Skip to main content

Involvement of the 5-HT1A and the 5-HT1B receptor in the regulation of sleep and waking

  • Chapter

Abstract

The involvement of the 5-HT1A and the 5-HT1B receptor in the regulation of sleep and waking is complex due to a multitude of presynaptic and/or postsynaptic actions also involving other neurotransmitter systems. Both receptors produce an important inhibitory feed back to the serotonergic raphe neurons. Overall, most studies support the possibility that stimulation of postsynaptic 5-HT1A receptors, e.g., via systemic administration of a high dose of agonists increases wakefulness and decreases sleep. Local administration of agonists in dorsal raphe nucleus mainly produces a response similar to the “low-dose” systemic administration, decreasing wakefulness and increasing rapid eye movement (REM) sleep via disinhibition of mesopontine REM sleep promoting neurons. Systemic administration of 5-HT1B receptors agonists consistently increases wakefulness and decreases REM sleep, as do the 5-HT1A agonists. The mechanism by which 5-HT1B receptors affect state modulation remain elusive. The general arousing effects of 5-HT1A and 5-HT1B agonists should also be considered in relation to the multiple, largely redundant, neurotransmitter systems that maintain arousal. Finally, 5-HT1A and 5-HT1B receptor are important modulators of the circadian rhythm largely by affecting the response of the suprachiasmatic nucleus to light and the secretion of melatonin from the pineal gland. The development of more selective ligands seems crucial to further explore the role of these receptors in state modulation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoyer D, Hannon JP, Martin GR (2002) Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav 71: 533–554

    PubMed  CAS  Google Scholar 

  2. Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiroperidol. Mol Pharmacol 16: 687–699

    PubMed  CAS  Google Scholar 

  3. Pedigo NW, Yamamura HI, Nelson DL (1981) Discrimination of multiple [3H]5-hydroxytryptamine binding sites by the neuroleptic spiperone in rat brain. J Neurochem 36: 220–226

    PubMed  CAS  Google Scholar 

  4. Humphrey PPA, Hartig P, Hoyer D (1993) A proposed new nomenclature for 5-HT receptors. Trends Pharmacol Sci 14: 233–236

    PubMed  CAS  Google Scholar 

  5. Lanfumey L, Hamon M (2004) 5-HT1 receptors. Curr Drug Targets CNS Neurol Disord 3: 1–10

    PubMed  CAS  Google Scholar 

  6. Adell A, Celada P, Abellan MT, Artigas F (2002) Origin and functional role of the extracellular serotonin in the midbrain raphe nuclei. Brain Res Brain Res Rev 39: 154–180

    PubMed  CAS  Google Scholar 

  7. Kia HK, Brisorgueil MJ, Hamon M, Calas A, Verge D (1996) Ultrastructural localization of 5-hydroxytryptamine1A receptors in the rat brain. J Neurosci Res 46: 697–708

    PubMed  CAS  Google Scholar 

  8. Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, Fletcher A, Cliffe IA, Barf T, Wikstrom H, Sedvall G (1997) Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]WAY-100635. Brain Res 745: 96–108

    PubMed  CAS  Google Scholar 

  9. Larsson LG, Renyi L, Ross SB, Svensson B, Angeby-Moller K (1990) Different effects on the responses of functional pre-and postsynaptic 5-HT1A receptors by repeated treatment of rats with the 5-HT1A receptor agonist 8-OH-DPAT. Neuropharmacology 29: 86–91

    PubMed  CAS  Google Scholar 

  10. Sotelo C, Cholley B, El Mestikawy S, Gozlan H, Hamon M (1990) Direct Immunohistochemical evidence of the existence of 5-HT1A autoreceptors on serotoninergic neurons in the midbrain raphe nuclei. Eur J Neurosci 2: 1144–1154

    PubMed  Google Scholar 

  11. de Boer SF, Lesourd M, Mocaer E, Koolhaas JM. Somatodendritic (2000) 5-HT(1A) autoreceptors mediate the anti-aggressive actions of 5-HT(1A) receptor agonists in rats: an ethopharmacological study with S-15535, alnespirone, and WAY-100635. Neuropsychopharmacology 23: 20–33

    PubMed  Google Scholar 

  12. Higgins GA, Bradbury AJ, Jones BJ, Oakley NR (1988) Behavioural and biochemical consequences following activation of 5HT1-like and GABA receptors in the dorsal raphe nucleus of the rat. Neuropharmacology 27: 993–1001

    PubMed  CAS  Google Scholar 

  13. Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70: 83–244

    PubMed  CAS  Google Scholar 

  14. Hjorth S, Bengtsson HJ, Kullberg A, Carlzon D, Peilot H, Auerbach SB (2000) Serotonin autoreceptor function and antidepressant drug action. J Psychopharmacol 14: 177–185

    PubMed  CAS  Google Scholar 

  15. Dourish CT, Hutson PH, Curzon G (1985) Characteristics of feeding induced by the serotonin agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Brain Res Bull 15: 377–384

    PubMed  CAS  Google Scholar 

  16. Blanchard RJ, Shepherd JK, Armstrong J, Tsuda SF, Blanchard DC (1993) An ethopharmacological analysis of the behavioral effects of 8-OH-DPAT. Psychopharmacology (Berl) 112: 55–63

    CAS  Google Scholar 

  17. De Vry J, Schreiber R (2000) Effects of selected serotonin 5-HT(1) and 5-HT(2) receptor agonists on feeding behavior: possible mechanisms of action. Neurosci Biobehav Rev 24: 341–353

    PubMed  Google Scholar 

  18. McKenzie-Quirk SD, Miczek KA (2003) 5-HT1A agonists: alcohol drinking in rats and squirrel monkeys. Psychopharmacology (Berl) 167: 145–152

    CAS  Google Scholar 

  19. Fuller RW (1992) The involvement of serotonin in regulation of pituitary-adrenocortical function. Front Neuroendocrinol 13: 250–270

    PubMed  CAS  Google Scholar 

  20. Levy AD, Baumann MH, Van de Kar LD (1994) Monoaminergic regulation of neuroendocrine function and its modification by cocaine. Front Neuroendocrinol 15: 85–156

    PubMed  CAS  Google Scholar 

  21. Hutson PH, Donohoe TP, Curzon G (1987) Hypothermia induced by the putative 5-HT1A agonists LY165163 and 8-OH-DPAT is not prevented by 5-HT depletion. Eur J Pharmacol 143: 221–228

    PubMed  CAS  Google Scholar 

  22. Ramage AG (2006) The role of central 5-hydroxytryptamine (5-HT, serotonin) receptors in the control of micturition. Br J Pharmacol 147Suppl 2: 120–131

    Google Scholar 

  23. Hillegaart V, Ahlenius S, Larsson K (1991) Region-selective inhibition of male rat sexual behavior and motor performance by localized forebrain 5-HT injections: a comparison with effects produced by 8-OH-DPAT. Behav Brain Res 42: 169–180

    PubMed  CAS  Google Scholar 

  24. Sprouse JS, Aghajanian GK (1987) Electrophysiological responses of serotoninergic dorsal raphe neurons to 5-HT1A and 5-HT1B agonists. Synapse 1: 3–9

    PubMed  CAS  Google Scholar 

  25. Levine ES, Jacobs BL (1992) Microiontophoresis and single-unit recordings of serotonergic neurons in the awake cat. J Chem Neuroanat 5: 335–337

    PubMed  CAS  Google Scholar 

  26. Fornal CA, Litto WJ, Metzler CW, Marrosu F, Tada K, Jacobs BL (1994) Single-unit responses of serotonergic dorsal raphe neurons to 5-HT1A agonist and antagonist drug administration in behaving cats. J Pharmacol Exp Ther 270: 1345–1358

    PubMed  CAS  Google Scholar 

  27. Aghajanian GK, Lakoski JM (1984) Hyperpolarization of serotonergic neurons by serotonin and LSD: studies in brain slices showing increased K+ conductance. Brain Res 305: 181–185

    PubMed  CAS  Google Scholar 

  28. Penington NJ, Kelly JS (1990) Serotonin receptor activation reduces calcium current in an acutely dissociated adult central neuron. Neuron 4: 751–758

    PubMed  CAS  Google Scholar 

  29. Penington NJ, Kelly JS, Fox AP (1993) Whole-cell recordings of inwardly rectifying K+ currents activated by 5-HT1A receptors on dorsal raphe neurones of the adult rat. J Physiol 469: 387–405

    PubMed  CAS  Google Scholar 

  30. Portas CM, Thakkar M, Rainnie D, McCarley RW (1996) Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci 16: 2820–2828

    PubMed  CAS  Google Scholar 

  31. Hutson PH, Sarna GS, O’Connell MT, Curzon G (1989 ) Hippocampal 5-HT synthesis and release in vivo is decreased by infusion of 8-OHDPAT into the nucleus raphe dorsalis. Neurosci Lett 100: 276–280

    PubMed  CAS  Google Scholar 

  32. Bjørkum AA, Strecker RE, Portas CM, Porkka-Heiskanen T, Thakkar M and Mc-Carley RW (2003) Perfusion of a 5-HT1A antogonist in the cat DRN increases wakefulness and extracellular 5-HT level in DRN. Sleep Research online 5(4): 149–154

    Google Scholar 

  33. Middlemiss DN, Fozard JR (1983) 8-Hydroxy-2-(di-n-propylamino)-tetralin discriminates between subtypes of the 5-HT1 recognition site. Eur J Pharmacol 90: 151–153

    PubMed  CAS  Google Scholar 

  34. Dourish CT; Hutson PH; Curzon G (1985) Low doses of the putative serotonin agonist 8-hydroxy-2-(di-n-propylamino) tetralin (8-OH-DPAT) elicit feeding in the rat. Psychopharmacology (Berl) 86: 197–204

