Advertisement

Effect of 5-HT2A/2B/2C receptor agonists and antagonists on sleep and waking in laboratory animals and humans

  • Tamas Kitka
  • Gyorgy Bagdy

Abstract

Several lines of evidence including human and rodent sleep studies with receptor ligands, data from genetically modified mice, and the localization of receptors in key brain structures suggest the important role of 5-HT2 receptors in the regulation of vigilance. There are three members of the 5-HT2 receptor family: the 5-HT2A, 5-HT2B and 5-HT2C receptors. Their distribution in the brain as well as their functions in sleep regulation show considerable differences. In summary, activation of 5-HT2A receptors results in an increase, and activation of 5-HT2B receptors causes a decrease in waking. Tonic activation of 5-HT2A receptors by endogenous 5-HT effectively inhibits slow wave sleep. Subtype-selective 5-HT2C receptor agonists cause an increase in waking, while the 5-HT2C receptor antagonists have little effect. In the case of none subtype-selective compounds, the 5-HT2A receptor-mediated effects usually dominate the outcome on sleep-wake stages and thus, inhibition of non-REM (and also REM) sleep could be expected after administration of selective serotonin reuptake inhibitor antidepressants, while activation of slow-wave sleep could be observed after 5-HT2 receptor antagonist antidepressants and atypical antipsychotic compounds, although high affinity to other, e.g., cholinergic or adrenergic receptors may mask the outcome in certain cases. Compounds with high affinity to 5-HT2 receptors (either agonists or antagonists) reduce REM sleep in general.

Keywords

Dorsal Raphe Nucleus NREM Sleep Vigilance State Passive Phase Endogenous Serotonin Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leysen JE (2004) 5-HT2 receptors. Curr Drug Targets CNS Neurol Disord 3: 11–26PubMedCrossRefGoogle Scholar
  2. 2.
    Felder CC, Kanterman RY, Ma AL, Axelrod J (1990) Serotonin stimulates phospholipase A2 and the release of arachidonic acid in hippocampal neurons by a type 2 serotonin receptor that is independent of inositolphospholipid hydrolysis. Proc Natl Acad Sci USA 87: 2187–2191PubMedCrossRefGoogle Scholar
  3. 3.
    Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP (1998) Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 54: 94–104PubMedGoogle Scholar
  4. 4.
    McGrew L, Chang MS, Sanders-Bush E (2002) Phospholipase D activation by endogenous 5-hydroxytryptamine 2C receptors is mediated by Galpha13 and pertussis toxin-insensitive Gbetagamma subunits. Mol Pharmacol 62: 1339–1343PubMedCrossRefGoogle Scholar
  5. 5.
    Blomeley C, Bracci E (2005) Excitatory effects of serotonin on rat striatal cholinergic interneurones. J Physiol 569: 715–721PubMedCrossRefGoogle Scholar
  6. 6.
    Xiang Z, Wang L, Kitai ST (2005) Modulation of spontaneous firing in rat subthalamic neurons by 5-HT receptor subtypes. J Neurophysiol 93: 1145–1157PubMedCrossRefGoogle Scholar
  7. 7.
    Hopwood SE, Trapp S (2005) TASK-like K+ channels mediate effects of 5-HT and extracellular pH in rat dorsal vagal neurones in vitro. J Physiol 568: 145–154PubMedCrossRefGoogle Scholar
  8. 8.
    Marek GJ, Aghajanian GK (1995) Protein kinase C inhibitors enhance the 5-HT2A receptor-mediated excitatory effects of serotonin on interneurons in rat piriform cortex. Synapse 21: 123–130PubMedCrossRefGoogle Scholar
  9. 9.
    Fay R, Kubin L (2001) 5-HT(2A) receptor-like protein is present in small neurons located in rat mesopontine cholinergic nuclei, but absent from cholinergic neurons. Neurosci Lett 314: 77–81PubMedCrossRefGoogle Scholar
  10. 10.
