Neurophysiological aspects of the regulation of serotonin neurons by the orexinergic system

  • Christopher M. Sinton


Orexin (also called hypocretin) is a neurotransmitter that influences central arousal and vigilance state, especially by coupling the level of arousal to energy balance. Localized uniquely to neurons with cell bodies in the lateral hypothalamus, orexin has widespread projections throughout the neuraxis, including the raphe nuclei. Dense orexinergic innervation has been noted in the dorsal raphe, where direct axodendritic contacts between orexinergic fibers and serotoninergic processes have also been described. Orexin depolarizes dorsal raphe serotoninergic cells, an effect that is consistent with activation of the canonical form of the transient receptor potential channel. Thus, the effect of orexin will be integrated with other neurotransmitters that also depolarize serotoninergic cells through this channel, including noradrenaline and histamine. However, in addition to the direct action, orexin at higher concentrations also depolarizes GABAergic interneurons and reduces glutamatergic release at local terminals through a retrograde endocannabinoid signal. The functional consequences of these interactions between orexin and serotonin remain to be elucidated, although they are consistent with synaptic modification. Hence orexin may modulate the serotoninergic influence in the forebrain as part of an adaptive response to homeostatic disequilibrium.


Raphe Nucleus Lateral Hypothalamus Dorsal Raphe Nucleus NREM Sleep TRPC Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chemelli RM, Willie JT, Sinton CM, Elmquist JK, Scammell T, Lee C, Richardson JA, Williams SC, Xiong Y, Kisanuki Y et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98: 437–451PubMedCrossRefGoogle Scholar
  2. 2.
    Nishino S, Ripley B, Overeem S, Lammers G J, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355: 39–40PubMedCrossRefGoogle Scholar
  3. 3.
    Lin L, Faraco J, Li R, Kadotani H, Rogers W, Lin X, Qiu X, de Jong PJ, Nishino S, Mignot E (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98: 365–376PubMedCrossRefGoogle Scholar
  4. 4.
    Sinton CM, Willie JT (2008) Orexins in sleep and wakefulness: Rodent models of narcolepsy-cataplexy. In: JM Monti, SR Pandi-Perumal, CM Sinton (eds): Neurochemistry of sleep and wakefulness. Cambridge University Press, Cambridge: 398–428Google Scholar
  5. 5.
    Bremer F (1935) Cerveau isole et physiologie du sommeil. C R Seances Soc Biol 118: 1235–1241Google Scholar
  6. 6.
    Sinton CM, McCarley RW (2004) Neurophysiological mechanisms of sleep and wakefulness: a question of balance. Semin Neurol 24: 211–223PubMedCrossRefGoogle Scholar
  7. 7.
    Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richarson JA, Kozlowski GP, Wilson S et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92: 573–585PubMedCrossRefGoogle Scholar
  8. 8.
    Burdakov D, Gerasimenko O, Verkhratsky A (2005) Physiological changes in glucose differentially modulate the excitability of hypothalamic melanin-concentrating hormone and orexin neurons in situ. J Neurosci 25: 2429–2433PubMedCrossRefGoogle Scholar
  9. 9.
    Willie JT, Chemelli RM, Sinton CM, Yanagisawa M (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24: 429–458PubMedCrossRefGoogle Scholar
  10. 10.
    Rodgers RJ, Ishii Y, Halford JC, Blundell JE (2002) Orexins and appetite regulation. Neuropeptides 36: 303–325PubMedCrossRefGoogle Scholar
  11. 11.
    Williams RH, Jensen LT, Verkhratsky A, Fugger L, Burdakov D (2007) Control of hypothalamic orexin neurons by acid and CO2. Proc Natl Acad Sci USA 104: 10685–10690PubMedCrossRefGoogle Scholar
  12. 12.
    Koella WP (1969) Serotonin and sleep. Exp Med Surg 27: 157–168PubMedGoogle Scholar
  13. 13.
    Blundell JE (1977) Is there a role for serotonin (5-hydroxytryptamine) in feeding? Int J Obes 1: 15–42PubMedGoogle Scholar
  14. 14.
    Jacobs BL, Fornal CA (1991) Activity of brain serotonergic neurons in the behaving animal. Pharmacol Rev 43: 563–578PubMedGoogle Scholar
  15. 15.
    Steriade M, McCarley RW (2005) Brain control of wakefulness and sleep. Kluwer Academic/Plenum, New York, NYGoogle Scholar
  16. 16.
    de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS 2nd et al (1998) The hypocretins: Hypothalamusspecific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95: 322–327PubMedCrossRefGoogle Scholar
  17. 17.
    Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18: 9996–10015PubMedGoogle Scholar
  18. 18.