    CAS  Google Scholar 

  35. Ceci A, Baschirotto A, Borsini F (1994) The inhibitory effect of 8-OH-DPAT on the firing activity of dorsal raphe serotoninergic neurons in rats is attenuated by lesion of the frontal cortex. Neuropharmacology 33: 709–713

    PubMed  CAS  Google Scholar 

  36. Hajos M, Hajos-Korcsok E, Sharp T (1999) Role of the medial prefrontal cortex in 5-HT1A receptor-induced inhibition of 5-HT neuronal activity in the rat. Br J Pharmacol 126: 1741–1750

    PubMed  CAS  Google Scholar 

  37. Borsini F, Ceci A, Bietti G, Donetti A (1995) BIMT 17, a 5-HT1A receptor agonist/5-HT2A receptor antagonist, directly activates postsynaptic 5-HT inhibitory responses in the rat cerebral cortex. Naunyn Schmiedebergs Arch Pharmacol 352: 283–290

    PubMed  CAS  Google Scholar 

  38. Varga V, Szekely AD, Csillag A, Sharp T, Hajos M (2001) Evidence for a role of GABA interneurones in the cortical modulation of midbrain 5-hydroxytryptamine neurones. Neuroscience 106: 783–792

    PubMed  CAS  Google Scholar 

  39. Celada P, Puig MV, Casanovas JM, Guillazo G, Artigas F (2001) Control of dorsal raphe serotonergic neurons by the medial prefrontal cortex: Involvement of serotonin-1A, GABA(A), and glutamate receptors. J Neurosci 21: 9917–9929

    PubMed  CAS  Google Scholar 

  40. Arborelius L, Nomikos GG, Hacksell U, Svensson TH (1993) (R)-8-OH-DPAT preferentially increases dopamine release in rat medial prefrontal cortex. Acta Physiol Scand 148: 465–466

    PubMed  CAS  Google Scholar 

  41. Gobert A, Rivet JM, Cistarelli L, Millan MJ (1997) Potentiation of the fluoxetineinduced increase in dialysate levels of serotonin (5-HT) in the frontal cortex of freely moving rats by combined blockade of 5-HT1A and 5-HT1B receptors with WAY 100,635 and GR 127,935. J Neurochem 68: 1159–1163

    PubMed  CAS  Google Scholar 

  42. Gobert A, Millan MJ (1999) Modulation of dialysate levels of dopamine, noradrenaline, and serotonin (5-HT) in the frontal cortex of freely-moving rats by (-)-pindolol alone and in association with 5-HT reuptake inhibitors: comparative roles of beta-adrenergic, 5-HT1A, and 5-HT1B receptors. Neuropsychopharmacology 21: 268–284

    PubMed  CAS  Google Scholar 

  43. Somboonthum P, Matsuda T, Asano S, Sakaue M, Baba A (1997) MKC-242, a novel 5-HT1A receptor agonist, facilitates cortical acetylcholine release by a mechanism different from that of 8-OH-DPAT in awake rats. Neuropharmacology 36: 1733–1739

    PubMed  CAS  Google Scholar 

  44. Siniscalchi A, Badini I, Bianchi C, Beani L (1993) Prolonged treatment with 8-hydroxy-2-(di-n-propylamino)tetralin (8-OHDPAT) differently affects the serotonergic modulation of cortical acetylcholine release in male and female guinea pigs. Eur Neuropsychopharmacol 3: 511–516

    PubMed  CAS  Google Scholar 

  45. Gobert A, Millan MJ. (1999) Serotonin (5-HT)2A receptor activation enhances dialysate levels of dopamine and noradrenaline, but not 5-HT, in the frontal cortex of freely-moving rats. Neuropharmacology 38: 315–317

    PubMed  CAS  Google Scholar 

  46. Giovannini MG, Ceccarelli I, Molinari B, Cecchi M, Goldfarb J, Blandina P (1998) Serotonergic modulation of acetylcholine release from cortex of freely moving rats. J Pharmacol Exp Ther 285: 1219–1225

    PubMed  CAS  Google Scholar 

  47. McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: 569–575

    PubMed  CAS  Google Scholar 

  48. Trulson ME, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: 135–150

    PubMed  CAS  Google Scholar 

  49. Lydic R, McCarley RW, Hobson JA (1987) Serotonin neurons and sleep. I. Long term recordings of dorsal raphe discharge frequency and PGO waves. Arch Ital Biol 125: 317–343

    PubMed  CAS  Google Scholar 

  50. Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 165–229

    PubMed  CAS  Google Scholar 

  51. Portas CM, McCarley RW (1994) Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: a microdialysis study in the freely moving cat. Brain Res 648: 306–312

    PubMed  CAS  Google Scholar 

  52. Portas CM, Bjorvatn B, Fagerland S, Gronli J, Mundal V, Sorensen E, Ursin R (1998) On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep/wake cycle in the freely moving rat. Neuroscience 83: 807–814

    PubMed  CAS  Google Scholar 

  53. Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep/wake cycle: special emphasis on microdialysis studies. Prog Neurobiol 60: 13–35

    PubMed  CAS  Google Scholar 

  54. Goodwin GM, Green AR (1985) A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors. Br J Pharmacol 84: 743–753

    PubMed  CAS  Google Scholar 

  55. De St Hilaire-Kafi S, Hjorth S, Gaillard JM (1987) Effect of 8-OH-DPAT on the sleep-waking cycle in the rat. In: CT Dourish, S Ahlenius, PH Hutson (eds): Brain 5-HT 1A receptors: behavioural and neurochemical pharmacology. Ellis Horwood, Chichester, 135–139

    Google Scholar 

  56. Monti JM, Pineyro G, Orellana C, Boussard M, Jantos H, Labraga P, Olivera S, Alvarino F (1990) 5-HT receptor agonists 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and 8-OH-DPAT increase wakefulness in the rat. Biogen Amines 7: 145–151

    CAS  Google Scholar 

  57. Dzoljic MR, Ukponmwan OE, Saxena PR (1992) 5-HT1-like receptor agonists enhance wakefulness. Neuropharmacology 31: 623–633

    PubMed  CAS  Google Scholar 

  58. Monti JM, Jantos H (1992) Dose-dependent effects of the 5-HT1A receptor agonist 8-OH-DPAT on sleep and wakefulness in the rat. J Sleep Res 1: 169–175

    PubMed  Google Scholar 

  59. Monti JM, Jantos H (1994) Stereoselective antagonism by the pindolol enantiomers of 8-OH-DPAT-induced changes of sleep and wakefulness. Neuropharmacology 33: 705–708

    PubMed  CAS  Google Scholar 

  60. Monti JM, Jantos H, Silveira R, Reyes-Parada M, Scorza C, Prunell G (1994) Depletion of brain serotonin by 5,7-DHT: effects on the 8-OH-DPAT-induced changes of sleep and waking in the rat. Psychopharmacology (Berl) 115: 273–277

    CAS  Google Scholar 

  61. Bjorvatn B, Fagerland S, Eid T, Ursin R (1997) Sleep/waking effects of a selective 5-HT1A receptor agonist given systemically as well as perfused in the dorsal raphe nucleus in rats. Brain Res 770: 81–88

    PubMed  CAS  Google Scholar 

  62. Boutrel B, Monaca C, Hen R, Hamon M, Adrien J (2002) Involvement of 5-HT1A receptors in homeostatic and stress-induced adaptive regulations of paradoxical sleep: studies in 5-HT1A knock-out mice. J Neurosci 22: 4686–4692

    PubMed  CAS  Google Scholar 

  63. Monti JM, Jantos H, Silveira R, Reyes-Parada M, Scorza C (1995) Sleep and waking in 5,7-DHT-lesioned or (-)-pindolol-pretreated rats after administration of buspirone, ipsapirone, or gepirone. Pharmacol Biochem Behav 52: 305–312

    PubMed  CAS  Google Scholar 

  64. Lerman JA, Kaitin KI, Dement WC, Peroutka SJ (1986) The effects of buspirone on sleep in the rat. Neurosci Lett 72: 64–68

    PubMed  CAS  Google Scholar 

  65. Tissier MH, Lainey E, Fattaccini CM, Hamon M, Adrien J (1993) Effects of ipsapirone, a 5-HT1A agonist, on sleep/wakefulness cycles: probable post-synaptic action. J Sleep Res 2: 103–109

    PubMed  Google Scholar 

  66. Driver HS, Flanigan MJ, Bentley AJ, Luus HG, Shapiro CM, Mitchell D (1995) The influence of ipsapirone, a 5-HT1A agonist, on sleep patterns of healthy subjects. Psychopharmacology (Berl) 117: 186–192

    CAS  Google Scholar 

  67. Gillin JC, Sohn JW, Stahl SM, Lardon M, Kelsoe J, Rapaport M, Ruiz C, Golshan S (1996) Ipsapirone, a 5-HT1A agonist, suppresses REM sleep equally in unmedicated depressed patients and normal controls. Neuropsychopharmacology 15: 109–115

    PubMed  CAS  Google Scholar 

  68. Seifritz E, Moore P, Trachsel L, Bhatti T, Stahl SM, Gillin JC (1996) The 5-HT1A agonist ipsapirone enhances EEG slow wave activity in human sleep and produces a power spectrum similar to 5-HT2 blockade. Neurosci Lett 209: 41–44

    PubMed  CAS  Google Scholar 

  69. Gommans J, Hijzen TH, Maes RA, Mos J, Olivier B. (1995) Discriminative stimulus properties of flesinoxan: effects of enantiomers, (S)-UH301 and WAY-100635. Eur J Pharmacol 284: 135–140

