Changing concepts on the role of serotonin in the regulation of sleep and waking

  • Reidun Ursin


The story of serotonin and sleep has been developing for more than 50 years, from the discovery in the 1950s that it had a role in brain function and in EEG synchronization. In parallel, the areas of sleep research and neurochemistry have seen enormous developments. The concept of serotonin as a sleep neurotransmitter was based on the effects of lesions of the brainstem raphe nuclei and the effects of serotonin depleting drugs in cats. The description of the firing pattern of the dorsal raphe nuclei changed this concept, initially to the entirely opposite view of serotonin as a waking transmitter. More recently, there has emerged a more complex view on the role of serotonin as a modulator of both waking and sleep. The effects of serotonin on sleep and waking may depend on which neurons are firing, their projection site, which postsynaptic receptors are present at this site, and, not the least, on the functional state of the system and the organism at the particular moment.


Basal Forebrain Slow Wave Sleep Dorsal Raphe Dorsal Raphe Nucleus Paradoxical Sleep 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jouvet M (1999) Sleep and serotonin: An unfinished story. Neuropsychopharmacology 21: 24S–27SPubMedGoogle Scholar
  2. 2.
    Adrien J (1995) The serotonergic system and sleep-wakefulness regulation. In: A Kales (ed): Handbook of Experimental Pharmacology. Springer, Berlin, 91–116Google Scholar
  3. 3.
    Ursin R (2002) Serotonin and sleep. Sleep Med Rev 6: 57–69CrossRefGoogle Scholar
  4. 4.
    Amin AH, Crawford TBB, Gaddum JH (1954) The distribution of substance P and 5-hydroxytryptamine in the central nervous system of the dog. J Physiol 126: 596–618PubMedGoogle Scholar
  5. 5.
    Brodie BB, Pletscher A, Shore PA (1955) Evidence that serotonin has a role in brain function. Science 122: 968PubMedCrossRefGoogle Scholar
  6. 6.
    Brodie BB, Shore PA (1957) A concept for a role of serotonin and norepinephrine as chemical mediators in the brain. Ann N Y Acad Sci 66: 631–642PubMedCrossRefGoogle Scholar
  7. 7.
    Aserinsky E, Kleitman N (1953) Regularly occurring periods of eye motility, and concomitant phenomena, during sleep. Science 118: 273–274PubMedCrossRefGoogle Scholar
  8. 8.
    Dement W, Kleitman N (1957) Cyclic variations of EEG during sleep and their relation to eye movements, body motility, and dreaming. Electroencephalogr Clin Neurophysiol 9: 673–690PubMedCrossRefGoogle Scholar
  9. 9.
    Dement W (1958) The occurrence of low voltage, fast, electroencephalogram patterns during behavioral sleep in the cat. Electroencephalogr Clin Neurophysiol 10: 291–296PubMedCrossRefGoogle Scholar
  10. 10.
    Jouvet M (1969) Biogenic amines and the state of sleep. Science 163: 32–41PubMedCrossRefGoogle Scholar
  11. 11.
    Koella W (1969) Neurohumoral aspects of sleep control. Biol Psychiatry 1: 161–177PubMedGoogle Scholar
  12. 12.
    Koella WP, Czicman JS (1966) Mechanism of the EEG-synchronizing action of serotonin. Am J Physiol 211: 926–934PubMedGoogle Scholar
  13. 13.
    Matsumoto J, Jouvet M (1964) Effets de réserpine, DOPA, et 5 HTP sur les déux etats de sommeil. C R Soc Biol (Paris) 158: 2135–2139Google Scholar
  14. 14.
    Koe BK, Weissman A (1966) p-Chlorophenylalanine: a specific depletor of brain serotonin. J Pharmacol Exp Ther 154: 499–516PubMedGoogle Scholar
  15. 15.