    Marcus JN, Aschkenasi CJ, Lee CE, Chemelli RM, Saper CB, Yanagisawa M, Elmquist JK (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435: 6–25PubMedCrossRefGoogle Scholar
  19. 19.
    Marcus JN, Elmquist JK (2006) Orexin projections and localization of orexin receptors. In: S Nishino, T Sakurai (eds): The orexin/hypocretin system: Physiology and pathophysiology. Humana Press, Totowa, 21–43Google Scholar
  20. 20.
    Hoang QV, Bajic D, Yanagisawa M, Nakajima S, Nakajima Y (2003) Effects of orexin (hypocretin) on GIRK channels. J Neurophysiol 90: 693–702PubMedCrossRefGoogle Scholar
  21. 21.
    Karteris E, Machado RJ, Chen J, Zervou S, Hillhouse EW, Randeva HS (2005) Food deprivation differentially modulates orexin receptor expression and signaling in rat hypothalamus and adrenal cortex. Am J Physiol Endocrinol Metab 288: E1089–1100PubMedCrossRefGoogle Scholar
  22. 22.
    Choo KL, Guilleminault C (1998) Narcolepsy and idiopathic hypersomnolence. Clin Chest Med 19: 169–181PubMedCrossRefGoogle Scholar
  23. 23.
    Hishikawa Y, Shimizu T (1995) Physiology of REM sleep, cataplexy, and sleep paralysis. Adv Neurol 67: 245–271PubMedGoogle Scholar
  24. 24.
    Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24: 726–731PubMedCrossRefGoogle Scholar
  25. 25.
    Lu J, Sherman D, Devor M, Saper CB (2006) A putative flip-flop switch for control of REM sleep. Nature 441: 589–594PubMedCrossRefGoogle Scholar
  26. 26.
    McGinty DJ, Harper RM (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: 569–575PubMedCrossRefGoogle Scholar
  27. 27.
    Fish LR, Gilligan MT, Humphries AC, Ivarsson M, Ladduwahetty T, Merchant KJ, O’Connor D, Patel S, Philipps E, Vargas HM et al (2005) 4-Fluorosulfonylpiperidines: selective 5-HT2A ligands for the treatment of insomnia. Bioorg Med Chem Lett 15: 3665–3669PubMedCrossRefGoogle Scholar
  28. 28.
    Keck PE, Jr., Hudson JI, Dorsey CM, Campbell PI (1991) Effect of fluoxetine on sleep. Biol Psychiatry 29: 618–619PubMedCrossRefGoogle Scholar
  29. 29.
    Saletu B, Frey R, Krupka M, Anderer P, Grunberger J, See WR (1991) Sleep laboratory studies on the single-dose effects of serotonin reuptake inhibitors paroxetine and fluoxetine on human sleep and awakening qualities. Sleep 14: 439–447PubMedGoogle Scholar
  30. 30.
    Kayama Y, Shimada S, Hishikawa Y, Ogawa T (1989) Effects of stimulating the dorsal raphe nucleus of the rat on neuronal activity in the dorsal lateral geniculate nucleus. Brain Res 489: 1–11PubMedCrossRefGoogle Scholar
  31. 31.
    Lee KH, McCormick DA (1996) Abolition of spindle oscillations by serotonin and norepinephrine in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuron 17: 309–321PubMedCrossRefGoogle Scholar
  32. 32.
    Monckton JE, McCormick DA (2002) Neuromodulatory role of serotonin in the ferret thalamus. J Neurophysiol 87: 2124–2136PubMedGoogle Scholar
  33. 33.
    McCormick DA (1992) Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol 9: 212–223PubMedGoogle Scholar
  34. 34.
    Jones BE (2004) Paradoxical REM sleep promoting and permitting neuronal networks. Arch Ital Biol 142: 379–396PubMedGoogle Scholar
  35. 35.
    McCarley RW (2007) Neurobiology of REM and NREM sleep. Sleep Med 8: 302–330PubMedCrossRefGoogle Scholar
  36. 36.
    McCarley RW (2004) Mechanisms and models of REM sleep control. Arch Ital Biol 142: 429–467PubMedGoogle Scholar
  37. 37.
    Portas CM, Thakkar M, Rainnie D, McCarley RW (1996) Microdialysis perfusion of 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) in the dorsal raphe nucleus decreases serotonin release and increases rapid eye movement sleep in the freely moving cat. J Neurosci 16: 2820–2828PubMedGoogle Scholar
  38. 38.
    Monti JM, Jantos H, Monti D, Alvarino F (2000) Dorsal raphe nucleus administration of 5-HT1A receptor agonist and antagonists: Effect on rapid eye movement sleep in the rat. Sleep Res Online 3: 29–34PubMedGoogle Scholar
  39. 39.
    Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K (1999) Distribution of orexin neurons in the adult rat brain. Brain Res 827: 243–260PubMedCrossRefGoogle Scholar
  40. 40.
