Mechanisms involved in the inhibition of REM sleep by serotonin

  • Jaime M. Monti
  • Héctor Jantos


Based on electrophysiological, neurochemical, and neuropharmacological approaches, it is currently accepted that serotonin (5-HT) functions to promote waking (W) and to inhibit (permissive role) REM sleep (REMS). Serotonergic neurons of the dorsal raphe nucleus (DRN) fire at a steady rate during W, decrease their firing during slow-wave sleep (SWS), and virtually cease activity during REMS. Serotonin released during W activates 5-HT1A somatodendritic receptors and 5-HT2A/2C receptors expressed by GABAergic interneurons, and induces a decrease of the firing rate of 5-HT cells characteristic of SWS. In addition to local inhibitory circuits, GABAergic neurons of the ventrolateral preoptic nucleus play a role in the deactivation of the 5-HT and all other arousal systems, which results in the occurrence of REMS. Studies on the effects on REMS of direct administration of selective 5-HT1A (8-OH-DPAT, flesinoxan), and 5-HT2A/2C (DOI) receptor agonists into the DRN tend to indicate that quite different mechanisms are involved in their effects. Direct infusion of 8-OH-DPAT or flesinoxan into the DRN significantly enhances REMS, and this effect is prevented by local infusion of the selective 5-HT1A receptor antagonist WAY 100635. In agreement with the reciprocal interaction hypothesis of REMS generation, inhibition of DRN serotonergic neurons following somatodendritic 5-HT1A receptor stimulation suppressed 5-HT inhibition of mesopontine cholinergic neurons and increased REMS. Infusion of DOI into the DRN induces a significant reduction of REMS in the rat. Pretreatment with selective 5-HT2A and 5-HT2C receptor antagonists prevents the DOIinduced suppression of REMS. Serotonin-containing neurons of the DRN do not express 5-HT2A or 5-HT2C receptors. The 5-HT2A and 5-HT2C receptor-containing neurons are predominantly GABAergic interneurons and projection neurons. Since DOI inhibits the firing of serotonergic neurons in the DRN and reduces the extracellular concentration of 5-HT, it can be proposed that the DOI activation of long-projection GABAergic neurons that express 5-HT2A/2C receptors would be responsible for the inhibition of cholinergic cells in the laterodorsal tegmental and pedunculopontine tegmental nuclei (LDT/PPT) and the suppression of REMS. Microinjection of 8-OH-DPAT or flesinoxan into the LDT/PPT induces an inhibitory response on target neurons and the suppression of REMS. Moreover, infusion of DOI into the LDT/PPT selectively decreases REMS. In this respect, activation of 5-HT2A/2C receptors expressed by GABAergic interneurons in the LDT/PPT would produce the local release of GABA and the reduction of the behavioral state.


GABAergic Neuron Dorsal Raphe Nucleus GABAergic Interneuron Serotonergic Neuron Dorsal Raphe Nucleus Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jouvet M (1972) The role of monoamines and acetylcholine containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 64: 166–307PubMedGoogle Scholar
  2. 2.
    Mouret J, Bobillier P, Jouvet M (1968) Insomnia following parachlorophenylalanine in the rat. Eur J Pharmacol 5: 17–22PubMedCrossRefGoogle Scholar
  3. 3.
    Jouvet M (1969) Biogenic amines and the state of sleep. Science 163: 32–41PubMedCrossRefGoogle Scholar
  4. 4.
    Laguzzi RF, Adrien J (1980) Inversion de l’insomnie produite par la para-chlorophenylalanine chez le chat. Arch Ital Biol 118: 109–123PubMedGoogle Scholar
  5. 5.
    Coen CW, Coombs MC, Wilson PM, Clement EM, MacKinnon PC (1983) Possible resolution of a paradox concerning the use of p-chlorophenylalanine and 5-hydroxytryptophan: evidence for a mode of action involving adrenaline in manipulating the surge of luteinizing hormone in rats. Neuroscience 8: 583–591PubMedCrossRefGoogle Scholar
  6. 6.
    Tenen S (1967) The effects of p-chlorophenylalanine, a serotonin depletor on avoidance acquisition, pain sensitivity and related behavior in the rat. Psychopharmacologia 10: 204–219PubMedCrossRefGoogle Scholar
  7. 7.
    Tagliamonte A, Tagliamonte P, Gessa G, Brodie B (1969) Compulsive sexual activity induced by p-chlorophenylalanine in normal and pinealectomized male rats. Science 166: 1433–1435PubMedCrossRefGoogle Scholar
  8. 8.