    Moyer RW, Kennaway DJ (1999) Immunohistochemical localization of serotonin receptors in the rat suprachiasmatic nucleus. Neurosci Lett 271: 147–150PubMedCrossRefGoogle Scholar
  11. 11.
    Doherty MD, Pickel VM (2000) Ultrastructural localization of the serotonin 2A receptor in dopaminergic neurons in the ventral tegmental area. Brain Res 864: 176–185PubMedCrossRefGoogle Scholar
  12. 12.
    Morilak DA, Ciaranello RD (1993) 5-HT2 receptor immunoreactivity on cholinergic neurons of the pontomesencephalic tegmentum shown by double immunofluorescence. Brain Res 627: 49–54PubMedCrossRefGoogle Scholar
  13. 13.
    Loric S, Launay JM, Colas JF, Maroteaux L (1992) New mouse 5-HT2-like receptor. Expression in brain, heart and intestine. FEBS Lett 312: 203–207PubMedCrossRefGoogle Scholar
  14. 14.
    Choi DS, Maroteaux L (1996) Immunohistochemical localisation of the serotonin 5-HT2B receptor in mouse gut, cardiovascular system, and brain. FEBS Lett 391: 45–51PubMedCrossRefGoogle Scholar
  15. 15.
    Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76: 323–329PubMedCrossRefGoogle Scholar
  16. 16.
    Kantor S, Jakus R, Balogh B, Benko A, Bagdy G (2004) Increased wakefulness, motor activity and decreased theta activity after blockade of the 5-HT2B receptor by the subtype-selective antagonist SB-215505. Br J Pharmacol 142: 1332–1342PubMedCrossRefGoogle Scholar
  17. 17.
    Abramowski D, Rigo M, Duc D, Hoyer D, Staufenbiel M (1995) Localization of the 5-hydroxytryptamine2C receptor protein in human and rat brain using specific antisera. Neuropharmacology 34: 1635–1645PubMedCrossRefGoogle Scholar
  18. 18.
    Pompeiano M, Palacios JM, Mengod G (1994) Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res 23: 163–178PubMedCrossRefGoogle Scholar
  19. 19.
    Pasqualetti M, Ori M, Castagna M, Marazziti D, Cassano GB, Nardi I (1999) Distribution and cellular localization of the serotonin type 2C receptor messenger RNA in human brain. Neuroscience 92: 601–611PubMedCrossRefGoogle Scholar
  20. 20.
    Boothman L, Raley J, Denk F, Hirani E, Sharp T (2006) In vivo evidence that 5-HT(2C) receptors inhibit 5-HT neuronal activity via a GABAergic mechanism. Br J Pharmacol 149: 861–869PubMedCrossRefGoogle Scholar
  21. 21.
    Serrats J, Mengod G, Cortes R (2005) Expression of serotonin 5-HT2C receptors in GABAergic cells of the anterior raphe nuclei. J Chem Neuroanat 29: 83–91PubMedCrossRefGoogle Scholar
  22. 22.
    Eberle-Wang K, Mikeladze Z, Uryu K, Chesselet MF (1997) Pattern of expression of the serotonin2C receptor messenger RNA in the basal ganglia of adult rats. J Comp Neurol 384: 233–247PubMedCrossRefGoogle Scholar
  23. 23.
    Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci 16: 7566–7573PubMedGoogle Scholar
  24. 24.
    Bankson MG, Yamamoto BK (2004) Serotonin-GABA interactions modulate MDMA-induced mesolimbic dopamine release. J Neurochem 91: 852–859PubMedCrossRefGoogle Scholar
  25. 25.
    Invernizzi RW, Pierucci M, Calcagno E, Di Giovanni G, Di Matteo V, Benigno A, Esposito E (2007) Selective activation of 5-HT(2C) receptors stimulates GABA-ergic function in the rat substantia nigra pars reticulata: A combined in vivo electrophysiological and neurochemical study. Neuroscience 144: 1523–1535PubMedCrossRefGoogle Scholar
  26. 26.
    McCormick DA, Wang Z (1991) Serotonin and noradrenaline excite GABAergic neurones of the guinea-pig and cat nucleus reticularis thalami. J Physiol 442: 235–255PubMedGoogle Scholar
  27. 27.
    Sharpley AL, Elliott JM, Attenburrow MJ, Cowen PJ (1994) Slow wave sleep in humans: role of 5-HT2A and 5-HT2C receptors. Neuropharmacology 33: 467–471PubMedCrossRefGoogle Scholar
  28. 28.
    Hajos M, Hoffmann WE, Weaver RJ (2003) Regulation of septo-hippocampal activity by 5-hydroxytryptamine(2C) receptors. J Pharmacol Exp Ther 306: 605–615PubMedCrossRefGoogle Scholar
  29. 29.
    Kantor S, Jakus R, Molnar E, Gyongyosi N, Toth A, Detari L, Bagdy G (2005) Despite similar anxiolytic potential, the 5-hydroxytryptamine 2C receptor antagonist SB-242084 {6-chloro-5-methyl-1-[2-(2-methylpyrid-3-yloxy)-pyrid-5-yl carbamoyl] indoline} and chlordiazepoxide produced differential effects on electroencephalogram power spectra. J Pharmacol Exp Ther 315: 921–930PubMedCrossRefGoogle Scholar
  30. 30.
    Popa D, Lena C, Fabre V, Prenat C, Gingrich J, Escourrou P, Hamon M, Adrien J (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25: 11231–11238PubMedCrossRefGoogle Scholar
  31. 31.
    Frank MG, Stryker MP, Tecott LH (2002) Sleep and sleep homeostasis in mice lacking the 5-HT2c receptor. Neuropsychopharmacology 27: 869–873PubMedCrossRefGoogle Scholar
  32. 32.
    Kantor S, Jakus R, Bodizs R, Halasz P, Bagdy G (2002) Acute and long-term effects of the 5-HT2 receptor antagonist ritanserin on EEG power spectra, motor activity, and sleep: changes at the light-dark phase shift. Brain Res 943: 105–111PubMedCrossRefGoogle Scholar
  33. 33.
    Portas CM, Bjorvatn B, Fagerland S, Gronli J, Mundal V, Sorensen E, Ursin R (1998) On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83: 807–814PubMedCrossRefGoogle Scholar
  34. 34.
    Portas CM, McCarley RW (1994) Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat. Brain Res 648: 306–312PubMedCrossRefGoogle Scholar
  35. 35.
    Iwakiri H, Matsuyama K, Mori S (1993) Extracellular levels of serotonin in the medial pontine reticular formation in relation to sleep-wake cycle in cats: a microdialysis study. Neurosci Res 18: 157–170PubMedCrossRefGoogle Scholar
  36. 36.
    McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: 569–575PubMedCrossRefGoogle Scholar
  37. 37.
    Aston-Jones G, Bloom FE (1981) Nonrepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J Neurosci 1: 887–900PubMedGoogle Scholar
  38. 38.
    Monti JM, Jantos H (2006) Effects of activation and blockade of 5-HT2A/2C receptors in the dorsal raphe nucleus on sleep and waking in the rat. Prog Neuropsychopharmacol Biol Psychiatry 30: 1189–1195PubMedCrossRefGoogle Scholar
  39. 39.
    Amici R, Sanford LD, Kearney K, McInerney B, Ross RJ, Horner RL, Morrison AR (2004) A serotonergic (5-HT2) receptor mechanism in the laterodorsal tegmental nucleus participates in regulating the pattern of rapid-eye-movement sleep occurrence in the rat. Brain Res 996: 9–18PubMedCrossRefGoogle Scholar
  40. 40.
