidt A, Larsen PJ (1997) Central innervation of the rat ependyma and subcommissural organ with special reference to ascending serotoninergic projections from the raphe nuclei. J Comp Neurol 384: 556–568PubMedCrossRefGoogle Scholar
  151. 151.
    Wyss JM, Swanson LW, Cowan WM (1979) A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4: 463–476PubMedCrossRefGoogle Scholar
  152. 152.
    Bobillier P, Seguin S, Dugueurce A, Lewis BD, Pujol JF (1979) The efferent connections of the nucleus raphe centralis superior in the rat as revealed by autoradiography. Brain Res 166: 1–8PubMedCrossRefGoogle Scholar
  153. 153.
    Morin LP, Meyer-Bernstein EL (1999) The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience 91: 81–105PubMedCrossRefGoogle Scholar
  154. 154.
    Pasquier DA, Reinoso-Suarez F (1978) The topographic organization of hypothalamic and brain stem projections to the hippocampus. Brain Res Bull 3: 373–389PubMedCrossRefGoogle Scholar
  155. 155.
    Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407: 555–582PubMedCrossRefGoogle Scholar
  156. 156.
    Vertes RP, Fass B (1988) Projections between the interpeduncular nucleus and basal forebrain in the rat as demonstrated by the anterograde and retrograde transport of WGA-HRP. Exp Brain Res 73: 23–31PubMedCrossRefGoogle Scholar
  157. 157.
    Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448: 53–101PubMedCrossRefGoogle Scholar
  158. 158.
    Bruni JE (1998) Ependymal development, proliferation, and functions: a review. Microsc Res Tech 41: 2–13PubMedCrossRefGoogle Scholar
  159. 159.
    Verleysdonk S, Kistner S, Pfeiffer-Guglielmi B, Wellard J, Lupescu A, Laske J, Lang F, Rapp M, Hamprecht B (2005) Glycogen metabolism in rat ependymal primary cultures: regulation by serotonin. Brain Res 1060: 89–99PubMedCrossRefGoogle Scholar
  160. 160.
    Nguyen T, Chin WC, O’Brien JA, Verdugo P, Berger AJ (2001) Intracellular pathways regulating ciliary beating of rat brain ependymal cells. J Physiol 531: 131–140PubMedCrossRefGoogle Scholar
  161. 161.
    Dahlström A, Fuxe K (1964) Localization of monoamines in the lower brain stem. Experientia 20: 398–399PubMedCrossRefGoogle Scholar
  162. 162.
    Baxter DW, Olszewski J (1955) Respiratory responses evoked by electrical stimulation of pons and mesencephalon. J Neurophysiol 18: 276–287PubMedGoogle Scholar
  163. 163.
    Azmitia EC (1981) Bilateral serotonergic projections to the dorsal hippocampus of the rat: simultaneous localization of 3H-5HT and HRP after retrograde transport. J Comp Neurol 203: 737–743PubMedCrossRefGoogle Scholar
  164. 164.
    Azmitia EC, Gannon PJ (1986) The primate serotonergic system: A review of human and animal studies and a report on Macaca fascicularis. Adv Neurol 43: 407–468PubMedGoogle Scholar
  165. 165.
    Zhou FC, Azmitia EC (1983) Effects of 5,7-dihydroxytryptamine on HRP retrograde transport from hippocampus to midbrain raphe nuclei in the rat. Brain Res Bull 10: 445–451PubMedCrossRefGoogle Scholar
  166. 166.
    Paxinos G, Franklin KBJ (2001) The mouse brain in stereotaxic coordinates, 2nd edn, Academic Press, LondonGoogle Scholar
  167. 167.
    Belin MF, Aguera M, Tappaz M, McRae-Degueurce A, Bobillier P, Pujol J-F (1979) GABA-accumulating neurons in the nucleus raphe dorsalis and periaqueductal gray in the rat: a biochemical and radioautographic study. Brain Res 170: 279–297PubMedCrossRefGoogle Scholar
  168. 168.
    Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189: 573–591PubMedCrossRefGoogle Scholar
  169. 169.
    McKenna JT, Vertes RP (2001) Collateral projections from the median raphe nucleus to the medial septum and hippocampus. Brain Res Bull 54: 619–630PubMedCrossRefGoogle Scholar
  170. 170.
    Porrino LJ, Goldman-Rakic PS (1982) Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 205: 63–76PubMedCrossRefGoogle Scholar
  171. 171.
    Groenewegen HJ (1988) Organization of the afferent connections of the mediodorsal thalamic nucleus in the rat, related to the mediodorsal-prefrontal topography. Neuroscience 24: 379–431PubMedCrossRefGoogle Scholar
  172. 172.
    Velayos JL, Reinoso-Suarez F (1982) Topographic organization of the brainstem afferents to the mediodorsal thalamic nucleus. J Comp Neurol 206: 17–27PubMedCrossRefGoogle Scholar
  173. 173.
    Lowry CA, Hollis JH, de Vries A, Pan B, Brunet LR, Hunt JR, Paton JF, van Kampen E, Knight DM, Evans AK et al (2007) Identification of an immune-responsive mesolimbocortical serotonergic system: Potential role in regulation of emotional behavior. Neuroscience 146: 756–772PubMedCrossRefGoogle Scholar
  174. 174.
    Hollis JH, Evans AK, Bruce KP, Lightman SL, Lowry CA (2006) Lipopolysaccharide has indomethacin-sensitive actions on Fos expression in topographically organized subpopulations of serotonergic neurons. Brain Behav Immun 20: 569–577PubMedCrossRefGoogle Scholar
  175. 175.
    Drevets WC (1998) Functional neuroimaging studies of depression: The anatomy of melancholia. Annu Rev Med 49: 341–361PubMedCrossRefGoogle Scholar
  176. 176.
    Steele JD, Currie J, Lawrie SM, Reid I (2007) Prefrontal cortical functional abnormality in major depressive disorder: A stereotactic meta-analysis. J Affect Disord 101: 1–11PubMedCrossRefGoogle Scholar
  177. 177.
    Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. I. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand [Suppl ] 247: 37–85Google Scholar
  178. 178.
    Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat. Cell bodies and terminals. Neuroscience 6: 557–618PubMedCrossRefGoogle Scholar
  179. 179.
    Wang QP, Guan JL, Shioda S (2000) Synaptic contacts between serotonergic and cholinergic neurons in the rat dorsal raphe nucleus and laterodorsal tegmental nucleus. Neuroscience 97: 553–563PubMedCrossRefGoogle Scholar
  180. 180.
    Fuxe K, Hökfelt T, Agnati LF, Johansson O, Goldstein M, Perez de la Mora M, Possani L, Tapia R, Teran L, Palacios R (1978) Mapping out central catecholamine neurons: Immunohistochemical studies on catecholamine-synthesizing enzymes. In: Lipton MA, Di Mascio A, Killam KF (eds) Psychopharmacology: A Generation of Progress. Raven Press, New York: 67–94Google Scholar
  181. 181.
    Hökfelt T, Fuxe K, Goldstein M, Johansson O (1974) Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res 66: 235–251CrossRefGoogle Scholar
  182. 182.
    Watson SJ, Grachas JD, Hao Li C (1977) β-Lipotropin: Localization of cells and axons in rat brain by immunocytochemistry. Proc Natl Acad Sci USA 74: 5155–5158PubMedCrossRefGoogle Scholar
  183. 183.
    Elde R, Hökfelt T, Johansson O, Terenius L (1976) Immunohistochemical studies using antibodies to leucine-enkephalin: initial observations on the nervous system of the rat. Neuroscience 1: 349–351PubMedCrossRefGoogle Scholar
  184. 184.