    Delorme F, Froment JL, Jouvet M (1966) Suppression du sommeil par la p-chlorometamphetamine et p-chlorophenylalanine. C R Soc Biol (Paris) 160: 2347–2351Google Scholar
  16. 16.
    Dahlström A, Fuxe K (1964) Evidence for the existence of monoamine neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand Suppl 62: suppl 232Google Scholar
  17. 17.
    Fuxe K (1965) Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta Physiol Scand Suppl 247: 37Google Scholar
  18. 18.
    Andén NE, Dahlström A, Fuxe K, Olson L, Ungerstedt U (1966) Mapping out of catecholamine and 5-hydroxytryptamine neurons innervating the telencephalon and diencephalon. Acta Physiol Scand 67: 313–326CrossRefGoogle Scholar
  19. 19.
    Jouvet M (1968) Insomnia and decrease of cerebral 5-hydroxytryptamine after destruction of the raphe system in the cat. In: S Garattini, PA Shore (eds): Advances in pharmacology. Academic Press, New York, 265–279Google Scholar
  20. 20.
    Koella WP, Feldstein A, Czicman JS (1968) The effect of para-chlorophenylalanine on the sleep of cats. Electroencephalogr Clin Neurophysiol 25: 481–490PubMedCrossRefGoogle Scholar
  21. 21.
    Karadzic V (1968) Para-chlorophenylalanine and sleep in cats. Arh Biol Nauka 20: 27–31Google Scholar
  22. 22.
    Pujol J-F, Buguet A., Froment J-L, Jones B, Jouvet M (1971) The central metabolism of serotonin in the cat during insomnia. A neurophysiological and biochemical study after administration of p-chlorophenylalanine. Brain Res 29: 195–212PubMedCrossRefGoogle Scholar
  23. 23.
    Ursin R (1972) Differential effect of para-chlorophenylalanine on the two slow wave sleep stages in the cat. Acta Physiol Scand 86: 278–285PubMedGoogle Scholar
  24. 24.
    Torda C (1967) Effect of brain serotonin depletion on sleep in rats. Brain Res 6: 375–377PubMedCrossRefGoogle Scholar
  25. 25.
    Mouret J, Bobillier P, Jouvet M (1968) Insomnia following parachlorophenylalanine in the rat. Eur J Pharmacol 5: 17–22PubMedCrossRefGoogle Scholar
  26. 26.
    Borbély AA, Neuhaus HU, Tobler I (1981). Effect of p-chlorophenylalanine and tryptophan on sleep, EEG and motor activity in the rat. Behav Brain Res 2: 1–22PubMedCrossRefGoogle Scholar
  27. 27.
    Weitzman ED, Rapport MM, McGregor P, Jacoby J (1968) Sleep patterns of the monkey and brain serotonin: Effect of p-chlorophenylalanine. Science 160: 1361–1363PubMedCrossRefGoogle Scholar
  28. 28.
    Ursin R (1980) Does para-chlorophenylalanine produce disturbed waking, disturbed sleep, or activation by ponto-geniculo-occipital waves in cats? Waking Sleeping 4: 211–221PubMedGoogle Scholar
  29. 29.
    Jouvet M (1972) The role of monoamines and acetylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergeb Physiol 64: 166–307PubMedGoogle Scholar
  30. 30.
    Magnes J, Moruzzi G, Pompeiano O (1961) Synchronization of the EEG produced by low-frequency electrical stimulation of the region of the solitary tract. Arch Ital Biol 99: 33–67Google Scholar
  31. 31.
    Moruzzi G (1972) The sleep-waking cycle. Ergeb Physiol 64: 1–165PubMedGoogle Scholar
  32. 32.
    Wyatt RJ, Engelman K, Kupfer DJ, Fram DH, Sjoerdsma A, Snyder F (1970) Effects of l-tryptophan (a natural sedative) on human sleep. Lancet 2: 842–846PubMedCrossRefGoogle Scholar
  33. 33.