    PubMed  CAS  Google Scholar 

  70. Leishman DJ, Boeijinga PH, Galvan M (1994) Differential effects of centrally-active antihypertensives on 5-HT1A receptors in rat dorso-lateral septum, rat hippocampus and guinea-pig hippocampus. Br J Pharmacol 111: 318–324

    PubMed  CAS  Google Scholar 

  71. Newman-Tancredi A, Rivet JM, Cussac D, Touzard M, Chaput C, Marini L, Millan MJ (2003) Comparison of hippocampal G protein activation by 5-HT(1A) receptor agonists and the atypical antipsychotics clozapine and S16924. Naunyn Schmiedebergs Arch Pharmacol 368: 188–199

    PubMed  CAS  Google Scholar 

  72. Monti JM, Jantos H (2004) Effects of the 5-HT1A receptor ligands flesinoxan and WAY 100635 given systemically or microinjected into the laterodorsal tegmental nucleus on REM sleep in the rat. Behav Brain Res 151: 159–166

    PubMed  CAS  Google Scholar 

  73. Jones BE (2003) Arousal systems. Front Biosci 8: 438–451

    Google Scholar 

  74. Guzman-Marin R, Alam MN, Szymusiak R, Drucker-Colin R, Gong H, McGinty D (2000) Discharge modulation of rat dorsal raphe neurons during sleep and waking: effects of preoptic/basal forebrain warming. Brain Res 875: 23–34

    PubMed  CAS  Google Scholar 

  75. Semba K, Reiner PB, McGeer EG, Fibiger HC (1988) Brainstem afferents to the magnocellular basal forebrain studied by axonal transport, immunohistochemistry, and electrophysiology in the rat. J Comp Neurol 267: 433–453

    PubMed  CAS  Google Scholar 

  76. Dringenberg HC, Vanderwolf CH (1997) Neocortical activation: modulation by multiple pathways acting on central cholinergic and serotonergic systems. Exp Brain Res 116: 160–174

    PubMed  CAS  Google Scholar 

  77. Alreja M (1996) Excitatory actions of serotonin on GABAergic neurons of the medial septum and diagonal band of Broca. Synapse 22: 15–27

    PubMed  CAS  Google Scholar 

  78. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685

    PubMed  CAS  Google Scholar 

  79. Krout KE, Belzer RE, Loewy AD (2002) Brainstem projections to midline and intralaminar thalamic nuclei of the rat. J Comp Neurol 448: 53–101

    PubMed  Google Scholar 

  80. Crist J, Surprenant A (1987) Evidence that 8-hydroxy-2-(n-dipropylamino)tetralin (8-OH-DPAT) is a selective alpha 2-adrenoceptor antagonist on guinea-pig submucous neurones. Br J Pharmacol 92: 341–347

    PubMed  CAS  Google Scholar 

  81. Kayama Y, Koyama Y (2003) Control of sleep and wakefulness by brainstem monoaminergic and cholinergic neurons. Acta Neurochir Suppl 87: 3–6

    PubMed  CAS  Google Scholar 

  82. Deng PY, Poudel SK, Rojanathammanee L, Porter JE, Lei S (2007) Serotonin inhibits neuronal excitability by activating two-pore domain K+ channels in the entorhinal cortex. Mol Pharmacol 72: 208–218

    PubMed  CAS  Google Scholar 

  83. Bianchi C, Marani L, Marino S, Barbieri M, Nazzaro C, Beani L, Siniscalchi A (2007) Serotonin modulation of cell excitability and of [3H]GABA and [3H]D-aspartate efflux in primary cultures of rat cortical neurons. Neuropharmacology 52: 995–1002

    PubMed  CAS  Google Scholar 

  84. Collin M, Backberg M, Onnestam K, Meister B (2002) 5-HT1A receptor immunoreactivity in hypothalamic neurons involved in body weight control. Neuroreport 13: 945–951

    PubMed  CAS  Google Scholar 

  85. Sanford LD, Ross RJ, Seggos AE, Morrison AR, Ball WA, Mann GL (1994) Central administration of two 5-HT receptor agonists: effect on REM sleep initiation and PGO waves. Pharmacol Biochem Behav 49: 93–100

    PubMed  CAS  Google Scholar 

  86. Gallopin T, Fort P, Eggermann E, Cauli B, Luppi PH, Rossier J, Audinat E, Muhlethaler M, Serafin M (2000) Identification of sleep-promoting neurons in vitro. Nature 404: 992–995

    PubMed  CAS  Google Scholar 

  87. Koyama Y, Hayaishi O (1994) Firing of neurons in the preoptic/anterior hypothalamic areas in rat: its possible involvement in slow wave sleep and paradoxical sleep. Neurosci Res 19: 31–38

    PubMed  CAS  Google Scholar 

  88. Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271: 216–219

    PubMed  CAS  Google Scholar 

  89. Allen AR, Singh A, Zhuang ZP, Kung MP, Kung HF, Lucki I (1997) The 5-HT1A receptor antagonist p-MPPI blocks responses mediated by postsynaptic and presynaptic 5-HT1A receptors. Pharmacol Biochem Behav 57: 301–307

    PubMed  CAS  Google Scholar 

  90. Fletcher A, Forster EA, Bill DJ, Brown G, Cliffe IA, Hartley JE, Jones DE, McLenachan A, Stanhope KJ, Critchley DJ et al (1996) Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist. Behav Brain Res 73: 337–353

    PubMed  CAS  Google Scholar 

  91. Thielen RJ, Frazer A (1995) Effects of novel 5-HT1A receptor antagonists on measures of post-synaptic 5-HT1A receptor activation in vivo. Life Sci 56: PL163–168

    PubMed  CAS  Google Scholar 

  92. Bjorvatn B, Fornal CA, Martin FJ, Metzler CW, Jacobs BL (1998) The 5-HT1A receptor antagonist p-MPPI blocks 5-HT1A autoreceptors and increases dorsal raphe unit activity in awake cats. Eur J Pharmacol 356: 167–178

    PubMed  CAS  Google Scholar 

  93. Fornal CA, Metzler CW, Gallegos RA, Veasey SC, McCreary AC, Jacobs BL (1996) WAY-100635, a potent and selective 5-hydroxytryptamine1A antagonist, increases serotonergic neuronal activity in behaving cats: comparison with (S)-WAY-100135. J Pharmacol Exp Ther 278: 752–762

    PubMed  CAS  Google Scholar 

  94. Forster EA, Cliffe IA, Bill DJ, Dover GM, Jones D, Reilly Y, Fletcher A (1995) A pharmacological profile of the selective silent 5-HT1A receptor antagonist, WAY-100635. Eur J Pharmacol 281: 81–88

    PubMed  CAS  Google Scholar 

  95. Sorensen E, Gronli J, Bjorvatn B, Ursin R (2001) The selective 5-HT(1A) receptor antagonist p-MPPI antagonizes sleep — Waking and behavioural effects of 8-OH-DPAT in rats. Behav Brain Res 121: 181–187

    PubMed  CAS  Google Scholar 

  96. Sorensen E, Bjorvatn B, Ursin R (2000) Sleep-wake effects following the selective 5-HT(1A) receptor antagonist p-MPPI in the freely moving rat. Behav Brain Res 114: 31–38

    PubMed  CAS  Google Scholar 

  97. Neckelmann D, Bjorkum AA, Bjorvatn B, Ursin R (1996) Sleep and EEG power spectrum effects of the 5-HT1A antagonist NAN-190 alone and in combination with citalopram. Behav Brain Res 75: 159–168

    PubMed  CAS  Google Scholar 

  98. Jolas T, Schreiber R, Laporte AM, Chastanet M, De Vry J, Glaser T, Adrien J, Hamon M (1995) Are postsynaptic 5-HT1A receptors involved in the anxiolytic effects of 5-HT1A receptor agonists and in their inhibitory effects on the firing of serotonergic neurons in the rat? J Pharmacol Exp Ther 272: 920–929

    PubMed  CAS  Google Scholar 

  99. Monti JM, Jantos H, Monti D (2002) Increased REM sleep after intra-dorsal raphe nucleus injection of flesinoxan or 8-OHDPAT: Prevention with WAY 100635. Eur Neuropsychopharmacol 12: 47–55

    PubMed  CAS  Google Scholar 

  100. Monti JM, Jantos H, Monti D, Alvarino F (2000) Dorsal raphe nucleus administration of 5-HT1A receptor agonist and antagonists: Effect on rapid eye movement sleep in the rat. Sleep Res Online 3: 29–34

    PubMed  CAS  Google Scholar 

  101. Monti JM, Jantos H (2003) Differential effects of the 5-HT1A receptor agonist flesinoxan given locally or systemically on REM sleep in the rat. Eur J Pharmacol 478: 121–130

    PubMed  CAS  Google Scholar 

  102. Sakai K, Crochet S (2001) Role of dorsal raphe neurons in paradoxical sleep generation in the cat: No evidence for a serotonergic mechanism. Eur J Neurosci 13: 103–112

    PubMed  CAS  Google Scholar 

  103. McCarley RW (2004) Mechanisms and models of REM sleep control. Arch Ital Biol 142: 429–467

    PubMed  CAS  Google Scholar 

  104. Leonard CS, Llinas R (1994) Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: An in vitro electrophysiological study. Neuroscience 59: 309–330

    PubMed  CAS  Google Scholar 

  105. Luebke JI, Greene RW, Semba K, Kamondi A, McCarley RW, Reiner PB (1992) Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci USA 89: 743–747

    PubMed  CAS  Google Scholar 

  106. Horner RL, Sanford LD, Annis D, Pack AI, Morrison AR (1997) Serotonin at the laterodorsal tegmental nucleus suppresses rapid-eye-movement sleep in freely behaving rats. J Neurosci 17: 7541–7552