    Sheard MH (1969) The effect of p-chlorophenylalanine on behavior in rats: relation to brain serotonin and 5-hydroxyindolacetic acid. Brain Res 15: 524–528PubMedCrossRefGoogle Scholar
  9. 9.
    Borbély AA, Huston JP, Waser PG (1973) Physiological and behavioral effects of parachlorophenylalanine in the rat. Psychopharmacologia 31: 131–142PubMedCrossRefGoogle Scholar
  10. 10.
    Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: 135–150PubMedCrossRefGoogle Scholar
  11. 11.
    Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60: 13–35PubMedCrossRefGoogle Scholar
  12. 12.
    Baghdoyan HA, Rodrigo-Angulo ML, McCarley RW, Hobson JA (1987) Simultaneous pontine and basal forebrain microinjections of carbachol suppress REM sleep. J Neurosci 13: 229–242Google Scholar
  13. 13.
    Vanni-Mercier G, Sakai K, Lin JS, Jouvet M (1989) Mapping of cholinoceptive brainstem structures responsible for the generation of paradoxical sleep in the cat. Arch Ital Biol 127: 133–164PubMedGoogle Scholar
  14. 14.
    Yamamoto K, Mamelak AN, Quattrochi JJ, Hobson JA (1990) A cholinoceptive desynchronized sleep induction zone in the anterodorsal pontine tegmentum: locus of the sensitive region. Neuroscience 39: 279–293PubMedCrossRefGoogle Scholar
  15. 15.
    Imon H, Ito K, Dauphin L, McCarley RW (1996) Electrical stimulation of the cholinergic anterodorsal tegmental nucleus elicits scopolamine-sensitive excitatory postsynaptic potentials in medial pontine reticular formation neurons. Neuroscience 58: 353–358Google Scholar
  16. 16.
    Reinoso-Suárez F, de Andrés S, Rodrigo-Angulo ML, Garzón M (2001) Brain structures and mechanisms involved in the generation of REM sleep. Sleep Med Rev 5: 63–77PubMedCrossRefGoogle Scholar
  17. 17.
    McCarley RW, Hobson JA (1975) Neuronal excitability modulation over the sleep cycle: a structural and mathematical model. Science 189: 58–60PubMedCrossRefGoogle Scholar
  18. 18.
    Hobson JA, Stickgold R, Pace-Schott EF (1998) The neuropsychology of REM sleep dreaming. Neuroreport 9: R1–R14PubMedCrossRefGoogle Scholar
  19. 19.
    Vertes RP, Kocsis B (1994) Projections of the dorsal raphe nucleus to the brainstem: PHA-L analysis of the rat. J Comp Neurol 340: 11–26PubMedCrossRefGoogle Scholar
  20. 20.
    Steiniger TL, Rye DB, Wainer BH (1997) Serotonergic dorsal raphe nucleus projections to the cholinergic and noncholinergic neurons of the pedunculopontine tegmental region: a light and electron microscopic anterograde tracing and immunohistochemical study. J Comp Neurol 382: 302–322CrossRefGoogle Scholar
  21. 21.
    Vertes RP, Fortin WJ, Crane AM (1999) Projections of the median raphe nucleus in the rat. J Comp Neurol 407: 555–582PubMedCrossRefGoogle Scholar
  22. 22.
    Semba K (1993) Aminergic and cholinergic afferents to REM sleep induction regions of the pontine reticular formation in the rat. J Comp Neurol 330: 543–556PubMedCrossRefGoogle Scholar
  23. 23.
    Honda T, Semba K (1994) Serotonergic synaptic input to cholinergic neurons in the cat mesopontine tegmentum. Brain Res 647: 299–306PubMedCrossRefGoogle Scholar
  24. 24.
    Van Bockstaele EJ, Biswas A, Pickel VM (1993) Topography of serotonin neurons in the dorsal raphe nucleus that send axon collaterals to the rat prefrontal cortex and nucleus accumbens. Brain Res 624: 188–198PubMedCrossRefGoogle Scholar
  25. 25.
    Ford B, Holmes CJ, Mainville L, Jones BE (1995) GABAergic neurons in the rat pontomesencephalic tegmentum: codistribution with cholinergic and other tegmental neurons projecting to the posterior lateral hypothalamus. J Comp Neurol 363: 177–196PubMedCrossRefGoogle Scholar
  26. 26.
    Clemett DA, Punhani T, Duxon MS, Blackburn TP, Fone KCF (2000) Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology 39: 123–132PubMedCrossRefGoogle Scholar
  27. 27.