    Hartmann E, Cravens J, List S (1974). Hypnotic effects of l-tryptophan. Arch Gen Psychiatry 31: 394–397PubMedGoogle Scholar
  34. 34.
    Wyatt RJ, Zarcone V, Engelman K, Dement WC, Snyder F, Sjoerdsma A (1971) Effects of 5-hydroxytryptophan on the sleep of normal human subjects. Electroencephalogr Clin Neurophysiol 30: 505–509PubMedCrossRefGoogle Scholar
  35. 35.
    Dement WC, Mitler MM, Henriksen SJ (1972) Sleep changes during chronic administration of parachlorophenylalanine. Rev Can Biol 31(Suppl): 239–246PubMedGoogle Scholar
  36. 36.
    Cespuglio R, Faradji H, Gomez M-E, Jouvet M (1976) Cooling of the raphe nucleus induces sleep in the cat. Neurosci Lett 3: 221–227CrossRefPubMedGoogle Scholar
  37. 37.
    Bouhuys AL, van den Hoofdakker RH (1977) Effects of midbrain raphe destruction on sleep and locomotor activity in rats. Physiol Behav 19: 535–541PubMedCrossRefGoogle Scholar
  38. 38.
    Ursin R (1976) The effects of 5-hydroxytryptophan and l-tryptophan on wakefulness and sleep patterns in the cat. Brain Res 106: 105–115PubMedCrossRefGoogle Scholar
  39. 39.
    Spinweber LC, Ursin R, Hilderbrand RL (1983) l-Tryptophan: effects on daytime sleep latency and the waking EEG. Electroencephalogr Clin Neurophysiol 55: 652–661PubMedCrossRefGoogle Scholar
  40. 40.
    Slater IH, Jones GT, Moore RA (1978) Inhibition of REM sleep by fluoxetine, a specific inhibitor of serotonin uptake. Neuropharmacology 17: 383–389PubMedCrossRefGoogle Scholar
  41. 41.
    McGinty DJ, Harper RM (1973) 5-HT containing neurons: Unit activity in behaving cats. In: J Barchas, E Usden (eds): Serotonin and behavior. Academic Press, New York, 267–279Google Scholar
  42. 42.
    McGinty D, Harper RW (1976) Dorsal raphe neurons: depression of firing during sleep in cats. Brain Res 101: 569–575PubMedCrossRefGoogle Scholar
  43. 43.
    Sterman MB, Clemente C (1962) Forebrain inhibitory mechanisms: sleep patterns induced by basal forebrain stimulation. Exp Neurol 6: 103–117PubMedCrossRefGoogle Scholar
  44. 44.
    McGinty DJ, Sterman MB (1968) Sleep suppression after basal forebrain lesions. Science 160: 1253–1255PubMedCrossRefGoogle Scholar
  45. 45.
    Trulson M.E, Jacobs BL (1979) Raphe unit activity in freely moving cats: correlation with level of behavioral arousal. Brain Res 163: 135–150PubMedCrossRefGoogle Scholar
  46. 46.
    Puizillout JJ, Gaudin-Chazal G, Daszuta A, Seyfritz N., Ternaux JP. (1979) Release of endogenous serotonin from “encéphale isolé” cats. II. Correlations with raphe neuronal activity and sleep and wakefulness. J Physiol (Paris) 75: 531–537Google Scholar
  47. 47.
    Cespuglio R, Faradji H, Gomez M-E, Jouvet M. (1981) Single unit recordings in the nuclei raphe dorsalis and magnus during the sleep-waking cycle of semi-chronic prepared cats. Neurosci Lett 24: 133–138PubMedCrossRefGoogle Scholar
  48. 48.
    Jacobs BL, Azmitia EC (1992) Structure and function of the brain serotonin system. Physiol Rev 72: 165–229PubMedGoogle Scholar
  49. 49.