    Barnes NM, Sharp T (1999) A review of central 5-HT receptors and their function. Neuropharmacology 38: 1083–1152PubMedCrossRefGoogle Scholar
  41. 41.
    Tortella FC, Echevarria E, Pastel RH, Cox B, Blackburn TP (1989) Suppressant effects of selective 5-HT2 antagonists on rapid eye movement sleep in rats. Brain Res 485: 294–300PubMedCrossRefGoogle Scholar
  42. 42.
    Pastel RH, Echevarria E, Cox B, Blackburn TP, Tortella FC (1993) Effects of chronic treatment with two selective 5-HT2 antagonists on sleep in the rat. Pharmacol Biochem Behav 44: 797–804PubMedCrossRefGoogle Scholar
  43. 43.
    Monti JM, Jantos H (2006) Effects of the serotonin 5-HT2A/2C receptor agonist DOI and of the selective 5-HT2A or 5-HT2C receptor antagonists EMD 281014 and SB-243213, respectively, on sleep and waking in the rat. Eur J Pharmacol 553: 163–170PubMedCrossRefGoogle Scholar
  44. 44.
    Martin JR, Bos M, Jenck F, Moreau J, Mutel V, Sleight AJ, Wichmann J, Andrews JS, Berendsen HH, Broekkamp CL et al (1998) 5-HT2C receptor agonists: pharmacological characteristics and therapeutic potential. J Pharmacol Exp Ther 286: 913–924PubMedGoogle Scholar
  45. 45.
    Smith MI, Piper DC, Duxon MS, Upton N (2002) Effect of SB-243213, a selective 5-HT(2C) receptor antagonist, on the rat sleep profile: a comparison to paroxetine. Pharmacol Biochem Behav 71: 599–605PubMedCrossRefGoogle Scholar
  46. 46.
    Stutzmann JM, Eon B, Lucas M, Blanchard JC, Laduron PM (1992) RP 62203, a 5-hydroxytryptamine2 antagonist, enhances deep NREM sleep in rats. Sleep 15: 119–124PubMedGoogle Scholar
  47. 47.
    Kantor S, Gerber K, Halasz P, Bagdy G (2000) The role of 5-HT2A, 5-HT2C and 5-HT3 serotonin receptors in the regulation of sleep. J Physiol 526: 66–67Google Scholar
  48. 48.
    Detari L, Szentgyorgyi V, Hajnik T, Szenasi G, Gacsalyi I, Kukorelli T (1999) Differential EEG effects of the anxiolytic drugs, deramciclane (EGIS-3886), ritanserin and chlordiazepoxide in rats. Psychopharmacology (Berl) 142: 318–326CrossRefGoogle Scholar
  49. 49.
    Kirov R, Moyanova S (1995) Ritanserin-induced changes in sleep-waking phases in rats. Acta Physiol Pharmacol Bulg 21: 87–92PubMedGoogle Scholar
  50. 50.
    Bjorvatn B, Ursin R (1990) Effects of zimeldine, a selective 5-HT reuptake inhibitor, combined with ritanserin, a selective 5-HT2 antagonist, on waking and sleep stages in rats. Behav Brain Res 40: 239–246PubMedCrossRefGoogle Scholar
  51. 51.
    Silhol S, Glin L, Gottesmann C (1992) Study of the 5-HT2 antagonist ritanserin on sleep-walking cycle in the rat. Pharmacol Biochem Behav 41: 241–243PubMedCrossRefGoogle Scholar
  52. 52.
    Coenen AM, Ates N, Skarsfeldt T, van Luijtelaar EL (1995) Effects of sertindole on sleep-wake states, electroencephalogram, behavioral patterns, and epileptic activity of rats. Pharmacol Biochem Behav 51: 353–357PubMedCrossRefGoogle Scholar
  53. 53.