    Janowski MP, Sessack SR (2004) Prefrontal cortical projections to the rat dorsal raphe nucleus: ultrastructural features and association with serotonin and gamma-aminobutyric acid neurons. J Comp Neurol 468: 518–529CrossRefGoogle Scholar
  28. 28.
    Steinbusch HWM (1981) Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience 6: 557–618PubMedCrossRefGoogle Scholar
  29. 29.
    Abrams JK, Johnson PL, Hollis JH, Lowry CA (2004) Anatomic and functional topography of the dorsal raphe nucleus. Ann N Y Acad Sci 1018: 46–57PubMedCrossRefGoogle Scholar
  30. 30.
    Clements JR, Toth DD, Highfield DA, Grant SJ (1991) Glutamate-like immunoreactivity is present within cholinergic neurons of the laterodorsal tegmental and pedunculopontine nuclei. Adv Exp Med Biol 295: 127–142PubMedGoogle Scholar
  31. 31.
    Charara A, Parent A (1998) Chemoarchitecture of the primate dorsal raphe nucleus. J Chem Neuroanat 15: 111–127PubMedCrossRefGoogle Scholar
  32. 32.
    Li YQ, Li H, Kaneko T, Mizuno N (2001) Morphological features and electrophysiological properties of serotonergic and non-serotonergic projection neurons in the dorsal raphe nucleus. Brain Res 900: 110–118PubMedCrossRefGoogle Scholar
  33. 33.
    Commons KG, Connolley KR, Valentino RJ (2003) A neurochemically distinct dorsal raphe-limbic circuit with a potential role in affective disorders. Neuropsychopharmacology 28: 206–215PubMedCrossRefGoogle Scholar
  34. 34.
    Allers KA, Sharp T (2003) Neurochemical and anatomical identification of fastand slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo. Neuroscience 122: 193–204PubMedCrossRefGoogle Scholar
  35. 35.
    Urbain N, Creamer K, Debonnel G (2006) Electrophysiological diversity of the dorsal raphe cells across the sleep-wake cycle of the rat. J Physiol 573: 679–695PubMedCrossRefGoogle Scholar
  36. 36.
    Takakusaki K, Shiroyama, T, Kitain ST (1997) Two types of cholinergic neurons in the cat tegmental pedunculopontine nucleus: electrophysiological and morphological characterization. Neuroscience 79: 1089–1109PubMedCrossRefGoogle Scholar
  37. 37.
    Kayama Y, Ota M, Jodo E (1992) Firing of “possibly” cholinergic neurons in the rat laterodorsal tegmental nucleus during sleep and wakefulness. Brain Res 569: 210–220PubMedCrossRefGoogle Scholar
  38. 38.
    Kodama T, Takahashi Y, Honda Y (1990) Enhancement of acetylcholine release during paradoxical sleep in the dorsal tegmental field of the cat brain stem. Neurosci Lett 114: 277PubMedCrossRefGoogle Scholar
  39. 39.
    Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PP (1994) International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–203PubMedGoogle Scholar
  40. 40.
    Hoyer D, Martin GR (1996) Classification and nomenclature of 5-HT receptors: a comment on current issues. Behav Brain Res 72: 263–268Google Scholar
  41. 41.
    Baez M, Kursar JD, Helton LA, Wainscott DB, Nelson DL (1995) Molecular biology of serotonin receptors. Obes Res 3(Suppl 4): 441S–447SPubMedGoogle Scholar
  42. 42.
    Wang RY, Aghajanian GK (1977) Antidromically identified serotonergic neurons in the rat midbrain raphe: evidence for collateral inhibition. Brain Res 132: 186–193PubMedCrossRefGoogle Scholar
  43. 43.
    Aghajanian GK, Lakoski JM (1984) Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance. Brain Res 305: 181–185PubMedCrossRefGoogle Scholar
  44. 44.
    Austin MC, Weikel JA, Arango V, Mann JJ (1994) Localization of serotonin 5-HT1A receptor mRNA in neurons of the human brainstem. Synapse 18: 276–279PubMedCrossRefGoogle Scholar
  45. 45.
    Kia HK, Brisorgueil MJ, Hamon M, Calas A, Vergé D (1996) Ultrastructural localization of 5-hydroxytryptamine1A receptors in the rat brain. J Neurosci Res 46: 697–708PubMedCrossRefGoogle Scholar
  46. 46.
    Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KCF (1997) Evidence for the expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76: 323–329PubMedCrossRefGoogle Scholar
  47. 47.