    Guzmán-Marín R, Alam MN, Szymusiak R, Drucker-Colín R, Gong H, McGinty D (2000) Discharge modulation of rat dorsal raphe neurons during sleep and waking: effects of preoptic/basal forebrain warming. Brain Res 875: 23–34PubMedCrossRefGoogle Scholar
  50. 50.
    Iwakiri H, Matsuyama K, Mori S (1993) Extracellular levels of serotonin in the medial pontine reticular formation in relation to sleep-wake cycle in cats: a microdialysis study. Neurosci Res 18: 157–170PubMedCrossRefGoogle Scholar
  51. 51.
    Portas CM, McCarley RW (1994) Behavioral state-related changes of extracellular serotonin concentration in the dorsal raphe nucleus: A microdialysis study in the freely moving cat. Brain Res 648: 306–312PubMedCrossRefGoogle Scholar
  52. 52.
    Strecker RE, Thakkar MM, Porkka-Heiskanen T, Dauphin LJ, Bjørkum AA, McCarley RW (1999) Behavioral state-related changes of extracellular serotonin concentration in the pedunculopontine tegmental nucleus: A microdialysis study in freely moving animals. Sleep Res Online 2: 21–27PubMedGoogle Scholar
  53. 53.
    Portas CM, Bjorvatn B, Fagerland S, Grønli J, Mundal, Sørensen E, Ursin R (1998) On-line detection of extracellular levels of serotonin in dorsal raphe nucleus and frontal cortex over the sleep-wake cycle in the freely moving rat. Neuroscience 83: 807–814PubMedCrossRefGoogle Scholar
  54. 54.
    Park SP, LopezRodriguez F, Wilson CL, Maidment N, Matsumoto Y, Engel J (1999) In vivo microdialysis measures of extracellular serotonin in the rat hippocampus during sleep-wakefulness. Brain Res 833: 291–296PubMedCrossRefGoogle Scholar
  55. 55.
    Peroutka SJ (1988) 5-Hydroxytryptamine receptor subtypes: molecular, biochemical and physiological characterization. Trends Neurosci 11: 496–500PubMedCrossRefGoogle Scholar
  56. 56.
    Bjorvatn B, Ursin R (1998) Changes in sleep and wakefulness following 5-HT1A ligands given systemically and locally in different brain regions. Rev Neurosci 9: 265–273PubMedGoogle Scholar
  57. 57.
    Portas CM, Bjorvatn B, Ursin R (2000) Serotonin and the sleep-wake cycle: Special emphasis on microdialysis studies. Prog Neurobiol 60: 13–35PubMedCrossRefGoogle Scholar
  58. 58.
    Dugovic C, Wauquier A, Leysen JE, Marrannes R, Janssen PAJ (1989) Functional role of 5-HT2 receptors in the regulation of sleep and wakefulness in the rat. Psychopharmacology 97: 436–442PubMedCrossRefGoogle Scholar
  59. 59.
    Idzikowski C, Mills FJ, Glennard R (1986) 5-hydroxytryptamine-2 antagonist increases human slow wave sleep. Brain Res 378: 164–168PubMedCrossRefGoogle Scholar
  60. 60.
    Dugovic C, Wauquier A (1987) 5-HT2 receptors could be primarily involved in the regulation of slow wave sleep in the rat. Eur J Pharmacol 137: 145–146PubMedCrossRefGoogle Scholar
  61. 61.
    Borbély AA, Trachsel L, Tobler I (1988) Effect of ritanserin on sleep stages and sleep EEG in the rat. Eur J Pharmacol 156: 275–278PubMedCrossRefGoogle Scholar
  62. 62.
    Sommerfelt L, Ursin R (1993) The 5-HT2 antagonist ritanserin decreases sleep in cats. Sleep 16: 15–22PubMedGoogle Scholar
  63. 63.
    McCormick DA, Wang Z (1991). Serotonin and noradrenaline excite GABA-ergic neurones of the guinea-pig and cat nucleus reticularis thalami. J Physiol 442: 235–255PubMedGoogle Scholar
  64. 64.