    Sar M, Stumpf WE, Miller RJ, Chang K-J, Cuatrecasas P (1978) Immunohistochemical localization of enkephalin in rat brain and spinal cord. J Comp Neurol 182: 17–38PubMedCrossRefGoogle Scholar
  185. 185.
    Jennes L, Stumpf WE (1980) LHRH-systems in the brain of the golden hamster. Cell Tissue Res 209: 239–256PubMedCrossRefGoogle Scholar
  186. 186.
    Hökfelt T, Elde R, Johansson O, Terenius L, Stein L (1977) The distribution of enkephalin-immunoreactive cell bodies in the rat central nervous system. Neurosci Lett 5: 25–31CrossRefPubMedGoogle Scholar
  187. 187.
    Uhl GR, Goodman RR, Kuhar MJ, Childers SR, Snyder SH (1979) Immunohistochemical mapping of enkephalin containing cell bodies, fibers, and nerve terminals in rat central nervous system. Brain Res 166: 75–94PubMedCrossRefGoogle Scholar
  188. 188.
    Uhl GR, Kuhar MJ, Snyder SH (1977) Neurotensin: Immunohistochemical localization in rat central nervous system. Proc Natl Acad Sci USA 74: 4059–4063PubMedCrossRefGoogle Scholar
  189. 189.
    Sofroniew M (1980) Projections from vasopressin, oxytocin and neurophysin neurons to neural targets in the rat and human. J Histochem Cytochem 28: 475–478PubMedGoogle Scholar
  190. 190.
    Buijs RM, Swaab DF, Dogterom J, van Leeuwen FW (1978) Intra-and extrahypothalamic vasopressin and oxytocin pathways in the rat. Cell Tissue Res 192: 423–433PubMedCrossRefGoogle Scholar
  191. 191.
    Ljungdahl A, Hökfelt T, Nilsson G (1978) Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and terminals. Neuroscience 3: 861–943PubMedCrossRefGoogle Scholar
  192. 192.
    Fuxe K, Hökfelt T, Said ST, Mutt V (1977) Vasoactive intestinal polypeptide and the nervous system: immunohistochemical evidence for localization in central and peripheral neurons, particularly intracortical neurons of the cerebral cortex. Neurosci Lett 5: 241–246CrossRefPubMedGoogle Scholar
  193. 193.
    Lorén I, Emson PC, Fahrenkrug J, Björklund A, Alumets J, Håkanson R, Sundler F (1979) Distribution of vasoactive intestinal polypeptide in the rat and mouse brain. Neuroscience 4: 1953–1976PubMedCrossRefGoogle Scholar
  194. 194.
    Sims KB, Hoffman DL, Said SI, Zimmerman EA (1980) Vasoactive intestinal polypeptide (VIP) in mouse and rat brain: an immunocytochemical study. Brain Res 186: 165–183PubMedCrossRefGoogle Scholar
  195. 195.
    Acsady L, Arabadzisz D, Katona I, Freund TF (1996) Topographic distribution of dorsal and median raphe neurons with hippocampal, septal and dual projection. Acta Biol Hung 47: 9–19PubMedGoogle Scholar
  196. 196.
    McQuade R, Sharp T (1997) Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. J Neurochem 69: 791–796PubMedCrossRefGoogle Scholar
  197. 197.
    Geyer MA, Puerto A, Dawsey WJ, Knapp S, Bullard WP, Mandell AJ (1976) Histologic and enzymatic studies of the mesolimbic and mesostriatal serotonergic pathways. Brain Res 106: 241–256PubMedCrossRefGoogle Scholar
  198. 198.
    Van de Kar LD, Lorens SA (1979) Differential serotonergic innervation of individual hypothalamic nuclei and other forebrain regions by the dorsal and median midbrain raphe nuclei. Brain Res 162: 45–54PubMedCrossRefGoogle Scholar
  199. 199.