    PubMed  CAS  Google Scholar 

  107. Sorensen E, Gronli J, Bjorvatn B, Bjorkum A, Ursin R (2001) Sleep and waking following microdialysis perfusion of the selective 5-HT1A receptor antagonist p-MPPI into the dorsal raphe nucleus in the freely moving rat. Brain Res 897: 122–130

    PubMed  CAS  Google Scholar 

  108. Sharp T, Hjorth S (1990) Application of brain microdialysis to study the pharmacology of the 5-HT1A autoreceptor. J Neurosci Methods 34: 83–90

    PubMed  CAS  Google Scholar 

  109. Rea MA (1998) Photic entrainment of circadian rhythms in rodents. Chronobiol Int 15: 395–423

    PubMed  CAS  Google Scholar 

  110. Rusak B, Abe H, Mason R, Piggins HD, Ying SW (1993) Neurophysiological analysis of circadian rhythm entrainment. J Biol Rhythms 8Suppl: 39–45

    Google Scholar 

  111. Dudley TE, DiNardo LA, Glass JD (1998) Endogenous regulation of serotonin release in the hamster suprachiasmatic nucleus. J Neurosci 18: 5045–5052

    PubMed  CAS  Google Scholar 

  112. Nathan PJ, Burrows GD, Norman TR (1998) Evidence for 5-HT1A receptor control of pineal melatonin concentrations in the rat. Eur Neuropsychopharmacol 8: 183–186

    PubMed  CAS  Google Scholar 

  113. Higgins GA, Jones BJ, Oakley NR (1992) Effect of 5-HT1A receptor agonists in two models of anxiety after dorsal raphe injection. Psychopharmacology (Berl) 106: 261–267

    CAS  Google Scholar 

  114. Cervo L, Mocaer E, Bertaglia A, Samanin R (2000) Roles of 5-HT(1A) receptors in the dorsal raphe and dorsal hippocampus in anxiety assessed by the behavioral effects of 8-OH-DPAT and S 15535 in a modified Geller-Seifter conflict model. Neuropharmacology 39: 1037–1043

    PubMed  CAS  Google Scholar 

  115. Iversen SD (1984) 5-HT and anxiety. Neuropharmacology 23(12B): 1553–1560

    PubMed  CAS  Google Scholar 

  116. Schreiber R, De Vry J (1993) Neuronal circuits involved in the anxiolytic effects of the 5-HT1A receptor agonists 8-OH-DPAT ipsapirone and buspirone in the rat. Eur J Pharmacol 249: 341–351

    PubMed  CAS  Google Scholar 

  117. Cheng LL, Wang SJ, Gean PW (1998) Serotonin depresses excitatory synaptic transmission and depolarization-evoked Ca2+ influx in rat basolateral amygdala via 5-HT1A receptors. Eur J Neurosci 10: 2163–2172

    PubMed  CAS  Google Scholar 

  118. Wang SJ, Coutinho V, Sihra TS (2002) Presynaptic cross-talk of beta-adrenoreceptor and 5-hydroxytryptamine receptor signalling in the modulation of glutamate release from cerebrocortical nerve terminals. Br J Pharmacol 137: 1371–1379

    PubMed  CAS  Google Scholar 

  119. Li X, Inoue T, Abekawa T, Weng S, Nakagawa S, Izumi T, Koyama T (2006) 5-HT1A receptor agonist affects fear conditioning through stimulations of the postsynaptic 5-HT1A receptors in the hippocampus and amygdala. Eur J Pharmacol 532: 74–80

    PubMed  CAS  Google Scholar 

  120. Carli M, Tatarczynska E, Cervo L, Samanin R (1993) Stimulation of hippocampal 5-HT1A receptors causes amnesia and anxiolytic-like but not antidepressant-like effects in the rat. Eur J Pharmacol 234: 215–221

    PubMed  CAS  Google Scholar 

  121. Micheau J, Van Marrewijk B (1999) Stimulation of 5-HT1A receptors by systemic or medial septum injection induces anxiogenic-like effects and facilitates acquisition of a spatial discrimination task in mice. Prog Neuropsychopharmacol Biol Psychiatry 23: 1113–1133

    PubMed  CAS  Google Scholar 

  122. Gonzalez LE, Andrews N, File SE (1996) 5-HT1A and benzodiazepine receptors in the basolateral amygdala modulate anxiety in the social interaction test, but not in the elevated plus-maze. Brain Res 732: 145–153

    PubMed  CAS  Google Scholar 

  123. Nunes-de-Souza RL, Canto-de-Souza A, da-Costa M, Fornari RV, Graeff FG, Pela IR (2000) Anxiety-induced antinociception in mice: Effects of systemic and intra-amygdala administration of 8-OH-DPAT and midazolam. Psychopharmacology (Berl) 150: 300–310

    CAS  Google Scholar 

  124. Andrews N, Hogg S, Gonzalez LE, File SE (1994) 5-HT1A receptors in the median raphe nucleus and dorsal hippocampus may mediate anxiolytic and anxiogenic behaviours respectively. Eur J Pharmacol 264: 259–264

    PubMed  CAS  Google Scholar 

  125. Belcheva I, Belcheva S, Petkov VV, Petkov VD (1994) Hippocampal asymmetry in the behavioral responses to the 5-HT1A receptor agonist 8-OH-DPAT. Brain Res 640: 223–228

    PubMed  CAS  Google Scholar 

  126. Goodwin GM, De Souza RJ, Green AR, Heal DJ (1987) The pharmacology of the behavioural and hypothermic responses of rats to 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT). Psychopharmacology (Berl) 91: 506–511

    CAS  Google Scholar 

  127. Tricklebank MD, Forler C, Fozard JR (1984) The involvement of subtypes of the 5-HT1 receptor and of catecholaminergic systems in the behavioural response to 8-hydroxy-2-(di-n-propylamino)tetralin in the rat. Eur J Pharmacol 106: 271–282

    PubMed  CAS  Google Scholar 

  128. Tricklebank MD, Forler C, Middlemiss DN, Fozard JR (1985) Subtypes of the 5-HT receptor mediating the behavioural responses to 5-methoxy-N,N-dimethyltryptamine in the rat. Eur J Pharmacol 117: 15–24

    PubMed  CAS  Google Scholar 

  129. Bendotti C, Samanin R (1986) 8-hydroxy-2(di-n-propylamino) tetralin (8-OH-DPAT) elicits eating in free feeding in rats by acting in central serotonin neurons. Eur J Pharmacol 121: 147–150

    PubMed  CAS  Google Scholar 

  130. Dourish CT, Clark ML, Fletcher A, Iversen SD (1989) Evidence that blockade of postsynaptic 5-HT1 receptors elicits feeding in satiated rats. Psychopharmacology 96: 54–58

    Google Scholar 

  131. Leibowitz SF, Alexander JT (1998) Hypothalamic serotonin in control of eating behavior, meal size, and body weight. Biol Psychiatry 44: 851–864

    PubMed  CAS  Google Scholar 

  132. Curzon G (1991) Effects of tryptophan and of 5-hydroxytryptamine receptor subtype agonists on feeding. Adv Exp Med Biol 294: 377–388

    PubMed  CAS  Google Scholar 

  133. Montgomery AM, Rose IC, Herberg LJ (1991) 5-HT1A agonists and dopamine: the effects of 8-OH-DPAT and buspirone on brain-stimulation reward. J Neural Transm 83: 139–148

    CAS  Google Scholar 

  134. Halford JC, Harrold JA, Boyland EJ, Lawton CL, Blundell JE (2007) Serotonergic drugs: Effects on appetite expression and use for the treatment of obesity. Drugs 67: 27–55

    PubMed  CAS  Google Scholar 

  135. Gudelsky GA, Koenig JI, Meltzer HY (1986) Thermoregulatory responses to serotonin (5-HT) receptor stimulation in the rat. Evidence for opposing roles of 5-HT2 and 5-HT1A receptors. Neuropharmacology 25: 1307–1313

    PubMed  CAS  Google Scholar 

  136. Makinen TM, Palinkas LA, Reeves DL, Paakkonen T, Rintamaki H, Leppaluoto J, Hassi J (2006) Effect of repeated exposures to cold on cognitive performance in humans. Physiol Behav 87: 166–176

    PubMed  Google Scholar 

  137. Osei-Owusu P, James A, Crane J, Scrogin KE (2005) 5-Hydroxytryptamine 1A receptors in the paraventricular nucleus of the hypothalamus mediate oxytocin and adrenocorticotropin hormone release and some behavioral components of the serotonin syndrome. J Pharmacol Exp Ther 313: 1324–1330

    PubMed  CAS  Google Scholar 

  138. Faure C, Mnie-Filali O, Scarna H, Debonnel G, Haddjeri N (2006) Effects of the 5-HT7 receptor antagonist SB-269970 on rat hormonal and temperature responses to the 5-HT1A/7 receptor agonist 8-OH-DPAT. Neurosci Lett 404: 122–126

    PubMed  CAS  Google Scholar 

  139. Maes MMH (1995) The serotonin hypothesis of major depression. In: FE Bloom, DJ Lupfer (eds): Psychopharmacology: The fourth generation of progress. Raven Press, New York, 933–944

    Google Scholar 

  140. Grønli J, Fiske E, Murison R, Bjorvatn B, Sørensen E, Ursin R, Portas CM (2007) Extracellular levels of serotonin and GABA in the hippocampus after chronic mild stress in rats. A microdialysis study in an animal model of depression. Behav Brain Res 181: 42–51

    PubMed  Google Scholar 

  141. Blier P, Pineyro G, el Mansari M, Bergeron R, de Montigny C (1998) Ann Role of somatodendritic 5-HT autoreceptors in modulating 5-HT neurotransmission. Ann N Y Acad Sci 861: 204–216

    PubMed  CAS  Google Scholar 

  142. Blier P, Ward NM (2003) Is there a role for 5-HT1A agonists in the treatment of depression? Biol Psychiatry 53: 193–203

    PubMed  CAS  Google Scholar 

  143. Wilson S, Argyropoulos S. (2005) Antidepressants and sleep: a qualitative review of the literature. Drugs 65: 927–947

    PubMed  CAS  Google Scholar 

  144. Hamon MC, Cossery JM, Spampinato U, Gozlan H (1986) Are there selective ligands for 5-HT1A and 5-HT1B receptor binding sites? Trends Pharmacol Sci 7: 336–338

    CAS  Google Scholar 

  145. Adham N, Romanienko P, Hartig P, Weinshank RL, Branchek T (1992) The rat 5-hydroxytryptamine1B receptor is the species homologue of the human 5-hydroxytryptamine1D beta receptor. Mol Pharmacol 41: 1–7

    PubMed  CAS  Google Scholar 

  146. Seuwen K, Magnaldo I, Pouyssegur J (1988) Serotonin stimulates DNA synthesis in fibroblasts acting through 5-HT1B receptors coupled to a Gi-protein. Nature 335: 254–256

    PubMed  CAS  Google Scholar 

  147. Pullarkat SR, Mysels DJ, Tan M, Cowen DS (1998) Coupling of serotonin 5-HT1B receptors to activation of mitogen-activated protein kinase (ERK-2) and p70 S6 kinase signaling systems. J Neurochem 71: 1059–1067

    PubMed  CAS  Google Scholar 

  148. Oksenberg D, Marsters SA, O’Dowd BF, Jin H, Havlik S, Peroutka SJ, Ashkenazi A (1992) A single amino-acid difference confers major pharmacological variation between human and rodent 5-HT1B receptors Nature 360: 161-163

    Google Scholar 

  149. Metcalf MA, McGuffin RW, Hamblin MW (1992) Conversion of the human 5-HT1D beta serotonin receptor to the rat 5-HT1B ligand-binding phenotype by Thr355Asn site directed mutagenesis. Biochem Pharmacol 44: 1917–1920

    PubMed  CAS  Google Scholar 

  150. Hartig PR, Hoyer D, Humphrey PP, Martin GR (1996) Alignment of receptor nomenclature with the human genome: classification of 5-HT1B and 5-HT1D receptor subtypes. Trends Pharmacol Sci 17: 103–105

    PubMed  CAS  Google Scholar 

  151. Riad M, Garcia S, Watkins KC, Jodoin N, Doucet E, Langlois X (2000) Somatodendritic localization of 5-HT1A and preterminal axonal localization of 5-HT1B serotonin receptors in adult rat brain. J Comp Neurol 417: 181–194

    PubMed  CAS  Google Scholar 

  152. Sari Y, Lefevre K, Bancila M, Quignon M, Miquel MC, Langlois X (1997) Light and electron microscopic immunocytochemical visualization of 5-HT1B receptors in the rat brain. Brain Res 760: 281–286

    PubMed  CAS  Google Scholar 

  153. Boschert U, Amara DA, Segu L, Hen R (1994) The mouse 5-hydroxytryptamine1B receptor is localized predominantly on axon terminals. Neuroscience 58: 167–182

    PubMed  CAS  Google Scholar 

  154. Bruinvels AT, Palacios JM, Hoyer D (1993) Autoradiographic characterisation and localisation of 5-HT1D compared to 5-HT1B binding sites in rat brain. Naunyn Schmiedebergs Arch Pharmacol 347: 569–582

    PubMed  CAS  Google Scholar 

  155. Voigt MM, Laurie DJ, Seeburg PH, Bach A (1991) Molecular cloning and characterization of a rat brain cDNA encoding a 5-hydroxytryptamine1B receptor. EMBO J 10: 4017–4023

    PubMed  CAS  Google Scholar 

  156. Varnas K, Hurd YL, Hall H (2005) Regional expression of 5-HT1B receptor mRNA in the human brain. Synapse 56: 21–28

    PubMed  Google Scholar 

  157. Bruinvels AT, Landwehrmeyer B, Gustafson EL, Durkin MM, Mengod G, Branchek TA (1994) Localization of 5-HT1B, 5-HT1D alpha, 5-HT1E and 5-HT1F receptor messenger RNA in rodent and primate brain. Neuropharmacology 33: 367–386

    PubMed  CAS  Google Scholar 

  158. Makarenko IG, Meguid MM, Ugrumov MV (2002) Distribution of serotonin 5-hydroxytriptamine 1B (5-HT1B) receptors in the normal rat hypothalamus. Neurosci Lett 328: 155–159

    PubMed  CAS  Google Scholar 

  159. Doucet E, Pohl M, Fattaccini CM, Adrien J, Mestikawy SE, Hamon M (1995) In situ hybridization evidence for the synthesis of 5-HT1B receptor in serotoninergic neurons of anterior raphe nuclei in the rat brain. Synapse 19: 18–28

    PubMed  CAS  Google Scholar 

  160. Palacois JM, Dietl MM (1988) Autoradiographic studies on 5-HT receptors. In: E Sanders-Bush (ed): The serotonin receptors. Humana Press, Clifton, 89–138

    Google Scholar 

  161. Waeber C, Dietl MM, Hoyer D, Palacios JM (1989) 5.HT1 receptors in the vertebrate brain. Regional distribution examined by autoradiography. Naunyn Schmiedebergs Arch Pharmacol 340: 486–494

    PubMed  CAS  Google Scholar 

  162. Segu L, Abdelkefi J, Dusticier G, Lanoir J (1986) High-affinity serotonin binding sites: Autoradiographic evidence for their location on retinal afferents in the rat superior colliculus. Brain Res 384: 205–217

    PubMed  CAS  Google Scholar 

  163. Boulenguez P, Abdelkefi J, Pinard R, Christolomme A, Segu L (1993) Effects of retinal deafferentation on serotonin receptor types in the superficial grey layer of the superior colliculus of the rat. J Chem Neuroanat 6: 167–175

    PubMed  CAS  Google Scholar 

  164. Sari Y, Miquel MC, Brisorgueil MJ, Ruiz G, Doucet E, Hamon M, Verge D (1999) Cellular and subcellular localization of 5-hydroxytryptamine1B receptors in the rat central nervous system: immunocytochemical, autoradiographic and lesion studies. Neuroscience 88: 899–915

    PubMed  CAS  Google Scholar 

  165. Roberts C, Watson J, Price GW, Middlemiss DN (2001) SB-236057-A: A selective 5-HT1B receptor inverse agonist. CNS Drug Rev 7: 433–444

    PubMed  CAS  Google Scholar 

  166. Adell A, Celada P, Artigas F (2001) The role of 5-HT1B receptors in the regulation of serotonin cell firing and release in the rat brain. J Neurochem 79: 172–182

    PubMed  CAS  Google Scholar 

  167. Sarhan H, Fillion G (1999) Differential sensitivity of 5-HT1B auto and heteroreceptors. Naunyn Schmiedebergs Arch Pharmacol 360: 382–390

    PubMed  CAS  Google Scholar 

  168. Middlemiss DN, Hutson PH (1990) The 5-HT1B receptors Ann N Y Acad Sci 600: 132–147

    PubMed  CAS  Google Scholar 

  169. Golembiowska K, Dziubina A (2002) Inhibition of amino acid release by 5-HT1B receptor agonist in the rat prefrontal cortex. Pol J Pharmacol 54: 625–631

    PubMed  CAS  Google Scholar 

  170. Chopin P, Moret C, Briley M (1994) Neuropharmacology of 5-hydroxytryptamine1B/D receptor ligands. Pharmacol Ther 62: 385–405

    PubMed  CAS  Google Scholar 

  171. Sari Y (2004) Serotonin1B receptors: from protein to physiological function and behavior. Neurosci Biobehav Rev 28: 565–582

    PubMed  CAS  Google Scholar 

  172. Hjorth S, Suchowski CS, Galloway MP (1995) Evidence for 5-HT autoreceptor-mediated, nerve impulse-independent, control of 5-HT synthesis in the rat brain. Synapse 19: 170–176

    PubMed  CAS  Google Scholar 

  173. Maura G, Raiteri M (1986) Cholinergic terminals in rat hippocampus possess 5-HT1B receptors mediating inhibition of acetylcholine release. Eur J Pharmacol 129: 333–337

    PubMed  CAS  Google Scholar 

  174. Li YW, Bayliss DA (1998) Presynaptic inhibition by 5-HT1B receptors of glutamatergic synaptic inputs onto serotonergic caudal raphe neurones in rat. J Physiol 510: 121–134

    PubMed  CAS  Google Scholar 

  175. Chadha A, Sur C, Atack J, Duty S (2000) The 5HT (1B) receptor agonist, CP-93129, inhibits [(3)H]-GABA release from rat globus pallidus slices and reverses akinesia following intrapallidal injection in the reserpine-treated rat. Br J Pharmacol 130: 1927–1932

    PubMed  CAS  Google Scholar 

  176. Davidson C, Stamford JA (1995) Evidence that 5-hydroxytryptamine release in rat dorsal raphe nucleus is controlled by 5-HT1A, 5-HT1B and 5-HT1D autoreceptors. Br J Pharmacol 114: 1107–1109

    PubMed  CAS  Google Scholar 

  177. Hertel P, Lindblom N, Nomikos GG, Svensson TH (2001) Receptor mediated regulation of serotonin output in the rat dorsal raphe nucleus: effects of risperidone. Psychopharmacology (Berl) 153: 307–314