    Sebban C, Tesolin-Decros B, Ciprian-Ollivier J, Perret L, Spedding M (2002) Effects of phencyclidine (PCP) and MK 801 on the EEGq in the prefrontal cortex of conscious rats; antagonism by clozapine, and antagonists of AMPA-, alpha(1)-and 5-HT(2A)-receptors. Br J Pharmacol 135: 65–78PubMedCrossRefGoogle Scholar
  54. 54.
    Katsuda Y, Walsh AE, Ware CJ, Cowen PJ, Sharpley AL (1993) meta-Chlorophenylpiperazine decreases slow-wave sleep in humans. Biol Psychiatry 33: 49–51PubMedCrossRefGoogle Scholar
  55. 55.
    Lawlor BA, Newhouse PA, Balkin TJ, Molchan SE, Mellow AM, Murphy DL, Sunderland T (1991) A preliminary study of the effects of nighttime administration of the serotonin agonist, m-CPP, on sleep architecture and behavior in healthy volunteers. Biol Psychiatry 29: 281–286PubMedCrossRefGoogle Scholar
  56. 56.
    Landolt HP, Meier V, Burgess HJ, Finelli LA, Cattelin F, Achermann P, Borbely AA (1999) Serotonin-2 receptors and human sleep: effect of a selective antagonist on EEG power spectra. Neuropsychopharmacology 21: 455–466PubMedCrossRefGoogle Scholar
  57. 57.
    van Laar M, Volkerts E, Verbaten M (2001) Subchronic effects of the GABA-agonist lorazepam and the 5-HT2A/2C antagonist ritanserin on driving performance, slow wave sleep and daytime sleepiness in healthy volunteers. Psychopharmacology (Berl) 154: 189–197CrossRefGoogle Scholar
  58. 58.
    Viola AU, Brandenberger G, Toussaint M, Bouhours P, Paul Macher J, Luthringer R (2002) Ritanserin, a serotonin-2 receptor antagonist, improves ultradian sleep rhythmicity in young poor sleepers. Clin Neurophysiol 113: 429–434PubMedCrossRefGoogle Scholar
  59. 59.
    Aslan S, Isik E, Cosar B (2002) The effects of mirtazapine on sleep: a placebo controlled, double-blind study in young healthy volunteers. Sleep 25: 677–679PubMedGoogle Scholar
  60. 60.
    Brandenberger G, Luthringer R, Muller G, Gronfier C, Schaltenbrand N, Macher JP, Muzet A, Follenius M (1996) 5-HT2 receptors are partially involved in the relationship between renin release and delta relative power. J Endocrinol Invest 19: 556–562PubMedGoogle Scholar
  61. 61.
    Dijk DJ, Beersma DG, Daan S, van den Hoofdakker RH (1989) Effects of seganserin, a 5-HT2 antagonist, and temazepam on human sleep stages and EEG power spectra. Eur J Pharmacol 171: 207–218PubMedCrossRefGoogle Scholar
  62. 62.
    Lammers GJ, Arends J, Declerck AC, Kamphuisen HA, Schouwink G, Troost J (1991) Ritanserin, a 5-HT2 receptor blocker, as add-on treatment in narcolepsy. Sleep 14: 130–132PubMedGoogle Scholar
  63. 63.
    Sharpley AL, Solomon RA, Fernando AI, da Roza Davis JM, Cowen PJ (1990) Doserelated effects of selective 5-HT2 receptor antagonists on slow wave sleep in humans. Psychopharmacology (Berl) 101: 568–569CrossRefGoogle Scholar
  64. 64.
    Staner L, Kempenaers C, Simonnet MP, Fransolet L, Mendlewicz J (1992) 5-HT2 receptor antagonism and slow-wave sleep in major depression. Acta Psychiatr Scand 86: 133–137PubMedCrossRefGoogle Scholar
  65. 65.
    Sorge S, Pollmacher T, Lancel M (2004) Clozapine alters sleep-wake behavior in rats. Neuropsychopharmacology 29: 1462–1469PubMedCrossRefGoogle Scholar
  66. 66.