    Chapin EM, Andrade R (2001) A 5-HT(7) receptor-mediated depolarization in the anterodorsal thalamus. II. Involvement of the hyperpolarization-activated current I(h). J Pharmacol Exp Ther 297: 403–409PubMedGoogle Scholar
  65. 65.
    Saper CB, Chou T, Scammel T (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24: 726–731PubMedCrossRefGoogle Scholar
  66. 66.
    Saper CB, Scammel TE, Lu J. (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437: 1257–1263PubMedCrossRefGoogle Scholar
  67. 67.
    Sommerfelt L, Hauge ER, Ursin R (1987) Similar effect on REM sleep but differential effect on slow wave sleep of the two 5-HT uptake inhibitor zimeldine and alaproclate in cats and rats. J Neural Transm 68: 127–144PubMedCrossRefGoogle Scholar
  68. 68.
    Ursin R, Bjorvatn B, Sommerfelt, L, Underland G (1989) Increased waking as well as increased synchronization following administration of selective 5-HT uptake inhibitors to rats. Behav Brain Res 34: 117–130PubMedCrossRefGoogle Scholar
  69. 69.
    Lelkes Z, Obal F Jr, Alfoldi P, Erdos A, Rubicsek G, Benedek G (1994) Effects of acute and chronic treatment with trazodone, an antidepressant, on the sleep-wake activity in rats. Pharmacol Res 30: 105–115PubMedCrossRefGoogle Scholar
  70. 70.
    Maudhuit C, Jolas T, Lainey E, Hamon M, Adrien J (1994) Effects of acute and chronic treatment with amoxapine and cericlamine on the sleep-wakefulness cycle in the rat. Neuropharmacology 33: 1017–1025PubMedCrossRefGoogle Scholar
  71. 71.
    Cespuglio R, Rousset C, Debilly G, Rochat C, Millan MJ (2005) Acute administration of the novel serotonin and noradrenaline reuptake inhibitor, S33005, markedly modifies sleep-wake cycle architecture in the rat. Psychopharmacology 181: 639–652PubMedCrossRefGoogle Scholar
  72. 72.
    Hilakivi I, Kovala T, Leppavuori A, Shvaloff A (1987) Effects of serotonin and noradrenaline uptake blockers on wakefulness and sleep in cats. Pharmacol Toxicol 60: 161–166PubMedGoogle Scholar
  73. 73.
    Sommerfelt L, Ursin R (1991) Behavioral, sleep-waking and EEG power spectral effects following the two specific 5-HT uptake inhibitors zimeldine and alaproclate in cats. Behav Brain Res 45: 105–115PubMedCrossRefGoogle Scholar
  74. 74.
    Sommerfelt L, Ursin, R (1987) The effects of zimeldine and alaproclate combined with a small dose of 5-HTP on waking and sleep stages in cats. Behav Brain Res 24: 1–10PubMedCrossRefGoogle Scholar
  75. 75.
    Ursin R, Bjorvatn B (1998) Sleep-wake and EEG effects following adenosine A1 agonism and antagonism: Similarities and interactions with sleep-wake and EEG effects following a serotonin reuptake inhibitor in rats. Sleep Res Online 1: 119–127PubMedGoogle Scholar
  76. 76.
    Sakai K, Crochet S (2001) Differentiation of presumed serotonergic dorsal raphe neurons in relation to behavior and wake-sleep states. Neuroscience 104: 1141–1155PubMedCrossRefGoogle Scholar
  77. 77.
    Allers KA, Sharp T (2003) Neurochemical and anatomical identification of fast-and slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo. Neuroscience 122: 193–204PubMedCrossRefGoogle Scholar
  78. 78.
    Urbain N, Creamer K, Debonnel G (2006) Electrophysiological diversity of the dorsal raphe cells across the sleep-wake cycle of the rat. J Physiol 573: 679–695PubMedCrossRefGoogle Scholar
  79. 79.