    CAS  Google Scholar 

  178. de Groote L, Klompmakers AA, Olivier B, Westenberg HG (2003) An evaluation of the effect of NAS-181, a new selective 5-HT(1B) receptor antagonist, on extracellular 5-HT levels in rat frontal cortex. Naunyn Schmiedebergs Arch Pharmacol 367: 89–94

    PubMed  Google Scholar 

  179. Davidson C, Stamford JA (2000) Effect of chronic paroxetine treatment on 5-HT1B and 5-HT1D autoreceptors in rat dorsal raphe nucleus. Neurochem Int 36: 91–96

    PubMed  CAS  Google Scholar 

  180. Bagdy E, Kiraly I, Harsing LG Jr (2000) Reciprocal innervation between serotonergic and GABAergic neurons in raphe nuclei of the rat. Neurochem Res 25: 1465–1473

    PubMed  CAS  Google Scholar 

  181. Bosker FJ, van Esseveldt KE, Klompmakers AA, Westenberg HG (1995) Chronic treatment with fluvoxamine by osmotic minipumps fails to induce persistent functional changes in central 5-HT1A and 5-HT1B receptors, as measured by in vivo microdialysis in dorsal hippocampus of conscious rats. Psychopharmacology (Berl) 117: 358–363

    CAS  Google Scholar 

  182. Moret C, Briley M (1997) 5-HT autoreceptors in the regulation of 5-HT release from guinea pig raphe nucleus and hypothalamus. Neuropharmacology 36: 1713–1723

    PubMed  CAS  Google Scholar 

  183. Auerbach SB, Rutter JJ, Juliano PJ (1991) Substituted piperazine and indole compounds increase extracellular serotonin in rat diencephalon as determined by in vivo microdialysis. Neuropharmacology 30: 307–311

    PubMed  CAS  Google Scholar 

  184. Sleight AJ, Smith RJ, Marsden CA, Palfreyman MG (1989) The effects of chronic treatment with amitriptyline and MDL 72394 on the control of 5-HT release in vivo. Neuropharmacology 28: 477–480

    PubMed  CAS  Google Scholar 

  185. Pineyro G, Blier P (1996) Regulation of 5-hydroxytryptamine release from rat midbrain raphe nuclei by 5-hydroxytryptamine1D receptors: Effect of tetrodotoxin, G protein inactivation and long-term antidepressant administration. J Pharmacol Exp Ther 276: 697–707

    PubMed  CAS  Google Scholar 

  186. Hervas, I. Bel N, Fernandez AG, Palacios JM, Artigas F (1998) In vivo control of 5-hydroxytryptamine release by terminal autoreceptors in rat brain areas differentially innervated by the dorsal and median raphe nuclei. Naunyn Schmiedebergs Arch Pharmacol 358, 315–322

    PubMed  CAS  Google Scholar 

  187. Evrard A, Laporte AM, Chastanet M, Hen R, Hamon M, Adrien J (1999) 5-HT1A and 5-HT1B receptors control the firing of serotoninergic neurons in the dorsal raphe nucleus of the mouse: Studies in 5-HT1B knock-out mice. Eur J Neurosci 11: 3823–3831

    PubMed  CAS  Google Scholar 

  188. Sinton CM, Fallon SL (1988) Electrophysiological evidence for a functional differentiation between subtypes of the 5-HT1 receptor. Eur J Pharmacol 157: 173–181

    PubMed  CAS  Google Scholar 

  189. Hasegawa S, Watanabe A, Nishi K, Nguyen KQ, Diksic M (2005) Selective 5-HT1B receptor agonist reduces serotonin synthesis following acute, and not chronic, drug administration: Results of an autoradiographic study. Neurochem Int 46: 261–272

    PubMed  CAS  Google Scholar 

  190. Stenfors C, Hallerback T, Larsson LG, Wallsten C, Ross SB (2004) Pharmacology of a novel selective 5-hydroxytryptamine1B receptor antagonist, AR-A000002. Naunyn Schmiedebergs Arch Pharmacol 369: 330–337

    PubMed  CAS  Google Scholar 

  191. Hughes ZA, Dawson LA (2004) Differential autoreceptor control of extracellular 5-HT in guinea pig and rat: Species and regional differences. Psychopharmacology (Berl) 172: 87–93

    CAS  Google Scholar 

  192. Roberts C, Price GW (2001) Interaction of serotonin autoreceptor antagonists in the rat dorsal raphe nucleus: An in vitro fast cyclic voltammetry study. Neurosci Lett 300: 45–48

    PubMed  CAS  Google Scholar 

  193. Pineyro G, de Montigny C, Blier P (1995) 5-HT1D receptors regulate 5-HT release in the rat raphe nuclei. In vivo voltammetry and in vitro superfusion studies. Neuropsychopharmacology 13: 249–260

    PubMed  CAS  Google Scholar 

  194. Hu XJ, Wang FH, Stenfors C, Ogren SO, Kehr J (2007) Effects of the 5-HT(1B) receptor antagonist NAS-181 on extracellular levels of acetylcholine, glutamate and GABA in the frontal cortex and ventral hippocampus of awake rats: A microdialysis study. Eur Neuropsychopharmacol 17: 580–586

    PubMed  CAS  Google Scholar 

  195. Boeijinga PH, Boddeke HW (1996) Activation of 5-HT1B receptors suppresses low but not high frequency synaptic transmission in the rat subicular cortex in vitro. Brain Res 721: 59–65

    PubMed  CAS  Google Scholar 

  196. Srkalovic G, Selim M, Rea MA, Glass JD (1994) Serotonergic inhibition of extracellular glutamate in the suprachiasmatic nuclear region assessed using in vivo brain microdialysis. Brain Res 656: 302–308

    PubMed  CAS  Google Scholar 

  197. Anderson KJ, Borja MA, Cotman CW, Moffett JR, Namboodiri MA, Neale JH (1987) N-Acetylaspartylglutamate identified in the rat retinal ganglion cells and their projections in the brain. Brain Res 411: 172–177

    PubMed  CAS  Google Scholar 

  198. Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20: 4217–4225

    PubMed  CAS  Google Scholar 

  199. Wang Y, Jeng CH, Lin JC, Wang JY (1996) Serotonin modulates ethanol-induced depression in cerebellar Purkinje neurons. Alcohol Clin Exp Res 20: 1229–1236

    PubMed  CAS  Google Scholar 

  200. Bramley JR, Sollars PJ, Pickard GE, Dudek FEJ (2005) 5-HT1B receptor-mediated presynaptic inhibition of GABA release in the suprachiasmatic nucleus. J Neurophysiol 93: 3157–3164

    PubMed  CAS  Google Scholar 

  201. Stanford IM, Lacey MG (1996) Differential actions of serotonin, mediated by 5-HT1B and 5-HT2C receptors, on GABA-mediated synaptic input to rat substantia nigra pars reticulata neurons in vitro. J Neurosci 16: 7566–7573

    PubMed  CAS  Google Scholar 

  202. Yan QS, Zheng SZ, Yan SE (2004) Involvement of 5-HT1B receptors within the ventral tegmental area in regulation of mesolimbic dopaminergic neuronal activity via GABA mechanisms: a study with dual-probe microdialysis. Brain Res 1021: 82–91

    PubMed  CAS  Google Scholar 

  203. Cheetham SC, Heal DJ (1993) Evidence that RU 24969-induced locomotor activity in C57/B1/6 mice is specifically mediated by the 5-HT1B receptor. Br J Pharmacol 110: 1621–1629

    PubMed  CAS  Google Scholar 

  204. Ramboz S, Saudou F, Amara DA, Belzung C, Segu L, Misslin R, Buhot MC, Hen R (1996) 5-HT1B receptor knock out — Behavioral consequences. Behav Brain Res 73: 305–312

    PubMed  CAS  Google Scholar 

  205. McGinty JF (2007) Co-localization of GABA with other neuroactive substances in the basal ganglia. Prog Brain Res 160: 273–284

    PubMed  CAS  Google Scholar 

  206. Parsons LH, Weiss F, Koob GF (1998) Serotonin1B receptor stimulation enhances cocaine reinforcement. J Neurosci 18: 10078–10089

    PubMed  CAS  Google Scholar 

  207. Koob GF (1992) Drugs of abuse: Anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 13: 177–184

    PubMed  CAS  Google Scholar 

  208. Johnson SW, Mercuri NB, North RA (1992) 5-hydroxytryptamine1B receptors block the GABAB synaptic potential in rat dopamine neurons. J Neurosci 2: 2000–2006

    Google Scholar 

  209. Cameron DL, Williams JT (1994) Cocaine inhibits GABA release in the TA through endogenous 5-HT. J Neurosci 14: 6763–6767

    PubMed  CAS  Google Scholar 

  210. Gongora-Alfaro JL, Hernandez-Lopez S, Flores-Hernandez J, Galarraga E (1997) Firing frequency modulation of substantia nigra reticulata neurons by 5-hydroxytryptamine. Neurosci Res 29: 225–231

    PubMed  CAS  Google Scholar 

  211. Sarhan H, Cloez-Tayarani I, Massot O, Fillion MP, Fillion G (1999) 5-HT1B receptors modulate release of [3H]dopamine from rat striatal synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 359: 40–47

    PubMed  CAS  Google Scholar 

  212. Prisco S, Pagannone S, Esposito E (1994) Serotonin-dopamine interaction in the rat ventral tegmental area: an electrophysiological study in vivo. J Pharmacol Exp Ther 271: 83–90