    Vertes RP, Kinney GG, Kocsis B, Fortin WJ (1994) Pharmacological suppression of the median raphe nucleus with serotonin1A agonists, 8-OH-DPAT and buspirone, produces hippocampal theta rhythm in the rat. Neuroscience 60: 441–451PubMedCrossRefGoogle Scholar
  200. 200.
    Vertes RP, Kocsis B (1997) Brainstem-diencephalo-septohippocampal systems controlling the theta rhythm of the hippocampus. Neuroscience 81: 893–926PubMedCrossRefGoogle Scholar
  201. 201.
    Geyer MA, Puerto A, Menkes DB, Segal DS, Mandell AJ (1976) Behavioral studies following lesions of the mesolimbic and mesostriatal serotonergic pathways. Brain Res 106: 257–269PubMedCrossRefGoogle Scholar
  202. 202.
    Deakin JFW (1996) 5-HT, antidepressant drugs and the psychosocial origins of depression. J Psychopharmacol 10: 31–38CrossRefGoogle Scholar
  203. 203.
    Deakin JFW, Graeff FG (1991) 5-HT and mechanisms of defence. J Psychopharmacol 5: 305–315CrossRefGoogle Scholar
  204. 204.
    Graeff FG, Guimaraes FS, De Andrade TG, Deakin JF (1996) Role of 5-HT in stress, anxiety, and depression. Pharmacol Biochem Behav 54: 129–141PubMedCrossRefGoogle Scholar
  205. 205.
    Wirtshafter D, McWilliams C (1987) Suppression of locomotor activity produced by acute injections of kainic acid into the median raphe nucleus. Brain Res 408: 349–352PubMedCrossRefGoogle Scholar
  206. 206.
    Shim I, Javaid J, Wirtshafter D (1997) Dissociation of hippocampal serotonin release and locomotor activity following pharmacological manipulations of the median raphe nucleus. Behav Brain Res 89: 191–198PubMedCrossRefGoogle Scholar
  207. 207.
    Hillegaart V, Hjorth S (1989) Median raphe, but not dorsal raphe, application of the 5-HT1A agonist 8-OH-DPAT stimulates rat motor activity. Eur J Pharmacol 160: 303–307PubMedCrossRefGoogle Scholar
  208. 208.
    Hillegaart V (1990) Effects of local application of 5-HT and 8-OH-DPAT into the dorsal and median raphe nuclei on motor activity in the rat. Physiol Behav 48: 143–148PubMedCrossRefGoogle Scholar
  209. 209.
    Asin KE, Fibiger HC (1983) An analysis of neuronal elements within the median nucleus of the raphe that mediate lesion-induced increases in locomotor activity. Brain Res 268: 211–223PubMedCrossRefGoogle Scholar
  210. 210.
    Wirtshafter D, Montana W, Asin KE (1986) Behavioral and biochemical studies of the substrates of median raphe lesion induced hyperactivity. Physiol Behav 38: 751–759PubMedCrossRefGoogle Scholar
  211. 211.
    Graeff FG, Quintero S, Gray JA (1980) Median raphe stimulation, hippocampal theta rhythm and threat-induced behavioral inhibition. Physiol Behav 25: 253–261PubMedCrossRefGoogle Scholar
  212. 212.
    Peck BK, Vanderwolf CH (1991) Effects of raphe stimulation on hippocampal and neocortical activity and behaviour. Brain Res 568: 244–252PubMedCrossRefGoogle Scholar
  213. 213.
    Paris JM, Lorens SA (1987) Intra-median raphe infusions of muscimol and the substance P analogue DiMe-C7 produce hyperactivity: Role of serotonin neurons. Behav Brain Res 26: 139–151PubMedCrossRefGoogle Scholar
  214. 214.
    Sainati SM, Lorens SA (1982) Intra-raphe muscimol induced hyperactivity depends on ascending serotonin projections. Pharmacol Biochem Behav 17: 973–986PubMedCrossRefGoogle Scholar
  215. 215.