    Lee KH, McCormick DA (1996) Abolition of spindle oscillations by serotonin and norepinephrine in the ferret lateral geniculate and perigeniculate nuclei in vitro. Neuron 17: 309–321PubMedCrossRefGoogle Scholar
  80. 80.
    Monckton JE, McCormick DA (2002) Neuromodulatory role of serotonin in the ferret thalamus. J Neurophysiol 87: 2124–2136PubMedGoogle Scholar
  81. 81.
    Khateb A, Fort P, Alonso A, Jones BE, Mühlethaler M (1993) Pharmacological and immunohistochemical evidence for serotonergic modulation of cholinergic nucleus basalis neurons. Eur J Neurosci 5: 541–547PubMedCrossRefGoogle Scholar
  82. 82.
    Jones BE (2005) From waking to sleeping: neuronal and chemical substrates. Trends Neurosci 26: 578–586Google Scholar
  83. 83.
    Jones BE (2005) Basic mechanisms of sleep-wake states. In: MH Kryger, T Roth, WC Dement (eds): Principles and practice of sleep medicine. Elsevier Saunders, Philadelphia, 136–153Google Scholar
  84. 84.
    Siegel JM (2005) REM sleep. In: MH Kryger, T Roth, WC Dement (eds): Principles and practice of sleep medicine. Elsevier Saunders, Philadelphia, 120–135Google Scholar
  85. 85.
    Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262: 679–685PubMedCrossRefGoogle Scholar
  86. 86.
    Steriade M (2003) Neuronal substrates of sleep and epilepsy. Cambridge University Press, Cambridge, 522Google Scholar
  87. 87.
    Steriade M, Gloor P, Llinas RR, Lopes da Silva FH, Mesulam MM (1990) Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 76: 481–508PubMedCrossRefGoogle Scholar
  88. 88.
    Curró Dossi R, Nuñez A, Steriade M (1992) Electrophysiology of a slow (0.5–4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol 447: 215–234Google Scholar
  89. 89.
    Steriade M, Nunez A, Amzica F (1993) A novel slow (<1 Hz) oscillation of neocortical neurons in vivo: depolarizing and hyperpolarizing components. J Neurosci 13: 3252–3265PubMedGoogle Scholar
  90. 90.
    Steriade M, Nunez A, Amzica F (1993) Intracellular analysis of relations between the slow (<1 Hz) neocortical oscillation and other sleep rhythms of the electroencephalogram. J Neurosci 13: 3266–3283PubMedGoogle Scholar
  91. 91.
    Destexhe A, Contreras D, Sejnowski TJ, Steriade M (1994) Modeling the control of reticular thalamic oscillations by neuromodulators. Neuroreport 5: 2217–2220PubMedCrossRefGoogle Scholar
  92. 92.
    Nauta WJH (1946) Hypothalamic regulation of sleep in rats. An experimental study. J Neurophysiol 9: 285–316Google Scholar
  93. 93.
    Szymusiak R (1995) Magnocellular nuclei of the basal forebrain: Substrates of sleep and arousal regulation. Sleep 18: 478–500PubMedGoogle Scholar
  94. 94.
    Szymusiak R, Alam N, Steiniger T, McGinty D (1998) Sleep-waking discharge patterns of ventrolateral preoptic/anterior hypothalamic neurons in rats. Brain Res 803: 178–188PubMedCrossRefGoogle Scholar
  95. 95.
    Suntsova N, Guzman-Marin R, Kumar S, Alam MN, Szymusiak R, McGinty D (2007) The median preoptic nucleus reciprocally modulates activity of arousal-related and sleep-related neurons in the perifornical lateral hypothalamus. J Neurosci 27: 1616–1630PubMedCrossRefGoogle Scholar
  96. 96.
    Sherin JE, Shiromani PJ, McCarley RW, Saper CB (1996) Activation of ventrolateral preoptic neurons during sleep. Science 271: 216–219PubMedCrossRefGoogle Scholar
  97. 97.