    PubMed  CAS  Google Scholar 

  213. de Groote L, Olivier B, Westenberg HG (2003) Role of 5-HT1B receptors in the regulation of extracellular serotonin and dopamine in the dorsal striatum of mice. Eur J Pharmacol 476: 71–77

    PubMed  Google Scholar 

  214. Dugovic C, Wauquier A, Leysen JE, Marrannes R, Janssen PA (1989) Functional role of 5-HT2 receptors in the regulation of sleep and wakefulness in the rat. Psychopharmacology (Berl) 97: 436–442

    CAS  Google Scholar 

  215. Bjorvatn B, Ursin R (1994 ) Effects of the selective 5-HT1B agonist, CGS 12066B, on sleep/waking stages and EEG power spectrum in rats. J Sleep Res 3: 97–105

    PubMed  Google Scholar 

  216. Monti JM, Monti D, Jantos H, Ponzoni A (1995) Effects of selective activation of the 5-HT1B receptor with CP-94,253 on sleep and wakefulness in the rat. Neuropharmacology 34: 1647–1651

    PubMed  CAS  Google Scholar 

  217. Boutrel B, Franc B, Hen R, Hamon M, Adrien J (1999) Key role of 5-HT1B receptors in the regulation of paradoxical sleep as evidenced in 5-HT1B knock-out mice. J Neurosci 19: 3204–3212

    PubMed  CAS  Google Scholar 

  218. Pastel RH, Fernstrom JD (1987) Short-term effects of fluoxetine and trifluoromethylphenylpiperazine on electroencephalographic sleep in the rat. Brain Res 436: 92–102

    PubMed  CAS  Google Scholar 

  219. Stenfors C, Yu H, Ross SB (2000) Enhanced 5-HT metabolism and synthesis rate by the new selective r5-HT1B receptor antagonist, NAS-181 in the rat brain. Neuropharmacology 39: 553–560

    PubMed  CAS  Google Scholar 

  220. Knobelman DA, Hen R, Blendy JA, Lucki I (2001) Regional patterns of compensation following genetic deletion of either 5-hydroxytryptamine(1A) or 5-hydroxytryptamine(1B) receptor in the mouse. J Pharmacol Exp Ther 298: 1092–1100

    PubMed  CAS  Google Scholar 

  221. Tricklebank MD, Middlemiss DN, Neill J (1986) Pharmacological analysis of the behavioural and thermoregulatory effects of the putative 5-HT1 receptor agonist, RU 24969, in the rat. Neuropharmacology 25: 877–886

    PubMed  CAS  Google Scholar 

  222. Gardier AM, Gruwez B, Trillat AC, Jacquot C, Hen R, Bourin M (2001) Interaction between 5-HT(1A) and 5-HT(1B) receptors: Effects of 8-OH-DPAT-induced hypothermia in 5-HT(1B) receptor knockout mice. Eur J Pharmacol 421: 171–175

    PubMed  CAS  Google Scholar 

  223. Bjorvatn B, Neckelmann D, Bjorkum AA, Ursin R (1996) Hypothermia and the 5-HT syndrome induced by CGS 12066B independently of 5-HT(1B) receptor activation. Behav Pharmacol 7: 462–469

    PubMed  CAS  Google Scholar 

  224. Hagan JJ, Slade PD, Gaster L, Jeffrey P, Hatcher JP, Middlemiss DN (1997) Stimulation of 5-HT1B receptors causes hypothermia in the guinea pig. Eur J Pharmacol 331: 169–174

    PubMed  CAS  Google Scholar 

  225. Pickard GE, Rea MA (1997) TFMPP, a 5HT1B receptor agonist, inhibits light-induced phase shifts of the circadian activity rhythm and c-Fos expression in the mouse suprachiasmatic nucleus. Neurosci Lett 231: 95–98

    PubMed  CAS  Google Scholar 

  226. Pickard GE, Weber ET, Scott PA, Riberdy AF, Rea MA (1996) TFMPP, a 5HT1B receptor agonist, inhibits light-induced phase shifts of the circadian activity rhythm and c-Fos expression in the mouse suprachiasmatic nucleus. J Neurosci 16, 8208–8220

    PubMed  CAS  Google Scholar 

  227. Shimazoe T, Nakamura S, Kobayashi K, Watanabe S, Miyasaka K, Kono A, Funakoshi A (2004) Role of 5-HT1B receptors in entrainment disorder of Otsuka Long Evans Tokushima fatty (OLETF) rats. Neuroscience 123: 201–205

    PubMed  CAS  Google Scholar 

  228. Rea MA, Pickard GE A (2000) 5-HT(1B) receptor agonist inhibits light-induced suppression of pineal melatonin production. Brain Res 858: 424–428

    PubMed  CAS  Google Scholar 

  229. Smith BN, Sollars PJ, Dudek FE, Pickard GE (2001) Serotonergic modulation of retinal input to the mouse suprachiasmatic nucleus mediated by 5-HT1B and 5-HT7 receptors. J Biol Rhythms 16: 25–38

    PubMed  CAS  Google Scholar 

  230. Garabette ML, Martin KF, Redfern PH (2000) Circadian variation in the activity of the 5-HT(1B) autoreceptor in the region of the suprachiasmatic nucleus, measured by microdialysis in the conscious freely-moving rat. Br J Pharmacol 131: 1569–1576

    PubMed  CAS  Google Scholar 

  231. Yuan Q, Joiner WJ, Sehgal A (2006) A sleep-promoting role for the Drosophila serotonin receptor 1A. Curr Biol 16: 1051–1062

    PubMed  CAS  Google Scholar 

  232. Yuan Q, Lin F, Zheng X, Sehgal A (2005) Serotonin modulates circadian entrainment in Drosophila. Neuron 47: 115–127

    PubMed  CAS  Google Scholar 

  233. Pickard GE, Smith BN, Belenky M, Rea MA, Dudek FE, Sollars PJ (1999) 5-HT1B receptor-mediated presynaptic inhibition of retinal input to the suprachiasmatic nucleus. J Neurosci 19: 4034–4045

    PubMed  CAS  Google Scholar 

  234. Sollars PJ, Ogilvie MD, Rea MA, Pickard GE (2002) 5-HT1B receptor knockout mice exhibit an enhanced response to constant light. J Biol Rhythms 17: 428–437

    PubMed  CAS  Google Scholar 

  235. Sollars PJ, Simpson AM, Ogilvie MD, Pickard GE (2006) Light-induced Fos expression is attenuated in the suprachiasmatic nucleus of serotonin 1B receptor knockout mice. Neurosci Lett 401: 209–213

    PubMed  CAS  Google Scholar 

  236. Clement HW, Gemsa D, Wesemann W (1992) Serotonin-norepinephrine interactions: A voltammetric study on the effect of serotonin receptor stimulation followed in the N. raphe dorsalis and the Locus coeruleus of the rat. J Neural Transm Gen Sect 88: 11–23

    PubMed  CAS  Google Scholar 

  237. Wang QP, Ochiai H, Nakai Y (1992) GABAergic innervation of serotonergic neurons in the dorsal raphe nucleus of the rat studied by electron microscopy double immunostaining. Brain Res Bull 29: 943–948

    PubMed  CAS  Google Scholar 

  238. Pan ZZ, Williams JT (1989) GABA-and glutamate-mediated synaptic potentials in rat dorsal raphe neurons in vitro. J Neurophysiol 61: 719–726

    PubMed  CAS  Google Scholar 

  239. Nitz D, Siegel J (1997) GABA release in the dorsal raphe nucleus: Role in the control of REM sleep. Am J Physiol 273: R451–455

    PubMed  CAS  Google Scholar 

  240. Kelley AE, Berridge KC (2002) The neuroscience of natural rewards: Relevance to addictive drugs. J Neurosci 22: 3306–3311

    PubMed  CAS  Google Scholar 

  241. Neumaier JF, Kohen R, Barrett T, Donovan DM, Becker KG, Hamblin MW (2000) The viral mediated gene transfer of 5-HT1B receptors in rat dorsal raphe nucleus mimics stress induced changes in gene expression. Soc Neurosci Abstr 26: 145.2

    Google Scholar 

  242. Clark MS, Sexton TJ, McClain M, Root D, Kohen R, Neumaier JF (2002) Overexpression of 5-HT1B receptor in dorsal raphe nucleus using herpes simplex virus gene transfer increases anxiety behavior after inescapable stress. J Neurosci 22: 4550–4562

    PubMed  CAS  Google Scholar 

  243. Brunner D, Buhot MC, Hen R, Hofer M (1999) Anxiety, motor activation, and maternal-infant interactions in 5HT1B knockout mice. Behav Neurosci 113: 587–601

    PubMed  CAS  Google Scholar 

  244. Malleret G, Hen R, Guillou JL, Segu L, Buhot MC (1999) 5-HT1B receptor knock-out mice exhibit increased exploratory activity and enhanced spatial memory performance in the Morris water maze. J Neurosci 19: 6157–6168

    PubMed  CAS  Google Scholar 

  245. Lin D, Parsons LH (2002) Anxiogenic-like effect of serotonin(1B) receptor stimulation in the rat elevated plus-maze. Pharmacol Biochem Behav 71: 581–587

    PubMed  CAS  Google Scholar 

  246. Tatarczynska E, Klodzinska A, Stachowicz K, Chojnacka-Wojcik E (2004) Effects of a selective 5-HT1B receptor agonist and antagonists in animal models of anxiety and depression. Behav Pharmacol 15: 523–534

    PubMed  CAS  Google Scholar 

  247. Chojnacka-Wojcik E, Klodzinska A, Tatarczynska E (2005) The anxiolytic-like effect of 5-HT1B receptor ligands in rats: a possible mechanism of action. J Pharm Pharmacol 57: 253–257