    Date Y, Ueta Y, Yamashita H, Yamaguchi H, Matsukura S, Kangawa K, Sakurai T, Yanagisawa M, Nakazato M (1999) Orexins, orexigenic hypothalamic peptides, interact with autonomic, neuroendocrine and neuroregulatory systems. Proc Natl Acad Sci USA 96: 748–753PubMedCrossRefGoogle Scholar
  41. 41.
    Lee HS, Park SH, Song WC, Waterhouse BD (2005) Retrograde study of hypocretin-1 (orexin-A) projections to subdivisions of the dorsal raphe nucleus in the rat. Brain Res 1059: 35–45PubMedCrossRefGoogle Scholar
  42. 42.
    Wang QP, Guan JL, Matsuoka T, Hirayana Y, Shioda S (2003) Electron microscopic examination of the orexin immunoreactivity in the dorsal raphe nucleus. Peptides 24: 925–930PubMedCrossRefGoogle Scholar
  43. 43.
    Wang QP, Koyama Y, Guan JL, Takahashi K, Kayama Y, Shioda S (2005) The orexinergic synaptic innervation of serotonin-and orexin 1-receptor-containing neurons in the dorsal raphe nucleus. Regul Pept 126: 35–42PubMedCrossRefGoogle Scholar
  44. 44.
    Abrahamson EE, Moore RY (2001) The posterior hypothalamic area: chemoarchitecture and afferent connections. Brain Res 889: 1–22PubMedCrossRefGoogle Scholar
  45. 45.
    Sakurai T, Nagata R, Yamanaka A, Kawamura H, Tsujino N, Muraki Y, Kageyama H, Kunita S, Takahashi S, Goto K et al. (2005) Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron 46: 297–308PubMedCrossRefGoogle Scholar
  46. 46.
    Yoshida K, McCormack S, Espana RA, Crocker A, Scammell TE (2006) Afferents to the orexin neurons of the rat brain. J Comp Neurol 494: 845–861PubMedCrossRefGoogle Scholar
  47. 47.
    Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM (1998) Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 438: 71–75PubMedCrossRefGoogle Scholar
  48. 48.
    Hervieu GJ, Cluderay JE, Harrison DC, Roberts JC, Leslie RA (2001) Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience 103: 777–797PubMedCrossRefGoogle Scholar
  49. 49.
    Cluderay JE, Harrison DC, Hervieu GJ (2002) Protein distribution of the orexin-2 receptor in the rat central nervous system. Regul Pept 104: 131–144PubMedCrossRefGoogle Scholar
  50. 50.
    Tao R, Ma Z, McKenna JT, Thakkar MM, Winston S, Strecker RE, McCarley RW (2006) Differential effect of orexins (hypocretins) on serotonin release in the dorsal and median raphe nuclei of freely behaving rats. Neuroscience 141: 1101–1105PubMedCrossRefGoogle Scholar
  51. 51.
    Brown RE, Sergeeva O, Eriksson KS, Haas HL (2001) Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 40: 457–459PubMedCrossRefGoogle Scholar
  52. 52.
    Brown RE, Sergeeva OA, Eriksson KS, Haas HL (2002) Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 22: 8850–8859PubMedGoogle Scholar
  53. 53.
    Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68: 619–647PubMedCrossRefGoogle Scholar
  54. 54.
    Sergeeva OA, Korotkova TM, Scherer A, Brown RE, Haas HL (2003) Co-expression of non-selective cation channels of the transient receptor potential canonical family in central aminergic neurones. J Neurochem 85: 1547–1552PubMedCrossRefGoogle Scholar
  55. 55.
    Soboloff J, Spassova M, Hewavitharana T, He LP, Luncsford P, Xu W, Venkatachalam K, van Rossum D, Patterson RL, Gill DL (2007) TRPC channels: integrators of multiple cellular signals. Handb Exp Pharmacol 179: 575–591PubMedCrossRefGoogle Scholar
  56. 56.
    Tao R, Auerbach SB (1996) Differential effect of NMDA on extracellular serotonin in rat midbrain raphe and forebrain sites. J Neurochem 66: 1067–1075PubMedCrossRefGoogle Scholar
  57. 57.
    Tao R, Auerbach SB (2000) Regulation of serotonin release by GABA and excitatory amino acids. J Psychopharmacol 14: 100–113PubMedGoogle Scholar
  58. 58.
    Tao R, Auerbach SB (2003) Influence of inhibitory and excitatory inputs on serotonin efflux differs in the dorsal and median raphe nuclei. Brain Res 961: 109–120PubMedCrossRefGoogle Scholar
  59. 59.