    Gong H, McGinty D, Guzman-Marin R, Chew KT, Stewart D, Szymusiak R (2004) Activation of c-fos in GABAergic neurones in the preoptic area during sleep and in response to sleep deprivation. J Physiol 556: 935–946PubMedCrossRefGoogle Scholar
  98. 98.
    Sherin JE, Elmquist JK, Torrealba F, Saper CB (1998) Innervation of histaminergic tuberomammillary neurons by GABAergic and galaninergic neurons in the ventrolateral preoptic nucleus of the rat. J Neurosci 18: 4705–4721PubMedGoogle Scholar
  99. 99.
    Gallopin T, Fort P, Eggermann E, Cauli B, Luppi, P-H, Rossier J, Audinat E, Mülethaler M, Serafin S (2000). Identification of sleep-promoting neurons in vitro. Nature 404: 992–995PubMedCrossRefGoogle Scholar
  100. 100.
    Chou TC, Bjorkum AA, Gaus SE, Lu J, Scammell TE, Saper CB (2002). Afferents to the ventrolateral preoptic nucleus. J Neurosci 22: 977–990PubMedGoogle Scholar
  101. 101.
    Gervasoni D, Peyron C, Rampon C., Barbagli B, Chouvet G, Urbain N, Fort P, Luppi P-H (2000) Role and origin of the GABAergic innervation to dorsal raphe serotonergic neurons. J Neurosci 20: 4217–4225PubMedGoogle Scholar
  102. 102.
    Cape EG, Jones BE (1998) Differential modulation of high-frequency gamma-electroencephalogram activity and sleep-wake state by noradrenaline and serotonin microinjections into the region of cholinergic basalis neurons. J Neurosci 18: 2653–2666PubMedGoogle Scholar
  103. 103.
    Gvilia I, Xu F, McGinty D, Szymusiak R (2006) Homeostatic regulation of sleep: A role for preoptic area neurons. J Neurosci 26: 9426–9433PubMedCrossRefGoogle Scholar
  104. 104.
    Modirrousta M, Mainville L, Jones BE (2007) Dynamic changes in GABAA receptors on basal forebrain neurons following sleep deprivation and recovery. BMC Neurosci 8: 15PubMedCrossRefGoogle Scholar
  105. 105.
    Thakkar MM, Strecker RE, McCarley RW (1998) Behavioral state control through differential serotonergic inhibition in the mesopontine cholinergic nuclei: A simultaneous unit recording and microdialysis study. J Neurosci 18: 5490–5497PubMedGoogle Scholar
  106. 106.
    Semba K, Fibiger HC (1992) Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro-and antero-grade transport and immunohistochemical study. J Comp Neurol 323: 387–410PubMedCrossRefGoogle Scholar
  107. 107.
    Luebke JI, Greene RW, Semba K, Kamondi A, McCarley RW, Reiner PB (1992) Serotonin hyperpolarizes cholinergic low-threshold burst neurons in the rat laterodorsal tegmental nucleus in vitro. Proc Natl Acad Sci USA 89: 743–747PubMedCrossRefGoogle Scholar
  108. 108.
    McCarley RW, Greene RW, Rainnie D, Portas CM (1995) Brainstem neuromodulation and REM sleep. Semin Neurosci 7: 341–354CrossRefGoogle Scholar
  109. 109.
    Steriade M, Datta S, Paré D, Oakson G, Curró Dossi R (1990). Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10: 2441–2559Google Scholar
  110. 110.
    Curró Dossi R, Paré D, Steriade M (1991) Short-lasting nicotinic and long-lasting muscarinic depolarizing responses of thlamocortical neurons to stimulation of mesopontinic cholinergic nuclei. J Neurophysiol 65: 393–406PubMedGoogle Scholar
  111. 111.