    Wirtshafter D, Trifunovic R, Krebs JC (1989) Behavioral and biochemical evidence for a functional role of excitatory amino acids in the median raphe nucleus. Brain Res 482: 225–234PubMedCrossRefGoogle Scholar
  216. 216.
    Wirtshafter D, Stratford TR, Pitzer MR (1993) Studies on the behavioral activation produced by stimulation of GABAB receptors in the median raphe nucleus. Behav Brain Res 59: 83–93PubMedCrossRefGoogle Scholar
  217. 217.
    Vertes RP (1991) A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol 313: 643–668PubMedCrossRefGoogle Scholar
  218. 218.
    Pasquier DA, Reinoso-Suarez F (1977) Differential efferent connections of the brain stem to the hippocampus in the cat. Brain Res 120: 540–548PubMedCrossRefGoogle Scholar
  219. 219.
    Moore RY, Eichler B (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res 42: 201–206PubMedCrossRefGoogle Scholar
  220. 220.
    Scapagnini U, Preziosi P (1972) Role of brain norepinephrine and serotonin in the tonic and phasic regulation of hypothalamic hypophyseal adrenal axis. Arch Int Pharmacodyn Ther 196: 205–220PubMedGoogle Scholar
  221. 221.
    Jouvet M (1969) Biogenic amines and the states of sleep. Science 163: 32–41PubMedCrossRefGoogle Scholar
  222. 222.
    Klepper A, Herbert H (1991) Distribution and origin of noradrenergic and serotonergic fibers in the cochlear nucleus and inferior colliculus of the rat. Brain Res 557: 190–201PubMedCrossRefGoogle Scholar
  223. 223.
    Stezhka VV, Lovick TA (1994) Inhibitory and excitatory projections from the dorsal raphe nucleus to neurons in the dorsolateral periaqueductal gray matter in slices of midbrain maintained in vitro. Neuroscience 62: 177–187PubMedCrossRefGoogle Scholar
  224. 224.
    Contestabile A, Flumerfelt BA (1981) Afferent connections of the interpeduncular nucleus and the topographic organization of the habenulo-interpeduncular pathway: An HRP study in the rat. J Comp Neurol 196: 253–270PubMedCrossRefGoogle Scholar
  225. 225.
    Shibata H, Suzuki T, Matsushita M (1986) Afferent projections to the interpeduncular nucleus in the rat, as studied by retrograde and anterograde transport of wheat germ agglutinin conjugated to horseradish peroxidase. J Comp Neurol 248: 272–284PubMedCrossRefGoogle Scholar
  226. 226.
    Vertes RP, Kocsis B (1994) Projections of the dorsal raphe nucleus to the brainstem: PHA-L analysis in the rat. J Comp Neurol 340: 11–26PubMedCrossRefGoogle Scholar
  227. 227.
    Onodera K, Yamatodani A, Watanabe T, Wada H (1994) Neuropharmacology of the histaminergic neuron system in the brain and its relationship with behavioral disorders. Prog Neurobiol 42: 685–702PubMedCrossRefGoogle Scholar
  228. 228.
    Panula P, Pirvola U, Auvinen S, Airaksinen MS (1989) Histamine-immunoreactive nerve fibers in the rat brain. Neuroscience 28: 585–610PubMedCrossRefGoogle Scholar
  229. 229.
    Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98: 437–451PubMedCrossRefGoogle Scholar
  230. 230.
    Lee HS, Park SH, Song WC, Waterhouse BD (2005) Retrograde study of hypocretin-1 (orexin-A) projections to subdivisions of the dorsal raphe nucleus in the rat. Brain Res 1059: 35–45PubMedCrossRefGoogle Scholar
  231. 231.
    Peyron C, Tighe DK, van den Pol AN, de L L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18: 9996–10015PubMedGoogle Scholar
  232. 232.
    Kim MA, Lee HS, Lee BY, Waterhouse BD (2004) Reciprocal connections between subdivisions of the dorsal raphe and the nuclear core of the locus coeruleus in the rat. Brain Res 1026: 56–67PubMedCrossRefGoogle Scholar
  233. 233.
    Merchenthaler I (1984) Corticotropin releasing factor (CRF)-like immunoreactivity in the rat central nervous system: Extra-hypothalamic distribution. Peptides 5: 53–69PubMedCrossRefGoogle Scholar
  234. 234.
    Behzadi G, Kalen P, Parvopassu F, Wiklund L (1990) Afferents to the median raphe nucleus of the rat: retrograde cholera toxin and wheat germ conjugated horseradish peroxidase tracing, and selective d-[3H]aspartate labelling of possible excitatory amino acid inputs. Neuroscience 37: 77–100PubMedCrossRefGoogle Scholar
  235. 235.
    Woolf NJ, Butcher LL (1989) Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum. Brain Res Bull 23: 519–540PubMedCrossRefGoogle Scholar
  236. 236.
    Fritschy JM, Grzanna R (1990) Distribution of locus coeruleus axons within the rat brainstem demonstrated by Phaseolus vulgaris leucoagglutinin anterograde tracing in combination with dopamine-beta-hydroxylase immunofluorescence. J Comp Neurol 293: 616–631PubMedCrossRefGoogle Scholar
  237. 237.
    Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435: 6–25PubMedCrossRefGoogle Scholar
  238. 238.
    Barbara A, Aceves J, Arias-Montano JA (2002) Histamine H1 receptors in rat dorsal raphe nucleus: Pharmacological characterisation and linking to increased neuronal activity. Brain Res 954: 247–255PubMedCrossRefGoogle Scholar
  239. 239.
    Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22: 8850–8859PubMedGoogle Scholar
  240. 240.
    Sakai K, Crochet S (2000) Serotonergic dorsal raphe neurons cease firing by disfacilitation during paradoxical sleep. Neuroreport 11: 3237–3241PubMedCrossRefGoogle Scholar
  241. 241.
    Thakkar M, Portas C, McCarley RW (1996) Chronic low-amplitude electrical stimulation of the laterodorsal tegmental nucleus of freely moving cats increases REM sleep. Brain Res 723: 223–227PubMedCrossRefGoogle Scholar
  242. 242.
    Koyama Y, Kayama Y (1993) Mutual interactions among cholinergic, noradrenergic and serotonergic neurons studied by ionophoresis of these transmitters in rat brainstem nuclei. Neuroscience 55: 1117–1126PubMedCrossRefGoogle Scholar
  243. 243.
    Singhaniyom W, Wreford NG, Guldner FH (1982) Distribution of 5-hydroxytryptamine-containing neuronal perikarya in the rat interpeduncular nucleus. Neurosci Lett 30: 51–55PubMedCrossRefGoogle Scholar
  244. 244.
    Hökfelt T, Johansson O, Fuxe K, Goldstein M, Park D (1976) Immunohistochemical studies on the localization and distribution of monoamine neuron systems in the rat brain. 1. Tyrosine hydroxylase in the mesencephalon and diencephalon. Med Biol 54: 427–453PubMedGoogle Scholar
  245. 245.
    Nagatsu I, Inagaki S, Kondo Y, Karasawa N, Nagatsu T (1979) Immunofluorescent studies on the localization of tyrosine hydroxylase and dopamine-β-hydroxylase in the mes-, di-, and telencephalon of the rat using unperfused fresh frozen sections. Acta Histochem Cytochem 12: 20–37Google Scholar
  246. 246.
    Wiklund L, Leger L, Persson M (1981) Monoamine cell distribution in the cat brain stem. A fluorescence histochemical study with quantification of indoleaminergic and locus coeruleus cell groups. J Comp Neurol 203: 613–647PubMedCrossRefGoogle Scholar
  247. 247.
    Rampon C, Luppi PH, Fort P, Peyron C, Jouvet M (1996) Distribution of glycine-immunoreactive cell bodies and fibers in the rat brain. Neuroscience 75: 737–755PubMedCrossRefGoogle Scholar
  248. 248.
    Grzanna R, Molliver ME (1980) Cytoarchitecture and dendritic morphology of central noradrenergic neurons. In: JAB Hobson, MAB Brazier (eds): The reticular formation revisited: specifying function for a nonspecific system. Raven Press, New York, 83–97Google Scholar
  249. 249.
    Grzanna R, Molliver ME (1980) The locus coeruleus in the rat: An immunohistochemical delineation. Neuroscience 5: 21–41PubMedCrossRefGoogle Scholar
  250. 250.
    Larm JA, Shen PJ, Gundlach AL (2003) Differential galanin receptor-1 and galanin expression by 5-HT neurons in dorsal raphe nucleus of rat and mouse: Evidence for species-dependent modulation of serotonin transmission. Eur J Neurosci 17: 481–493PubMedCrossRefGoogle Scholar
  251. 251.
    Ryan MC, Gundlach AL (1996) Localization of preprogalanin messenger RNA in rat brain: Identification of transcripts in a subpopulation of cerebellar Purkinje cells. Neuroscience 70: 709–728PubMedCrossRefGoogle Scholar
  252. 252.
    Glazier EJ, Steinbusch HWM, Verhofstad AAJ, Basbaum AI (1981) Serotonergic neurons of the cat nucleus raphe dorsalis and paragigantocellularis contain enkephalin. J Physiol (Paris) 77: 241–245Google Scholar
  253. 253.
    Moss MS, Glazer EJ, Basbaum AI (1981) Enkephalin-immunoreactive perikarya in the cat raphe dorsalis. Neurosci Lett 21: 33–37PubMedCrossRefGoogle Scholar
  254. 254.
    Jennes L, Stumpf WE, Kalivas PW (1982) Neurotensin: Topographical distribution in rat brain by immunohistochemistry. J Comp Neurol 210: 211–224PubMedCrossRefGoogle Scholar
  255. 255.
    Chan-Palay V (1979) Immunocytochemical detection of substance neurons, their processes and connections by in vivo microinjections of monoclonal antibodies: Light and electron microscopy. Anat Embryol (Berl) 156: 225–240CrossRefGoogle Scholar
  256. 256.
    Weller KL, Smith DA (1982) Afferent connections to the bed nucleus of the stria terminalis. Brain Res 232: 255–270PubMedCrossRefGoogle Scholar
  257. 257.
    Petrov T, Krukoff TL, Jhamandas JH (1994) Chemically defined collateral projections from the pons to the central nucleus of the amygdala and hypothalamic paraventricular nucleus in the rat. Cell Tissue Res 277: 289–295PubMedGoogle Scholar
  258. 258.
    Li YQ, Takada M, Matsuzaki S, Shinonaga Y, Mizuno N (1993) Identification of periaqueductal gray and dorsal raphe nucleus neurons projecting to both the trigeminal sensory complex and forebrain structures: A fluorescent retrograde double-labeling study in the rat. Brain Res 623: 267–277PubMedCrossRefGoogle Scholar
  259. 259.
    Chen S, Su HS (1990) Afferent connections of the thalamic paraventricular and parataenial nuclei in the rat—a retrograde tracing study with iontophoretic application of Fluoro-Gold. Brain Res 522: 1–6PubMedCrossRefGoogle Scholar
  260. 260.
    Cornwall J, Phillipson OT (1988) Afferent projections to the dorsal thalamus of the rat as shown by retrograde lectin transport. II. The midline nuclei. Brain Res Bull 21: 147–161PubMedCrossRefGoogle Scholar
  261. 261.
    Bhatnagar S, Viau V, Chu A, Soriano L, Meijer OC, Dallman MF (2000) A cholecystokinin-mediated pathway to the paraventricular thalamus is recruited in chronically stressed rats and regulates hypothalamic-pituitary-adrenal function. J Neurosci 20: 5564–5573PubMedGoogle Scholar
  262. 262.
    Otake K, Ruggiero DA (1995) Monoamines and nitric oxide are employed by afferents engaged in midline thalamic regulation. J Neurosci 15: 1891–1911PubMedGoogle Scholar
  263. 263.
    Sawchenko PE, Swanson LW, Steinbusch HWM, Verhofstad AAJ (1983) The distribution and cells of origin of serotonergic inputs to the paraventricular and supraoptic nuclei of the rat. Brain Res 277: 355–360PubMedCrossRefGoogle Scholar
  264. 264.
    Larsen PJ, Hay-Schmidt A, Vrang N, Mikkelsen JD (1996) Origin of projections from the midbrain raphe nuclei to the hypothalamic paraventricular nucleus in the rat: a combined retrograde and anterograde tracing study. Neuroscience 70: 963–988PubMedCrossRefGoogle Scholar
  265. 265.
    Simerly RB, Swanson LW (1986) The organization of neural inputs to the medial preoptic nucleus of the rat. J Comp Neurol 246: 312–342PubMedCrossRefGoogle Scholar
  266. 266.
    Finch DM, Derian EL, Babb TL (1984) Afferent fibers to rat cingulate cortex. Exp Neurol 83: 468–485PubMedCrossRefGoogle Scholar
  267. 267.
    Krout KE, Kawano J, Mettenleiter TC, Loewy AD (2002) CNS inputs to the suprachiasmatic nucleus of the rat. Neuroscience 110: 73–92PubMedCrossRefGoogle Scholar
  268. 268.
    McLean JH, Shipley MT (1987) Serotonergic afferents to the rat olfactory bulb: I. Origins and laminar specificity of serotonergic inputs in the adult rat. J Neurosci 7: 3016–3028PubMedGoogle Scholar
  269. 269.
    Jasmin L, Burkey AR, Granato A, Ohara PT (2004) Rostral agranular insular cortex and pain areas of the central nervous system: a tract-tracing study in the rat. J Comp Neurol 468: 425–440PubMedCrossRefGoogle Scholar
  270. 270.
    Marchand ER, Riley JN, Moore RY (1980) Interpeduncular nucleus afferents in the rat. Brain Res 193: 339–352PubMedCrossRefGoogle Scholar
  271. 271.
    Lowry CA (2002) Functional subset of serotonergic neurones: Implications for control of the hypothalamic-pituitary-adrenal axis. J Neuroendocrinol 14: 911–923PubMedCrossRefGoogle Scholar
  272. 272.
    Johnson PL, Lowry CA, Truitt W, Sheklar A (2007) Disruption of GABAergic tone in the dorsomedial hypothalamus attenuates responses in a subset of sevotonergic neurons in the dorsal raphe nucleus during lactate challenge-induced panic. J Psychopharmacol (in press)Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Christopher A. Lowry
    • 1
  • Andrew K. Evans
    • 1
  • Paul J. Gasser
    • 2
  • Matthew W. Hale
    • 1
  • Daniel R. Staub
    • 3
  • Anantha Shekhar
    • 4
  1. 1.Department of Integrative PhysiologyUniversity of Colorado at BoulderBoulderUSA
  2. 2.Department of Biomedical ScienceMarquette UniversityMilwaukeeUSA
  3. 3.Department of Anatomy and Cell Biology and Center for Substance AbuseTemple University, School of MedicinePhiladelphiaUSA
  4. 4.Department of PsychiatryIndiana University School of MedicineIndianapolisUSA

Personalised recommendations