    Dugovic C, Wauquier A, Janssen PA (1989) Differential effects of the new antipsychotic risperidone on sleep and wakefulness in the rat. Neuropharmacology 28: 1431–1433PubMedCrossRefGoogle Scholar
  67. 67.
    Sebban C, Tesolin-Decros B, Millan MJ, Spedding M (1999) Contrasting EEG profiles elicited by antipsychotic agents in the prefrontal cortex of the conscious rat: antagonism of the effects of clozapine by modafinil. Br J Pharmacol 128: 1055–1063PubMedCrossRefGoogle Scholar
  68. 68.
    Cohrs S, Meier A, Neumann AC, Jordan W, Ruther E, Rodenbeck A (2005) Improved sleep continuity and increased slow wave sleep and REM latency during ziprasidone treatment: a randomized, controlled, crossover trial of 12 healthy male subjects. J Clin Psychiatry 66: 989–996PubMedCrossRefGoogle Scholar
  69. 69.
    Sharpley AL, Vassallo CM, Cowen PJ (2000) Olanzapine increases slow-wave sleep: evidence for blockade of central 5-HT(2C) receptors in vivo. Biol Psychiatry 47: 468–470PubMedCrossRefGoogle Scholar
  70. 70.
    Leysen JE, Gommeren W, Schotte A (1996) Serotonin receptor subtypes: possible roles and implications in antipsychotic drug action. In: Serotonin in Antipsychotic Treatment, pp. 51–75, JM Kane, H-J Möller, F Awouters (eds.): Marcel Dekker, New YorkGoogle Scholar
  71. 71.
    Bartoszyk GD, van Amsterdam C, Bottcher H, Seyfried CA (2003) EMD 281014, a new selective serotonin 5-HT2A receptor antagonist. Eur J Pharmacol 473: 229–230PubMedCrossRefGoogle Scholar
  72. 72.
    Jansen I, Blackburn T, Eriksen K, Edvinsson L (1991) 5-Hydroxytryptamine antagonistic effects of ICI 169,369, ICI 170,809 and methysergide in human temporal and cerebral arteries. Pharmacol Toxicol 68: 8–13PubMedCrossRefGoogle Scholar
  73. 73.
    http://www.tocris.comGoogle Scholar
  74. 74.
    Bymaster FP, Nelson DL, DeLapp NW, Falcone JF, Eckols K, Truex LL, Foreman MM, Lucaites VL, Calligaro DO (1999) Antagonism by olanzapine of dopamine D1, serotonin2, muscarinic, histamine H1 and alpha 1-adrenergic receptors in vitro. Schizophr Res 37: 107–122PubMedCrossRefGoogle Scholar
  75. 75.
    Sprouse JS, Reynolds LS, Braselton JP, Rollema H, Zorn SH (1999) Comparison of the novel antipsychotic ziprasidone with clozapine and olanzapine: inhibition of dorsal raphe cell firing and the role of 5-HT1A receptor activation. Neuropsychopharmacology 21: 622–631PubMedCrossRefGoogle Scholar
  76. 76.
    Wood MD, Reavill C, Trail B, Wilson A, Stean T, Kennett GA, Lightowler S, Blackburn TP, Thomas D, Gager TL et al (2001) SB-243213; a selective 5-HT2C receptor inverse agonist with improved anxiolytic profile: lack of tolerance and withdrawal anxiety. Neuropharmacology 41: 186–199PubMedCrossRefGoogle Scholar
  77. 77.
    http://pdsp.med.unc.edu/pdsp.phpGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Tamas Kitka
    • 1
  • Gyorgy Bagdy
    • 1
    • 2
  1. 1.Faculty of Medicine, Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
  2. 2.Group of NeuropsychopharmacologyHungarian Academy of Sciences and Semmelweis UniversityBudapestHungary

Personalised recommendations