    Lin JS, Hou Y, Sakai K, Jouvet M (1996) Histaminergic descending inputs to the mesopontine tegmentum and their role in the control of cortical activation and wakefulness in the cat. J Neurosci 16: 1523–1537PubMedGoogle Scholar
  112. 112.
    Peyron C, Tighe DK, van den Pol AN, deLecea L, Heller HC, Sutcliffe JG, Kilduff TS (1998). Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18: 9996–10015PubMedGoogle Scholar
  113. 113.
    Nishino S, Ripley B, Overeem S, Lammers GJ, Mignot E (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355: 39–40PubMedCrossRefGoogle Scholar
  114. 114.
    Sakurai T (2007) The neural circuit of orexin (hypocretin): maintaining sleep and wakefulness. Nat Rev Neurosci 8: 171–181PubMedCrossRefGoogle Scholar
  115. 115.
    Li Y, Gao XB, Sakurai T, van den Pol AN (2002) Hypocretin/orexin excites hypocretin neurons via a local glutamate neuron — A potential mechanism for orchestrating the hypothalamic arousal system. Neuron 36: 1169–1181PubMedCrossRefGoogle Scholar
  116. 116.
    Kumar S, Szymusiak R, Bashir T, Rai S, McGinty D, Alam MN (2007) Effects of serotonin on perifornical-lateral hypothalamic area neurons in rat. Eur J Neurosci 25: 201–212PubMedCrossRefGoogle Scholar
  117. 117.
    Hobson JA, McCarley RW, Wyzinski PW (1975) Sleep cycle oscillation: Reciprocal discharge by two brainstem neuronal groups. Science 189: 55–58PubMedCrossRefGoogle Scholar
  118. 118.
    Crochet S, Sakai K (1999) Effect of microdialysis application of monoamines on the EEG and behavioural states in the cat mesopontine tegmentum. Eur J Neurosci 11: 3738–3752PubMedCrossRefGoogle Scholar
  119. 119.
    Nitz D, Siegel J (1997) GABA release in the dorsal raphe nucleus: role in the control of REM sleep. Am J Physiol 273: R451–R455PubMedGoogle Scholar
  120. 120.
    Burlet S, Leger L, Cespuglio R (1999). Nitric oxide and sleep in the rat: a puzzling relationship. Neurosci Lett 92: 627–639Google Scholar
  121. 121.
    Roky R, Obal F, Valatx J-L, Bredow S, Fang J, Pagano L-P, Krueger JM (1995) Prolactin and eye movement sleep regulation. Sleep 18: 536–542PubMedGoogle Scholar
  122. 122.
    Risold PY, Griffond B, Kilduff TF, Sutcliffe JG, Fellmann D (1999). Preprohypocretin (orexin) and prolactin-like immunoreactivity are coexpressed by neurons of the rat lateral hypothalamic area. Neurosci Lett 259: 153–156PubMedCrossRefGoogle Scholar
  123. 123.
    Lu J, Greco MA, Shiromani P, Saper CB (2000) Effect of lesions of the ventrolateral preoptic nucleus on NREM and REM sleep. J Neurosci 20: 3830–3842PubMedGoogle Scholar
  124. 124.
    Lu J, Bjorkum AA, Xu M, Gaus SE, Shiromani PJ, Saper CB (2002) Selective activation of the extended ventrolateral preoptic nucleus during rapid eye movement sleep. J Neurosci 22: 4568–4576PubMedGoogle Scholar
  125. 125.
    Gvilia I, Turner M, McGinty D, Szymusiak R (2006) Preoptic area neurons and the homeostatic regulation of rapid eye movement sleep. J Neurosci 26: 3037–3044PubMedCrossRefGoogle Scholar
  126. 126.
    Jacobs BL, Fornal CA (1999) Activity of serotonergic neurons in behaving animals. Neuropsychopharmacology 21: 9S–15SPubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Reidun Ursin
    • 1
  1. 1.Department of BiomedicineBergenNorway

Personalised recommendations