    PubMed  CAS  Google Scholar 

  248. Dawson LA, Hughes ZA, Starr KR, Storey JD, Bettelini L, Bacchi F, Arban R, Poffe A, Melotto S, Hagan JJ, Price GW (2006) Characterisation of the selective 5-HT1B receptor antagonist SB-616234-A (1-[6-(cis-3,5-dimethylpiperazin-1-yl)-2,3-dihydro-5-methoxyindol-1-yl]-1-[2′-methyl-4′-(5-methyl-1,2,4-oxadiazol-3-yl)biphenyl-4-yl]methanone hydrochloride): In vivo neurochemical and behavioural evidence of anxiolytic/antidepressant activity. Neuropharmacology 50: 975–983

    PubMed  CAS  Google Scholar 

  249. Hudzik TJ, Yanek M, Porrey T, Evenden J, Paronis C, Mastrangelo M, Ryan C, Ross S, Stenfors C (2003) Behavioral pharmacology of AR-A000002, a novel, selective 5-hydroxytryptamine(1B) antagonist. J Pharmacol Exp Ther 304: 1072–1084

    PubMed  CAS  Google Scholar 

  250. Bolanos-Jimenez F, Manhaes de Castro RM, Seguin L, Cloez-Tayarani I, Monneret V, Drieu K, Fillion G (1995) Effects of stress on the functional properties of pre-and postsynaptic 5-HT1B receptors in the rat brain. Eur J Pharmacol 294: 531–540

    PubMed  CAS  Google Scholar 

  251. Buhot MC, Naili S (1995) Changes in exploratory activity following stimulation of hippocampal 5-HT1A and 5-HT1B receptors in the rat. Hippocampus 5: 198–208

    PubMed  CAS  Google Scholar 

  252. Russo AS, Guimaraes FS, De Aguiar JC, Graeff FG (1993) Role of benzodiazepine receptors located in the dorsal periaqueductal grey of rats in anxiety. Psychopharmacology (Berl) 110: 198–202

    CAS  Google Scholar 

  253. Anisman H, Zacharko RM (1992) Depression as a consequence of inadequate neurochemical adaptation in response to stressors. Br J Psychiatry Suppl: 36–43

    Google Scholar 

  254. Maroteaux L, Saudou F, Amlaiky N, Boschert U, Plassat JL, Hen R (1992) Mouse 5HT1B serotonin receptor: cloning, functional expression, and localization in motor control centers. Proc Natl Acad Sci USA 89: 3020–3024

    PubMed  CAS  Google Scholar 

  255. Green AR, Guy AP, Gardner CR (1984) The behavioural effects of RU 24969, a suggested 5-HT1 receptor agonist in rodents and the effect on the behaviour of treatment with antidepressants. Neuropharmacology 23: 655–661

    PubMed  CAS  Google Scholar 

  256. O’Neill MF, Sanger GJ (1999) GR46611 potentiates 5-HT1A receptor-mediated locomotor activity in the guinea pig. Eur J Pharmacol 370: 85–92

    PubMed  CAS  Google Scholar 

  257. Dalton GL, Lee MD, Kennett GA, Dourish CT, Clifton PG (2004) mCPP-induced hyperactivity in 5-HT2C receptor mutant mice is mediated by activation of multiple 5-HT receptor subtypes. Neuropharmacology 46: 663–671

    PubMed  CAS  Google Scholar 

  258. Przegalinski E, Golda A, Frankowska M, Zaniewska M, Filip M (2007) Effects of serotonin 5-HT1B receptor ligands on the cocaine-and food-maintained self-administration in rats. Eur J Pharmacol 559: 165–172

    PubMed  CAS  Google Scholar 

  259. Martinez-Price DL, Geyer MA (2002) Subthalamic 5-HT(1A) and 5-HT(1B) receptor modulation of RU 24969-induced behavioral profile in rats. Pharmacol Biochem Behav 71: 569–580

    PubMed  CAS  Google Scholar 

  260. Papla I, Filip M, Przegalinski E (2002) Effect of intra-tegmental microinjections of 5-HT1B receptor ligands on the amphetamine-induced locomotor hyperactivity in rats. Pol J Pharmacol 54: 351–357

    PubMed  CAS  Google Scholar 

  261. Kennett GA, Dourish CT, Curzon G (1987) 5-HT1B agonists induce anorexia at a postsynaptic site. Eur J Pharmacol 141: 429–435

    PubMed  CAS  Google Scholar 

  262. Fletcher PJ, Ming ZH, Zack MH, Coscina DV (1992) A comparison of the effects of the 5-HT1 agonists TFMPP and RU 24969 on feeding following peripheral or medial hypothalamic injection. Brain Res 580: 265–272

    PubMed  CAS  Google Scholar 

  263. Lee MD, Kennett GA, Dourish CT, Clifton PG (2002) 5-HT1B receptors modulate components of satiety in the rat: Behavioural and pharmacological analyses of the selective serotonin1B agonist CP-94,253. Psychopharmacology (Berl) 164: 49–60

    CAS  Google Scholar 

  264. Nonogaki K, Nozue K, Takahashi Y, Yamashita N, Hiraoka S, Kumano H, Kuboki T, Oka Y (2006) Fluvoxamine, a selective serotonin reuptake inhibitor, and 5-HT2C recep tor inactivation induce appetite-suppressing effects in mice via 5-HT1B receptors. Int J Neuropsychopharmacol 1–7

    Google Scholar 

  265. Bouwknecht JA, van der Gugten J, Hijzen TH, Maes RA, Hen R, Olivier B (2001) Male and female 5-HT(1B) receptor knockout mice have higher body weights than wildtypes. Physiol Behav 74: 507–516

    PubMed  CAS  Google Scholar 

  266. Mancilla-Diaz JM, Escartin-Perez RE, Lopez-Alonso VE, Floran-Garduno B, Romano-Camacho JB (2005) Role of 5-HT1A and 5-HT1B receptors in the hypophagic effect of 5-HT on the structure of feeding behavior. Med Sci Monit 11: BR74–79

    PubMed  CAS  Google Scholar 

  267. Hikiji K, Inoue K, Iwasaki S, Ichihara K, Kiriike N (2004) Local perfusion of mCPP into ventromedial hypothalamic nucleus, but not into lateral hypothalamic area and frontal cortex, inhibits food intake in rats. Psychopharmacology (Berl) 174: 190–196

    CAS  Google Scholar 

  268. Hutson PH, Donohoe TP, Curzon G (1988) Infusion of the 5-hydroxytryptamine agonists RU24969 and TFMPP into the paraventricular nucleus of the hypothalamus causes hypophagia. Psychopharmacology (Berl) 95: 550–552

    CAS  Google Scholar 

  269. Lin L, York DA (2005) 5-HT1B receptors modulate the feeding inhibitory effects of enterostatin. Brain Res 1062: 26–31

    PubMed  CAS  Google Scholar 

  270. Harris GC, Aston-Jones G (2006) Arousal and reward: A dichotomy in orexin function. Trends Neurosci 29: 571–577

    PubMed  CAS  Google Scholar 

  271. Buhot MC, Martin S, Segu L (2000) Role of serotonin in memory impairment. Ann Med 32: 210–221

    PubMed  CAS  Google Scholar 

  272. Van de Kar LD, Alvarez Sanz MC, Yracheta JM, Kunimoto K, Li Q, Levy AD, Rittenhouse PA (1994) ICV injection of the serotonin 5-HT1B agonist CP-93,129 increases the secretion of ACTH, prolactin, and renin and increases blood pressure by nonserotonergic mechanisms. Pharmacol Biochem Behav 48: 429–436

    PubMed  Google Scholar 

  273. Saudou F, Amara DA, Dierich A, LeMeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265: 1875–1878

    PubMed  CAS  Google Scholar 

  274. Maurel S, De Vry J, Schreiber R (1999) 5-HT receptor ligands differentially affect operant oral self-administration of ethanol in the rat. Eur J Pharmacol 370: 217–223

    PubMed  CAS  Google Scholar 

  275. Ferrari MD, Saxena PR (1993) On serotonin and migraine: a clinical and pharmacological review. Cephalalgia 13: 151–165

    PubMed  CAS  Google Scholar 

  276. Moskowitz MA (1992) Neurogenic versus vascular mechanisms of sumatriptan and ergot alkaloids in migraine. Trends Pharmacol Sci 13: 307–311

    PubMed  CAS  Google Scholar 

  277. Martin P, Puech AJ (1991) Is there a relationship between 5-HT1B receptors and the mechanisms of action of antidepressant drugs in the learned helplessness paradigm in rats? Eur J Pharmacol 192: 193–196

    PubMed  CAS  Google Scholar 

  278. Bouwknecht JA, Hijzen TH, van der Gugten J, Maes RA, Hen R, Olivier B (2001) Absence of 5-HT(1B) receptors is associated with impaired impulse control in male 5-HT(1B) knockout mice. Biol Psychiatry 49: 557–568

    PubMed  CAS  Google Scholar 

  279. Stamford JA, Davidson C, McLaughlin DP, Hopwood SE (2000) Control of dorsal raphé 5-HT function by multiple 5-HT1 autoreceptors: parallel purposes or pointless plurality? Trends Neurosci 23: 459–465

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag/Switzerland

About this chapter

Cite this chapter

Portas, C.M., Grønli, J. (2008). Involvement of the 5-HT1A and the 5-HT1B receptor in the regulation of sleep and waking. In: Monti, J.M., Pandi-Perumal, S.R., Jacobs, B.L., Nutt, D.J. (eds) Serotonin and Sleep: Molecular, Functional and Clinical Aspects. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8561-3_13

Download citation

Publish with us

Policies and ethics