    Cooper JR, Bloom FE, Roth RH (1996) The Biochemical Basis of Neuropharmacology, 7th edn. Oxford University Press, OxfordGoogle Scholar
  48. 48.
    Stanford SC (2001) 5-Hydroxytryptamine. In: RA Webster (ed): Neurotransmitters, drugs and brain function. John Wiley & Sons, Chichester, 187–209CrossRefGoogle Scholar
  49. 49.
    Jansson A, Tinner B, Steinbusch RW, Agnati LF, Fuxe K (1998) On the relationship of 5-hydroxytryptamine neurons to 5-hydroxytryptamine2A receptor-immunoreactive neuronal processes in the brain stem of rats. A double immunolabelling analysis. Neuroreport 9: 2505–2511PubMedCrossRefGoogle Scholar
  50. 50.
    Fay R, Kubin L (2000) Pontomedullary distribution of 5-HT2A receptor-like protein in the rat. J Comp Neurol 418: 323–345PubMedCrossRefGoogle Scholar
  51. 51.
    López-Giménez JF, Vilaró MT, Palacios JM, Mengod G (2001) Mapping of 5-HT2A receptors and their mRNA in monkey brain: [3H]MDL 100,907 autoradiography and in situ hybridization studies. J Comp Neurol 429: 571–589PubMedCrossRefGoogle Scholar
  52. 52.
    Mirkes SJ, Bethea CL (2001) Oestrogen, progesterone and serotonin converge on GABAergic neurons in the monkey hypothalamus. J Neuroendocrinol 13: 182–192PubMedCrossRefGoogle Scholar
  53. 53.
    Serrats J, Mengod G, Cortés R (2005) Expression of serotonin 5-HT2C receptors in GABAergic cells of the anterior raphe nuclei. J Chem Neuroanat 29: 83–91PubMedCrossRefGoogle Scholar
  54. 54.
    Nanopoulos D, Belin MF, Maitre M, Vincendon G, Pujol JF (1982) Immunocytochemical evidence for the existence of GABAergic neurons in the nucleus raphe dorsalis. Possible existence of neurons containing serotonin and GABA. Brain Res 232: 375–389PubMedCrossRefGoogle Scholar
  55. 55.
    Belin MF, Nanopoulos D, Didier M, Aguera M, Steinbusch H, Verhofstad A, Maitre M, Pujol JF (1983) Immunohistochemical evidence for the presence of gamma-aminobutyric acid and serotonin in one nerve cell. A study of the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotonin. Brain Res 275: 329–339PubMedCrossRefGoogle Scholar
  56. 56.
    Mugnaini E, Oertel WH (1985) An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In: A Björklund, T Hökfelt (eds): GABA and neuropeptides in the CNS. Handbook of chemical neuroanatomy, vol 4. Elsevier, Amsterdam, 436–608Google Scholar
  57. 57.
    Monti JM, Jantos H, Monti D (2000) Dorsal raphe nucleus administration of 5-HT1A receptor agonist and antagonists: effect on rapid eye movement sleep in the rat. Sleep Res Online 3: 29–34PubMedGoogle Scholar
  58. 58.
    Monti JM, Jantos H, Monti D (2002) Increased REM sleep after intra-dorsal raphe nucleus injection of flesinoxan or 8-OH-DPAT: prevention with WAY 100635. Eur Neuropsychopharmacol 12: 47–55PubMedCrossRefGoogle Scholar
  59. 59.
    Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Pharmacol Sci 26: 578–586PubMedCrossRefGoogle Scholar
  60. 60.
    Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271: 216–219PubMedCrossRefGoogle Scholar
  61. 61.
    Lu J, Bjorkum AA, Xu M, Gauss SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22: 4568–4576PubMedGoogle Scholar
  62. 62.
    Lu J, Greco MA, Shiromani P, Saper CB (2000) Effects of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20: 3830–3842PubMedGoogle Scholar
  63. 63.
    Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002) Afferents to the ventrolateral preoptic nucleus. J Neurosci 22: 977–990PubMedGoogle Scholar
  64. 64.
    Judge SJ, Ingram CD, Gartside SE (2004) GABA receptor modulation of 5-HT neuronal firing: characterization and effect of moderate in vivo variations in glucocorticoid levels. Neurochem Int 45: 1057–1065PubMedCrossRefGoogle Scholar
  65. 65.
    Nitz D, Siegel J (1997) GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol 273: R451–R455PubMedGoogle Scholar
  66. 66.
    Saper CB (2006) Staying awake for dinner: hypothalamic integration of sleep, feeding, and circadian rhythms. Prog Brain Res 153: 243–252PubMedCrossRefGoogle Scholar
  67. 67.
    Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24: 726–731PubMedCrossRefGoogle Scholar
  68. 68.
    Saper CB, Cano G, Scammell TE (2005) Homeostatic, circadian, and emotional regulation of sleep. J Comp Neurol 493: 92–98PubMedCrossRefGoogle Scholar
  69. 69.
    Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441: 589–594PubMedCrossRefGoogle Scholar
  70. 70.
    Garratt JC, Kidd EJ, Wright IK, Marsden CA (1991) Inhibition of 5-hydroxytryptamine neuronal activity by the 5-HT agonist DOI. Eur J Pharmacol 199: 349–355PubMedCrossRefGoogle Scholar
  71. 71.
    Monti JM, Jantos H (2006) Effects of activation and blockade of 5-HT2A/2C receptors in the dorsal raphe nucleus on sleep and waking in the rat. Prog Neuropsychopharmacol Biol Psychiatry 30: 1189–1195PubMedCrossRefGoogle Scholar
  72. 72.
    Luebke JI, Greene RW, Semba K, Kamondi A, McCarley RW (1992) Serotonin hyperpolarizes cholinergic low threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci (USA) 89: 743–747CrossRefGoogle Scholar
  73. 73.
    Horner RL, Sanford LD, Annis D, Pack AI, Morrison AR (1997) Serotonin at the laterodorsal tegmental nucleus suppresses rapid eye movement sleep in freely behaving rats. J Neurosci 17: 7541–7552PubMedGoogle Scholar
  74. 74.
    Stevens DR, McCarley RW, Greene RW (1992) Excitatory amino acid-mediated responses and synaptic potentials in medial pontine reticular formation neurons of the rat in vitro. J Neurosci 12: 4188–4194PubMedGoogle Scholar
  75. 75.
    Portas CM, Thakkar M, Rainnie D, McCarley RW (1996) Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci16: 2820–2828PubMedGoogle Scholar
  76. 76.
    Sorensen E, Gronli J, Bjorvatn B, Bjorkum A, Ursin R (2001) Sleep and waking following microdialysis perfusion of the selective 5-HT1A receptor antagonist p-MPPI into the dorsal raphe nucleus in the freely moving rat. Brain Res 897: 122–130PubMedCrossRefGoogle Scholar
  77. 77.
    Sanford LD, Ross RJ, Seggos AE, Morrison AR, Ball WA, Mann GL (1994) Central administration of two 5-HT receptor agonists: effect on REM sleep initiation and PGO waves. Pharmacol Biochem Behav 49: 93–100PubMedCrossRefGoogle Scholar
  78. 78.
    Monti JM, Jantos H (2003) Differential effects of the 5-HT1A receptor agonist flesinoxan given locally or systemically on REM sleep in the rat. Eur J Pharmacol 478: 121–130PubMedCrossRefGoogle Scholar
  79. 79.
    Monti JM, Jantos H (2004) Effects of the 5-HT1A receptor ligands flesinoxan and WAY 100635 given systemically or microinjected into the laterodorsal tegmental nucleus on REM sleep in the rat. Behav Brain Res 151: 159–166PubMedCrossRefGoogle Scholar
  80. 80.
    Boutrel B, Monaca C, Hen R, Hamon M, Adrien J (2002) Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci 22: 4686–4692PubMedGoogle Scholar
  81. 81.
    Martín-Ruiz R, Puig MV, Celada P, Shapiro DA, Roth BL, Mengod G, Artigas F (2001) Control of serotonergic function in medial prefrontal cortex by serotonin-2A receptors through a glutamate-dependent mechanism. J Neurosci 21: 9856–9866PubMedGoogle Scholar
  82. 82.
    Liu R, Jolas T, Aghajanian G (2000) Serotonin 5-HT2 receptors activate local GABA inhibitory inputs to serotonergic neurons of the dorsal raphe nucleus. Brain Res 873: 34–45PubMedCrossRefGoogle Scholar
  83. 83.
    Amici R, Sanford LD, Kearney K, McInerney B, Ross RJ, Horner RL, Morrison AR (2004) A serotonergic (5-HT2) receptor mechanism in the laterodorsal tegmental nucleus participates in regulating the pattern of rapid-eye-movement sleep occurrence in the rat. Brain Res 996: 9–18PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Jaime M. Monti
    • 1
  • Héctor Jantos
    • 1
  1. 1.Department of Pharmacology and Therapeutics, School of MedicineClinics HospitalMontevideoUruguay

Personalised recommendations