    Tao R, Ma Z, Auerbach SB (1996) Differential regulation of 5-hydroxytryptamine release by GABAA and GABAB receptors in midbrain raphe nuclei and forebrain of rats. Br J Pharmacol 119: 1375–1384PubMedGoogle Scholar
  60. 60.
    Liu RJ, van den Pol AN, Aghajanian GK (2002) Hypocretins (orexins) regulate serotonin neurons in the dorsal raphe nucleus by excitatory direct and inhibitory indirect actions. J Neurosci 22: 9453–9464PubMedGoogle Scholar
  61. 61.
    Gervasoni D, Peyron C, Rampon C, Barbagli B, Chouvet G, Urbain N, Fort P, Luppi PH (2000) Role and origin of the GABAergic innervation of dorsal raphe serotonergic neurons. J Neurosci 20: 4217–4225PubMedGoogle Scholar
  62. 62.
    Haj-Dahmane S, Shen RY (2005) The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling. J Neurosci 25: 896–905PubMedCrossRefGoogle Scholar
  63. 63.
    Lee HS, Kim MA, Valentino RJ, Waterhouse BD (2003) Glutamatergic afferent projections to the dorsal raphe nucleus of the rat. Brain Res 963: 57–71PubMedCrossRefGoogle Scholar
  64. 64.
    Levine ES, Jacobs BL (1992) Neurochemical afferents controlling the activity of serotonergic neurons in the dorsal raphe nucleus: microiontophoretic studies in the awake cat. J Neurosci 12: 4037–4044PubMedGoogle Scholar
  65. 65.
    Sakai K, Crochet S (2001) Role of dorsal raphe neurons in paradoxical sleep generation in the cat: no evidence for a serotonergic mechanism. Eur J Neurosci 13: 103–112PubMedCrossRefGoogle Scholar
  66. 66.
    Hashimotodani Y, Ohno-Shosaku T, Kano M (2007) Endocannabinoids and synaptic function in the CNS. Neuroscientist 13: 127–137PubMedCrossRefGoogle Scholar
  67. 67.
    Kunos G, Batkai S (2001) Novel physiologic functions of endocannabinoids as revealed through the use of mutant mice. Neurochem Res 26: 1015–1021PubMedCrossRefGoogle Scholar
  68. 68.
    Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron-A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36: 1169–1181PubMedCrossRefGoogle Scholar
  69. 69.
    Yamanaka A, Muraki Y, Tsujino N, Goto K, Sakurai T (2003) Regulation of orexin neurons by the monoaminergic and cholinergic systems. Biochem Biophys Res Commun 303: 120–129PubMedCrossRefGoogle Scholar
  70. 70.
    Muraki Y, Yamanaka A, Tsujino N, Kilduff TS, Goto K, Sakurai T (2004) Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 24: 7159–7166PubMedCrossRefGoogle Scholar
  71. 71.
    Kumar S, Szymusiak R, Bashir T, Rai S, McGinty D, Alam MN (2007) Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat. Eur J Neurosci 25: 201–212PubMedCrossRefGoogle Scholar
  72. 72.
    Orlando G, Brunetti L, Di Nisio C, Michelotto B, Recinella L, Ciabattoni G, Vacca M (2001) Effects of cocaine-and amphetamine-regulated transcript peptide, leptin and orexins on hypothalamic serotonin release. Eur J Pharmacol 430: 269–272PubMedCrossRefGoogle Scholar
  73. 73.
    Matsuzaki I, Sakurai T, Kunii K, Nakamura T, Yanagisawa M, Goto K (2002) Involvement of the serotonergic system in orexin-induced behavioral alterations in rats. Regul Pept 104: 119–123PubMedCrossRefGoogle Scholar
  74. 74.
    Duxon MS, Stretton J, Starr K, Jones DN, Holland V, Riley G, Jerman J, Brough S, Smart D, Johns A et al (2001) Evidence that orexin-A-evoked grooming in the rat is mediated by orexin-1 (OX1) receptors, with downstream 5-HT2C receptor involvement. Psychopharmacology (Berl) 153: 203–209CrossRefGoogle Scholar
  75. 75.
    Collin M, Backberg M, Onnestam K, Meister B (2002) 5-HT1A receptor immunoreactivity in hypothalamic neurons involved in body weight control. Neuroreport 13: 945–951PubMedCrossRefGoogle Scholar
  76. 76.
    Rachalski A, Alexandre C, Hamon M, Adrien J, Fabre V (2007) Stress altered-sleep: A role for serotonin/hypocretin interactions? Sleep 30: A15Google Scholar
  77. 77.
    Wisor JP, Wurts SW, Hall FS, Lesch KP, Murphy DL, Uhl GR, Edgar DM (2003) Altered rapid eye movement sleep timing in serotonin transporter knockout mice. Neuroreport 14: 233–238PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Christopher M. Sinton
    • 1
  1. 1.Department of Internal MedicineUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations