The liver as immune escape site for pathogens

  • Percy A. Knolle
  • Dirk Stabenow
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Besides its important function for protein, lipid and glucose metabolism the liver exerts scavenger function in order to clear the blood from degradation products. It is becoming increasingly clear that this scavenger function is closely linked to the liver’s immune function, which favours induction of immune tolerance rather than immunity. The cell population most actively involved in scavenging of blood-borne macromolecules is an organ-resident cell population, the liver sinusoidal endothelial cells (LSEC). LSEC also have prominent immune-regulatory function as they bear the capacity to prime naive CD4 and CD8 T-cells after presentation of exogenous antigens on MHC Class II or MHC Class I molecules, respectively. The outcome of such T-cell priming by antigen-presenting LSEC is induction of T-cell tolerance. Here, we also discuss the other mechanisms and cell populations involved in mediation of hepatic immune tolerance. We describe the mechanisms of how a virus may get across cell barriers, in particular the endothelial cell barrier. Importantly, blood-borne virus is scavenged by LSEC. Here we discuss the experimental evidence in the literature that virus uptake by LSEC does not necessarily lead to lysosomal destruction but rather results in transcytotic transport of the virus to hepatocytes. Thus, LSEC may play a pivotal role in hepatocellular infection by bloodborne virus: (i) retrieval from the bloodstream and transcytotic transport for infection of the target cell, the hepatocyte, and (ii) prevention of virus-specific CD8 T-cell immunity by skewing antigen-specific T-cell responses by presentation of viral antigens at the very early stage of infection.


Apical Plasma Membrane Basolateral Side Liver Sinusoidal Endothelial Cell Duck Hepatitis Hepatic Sinusoidal Endothelium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blouin A, Bolender RP, Weibel ER (1977) Distribution of organelles and membranes between hepatocytes and nonhepatocytes in the rat liver parenchyma. A stereological study. J Cell Biol 72: 441–455PubMedCrossRefGoogle Scholar
  2. 2.
    MacPhee PJ, Schmidt Groom AC (1995) Intermittence of blood flow in liver sinusoids, studied by high-resolution in vivo microscopy. Am J Physiol G692–698Google Scholar
  3. 3.
    Bilzer M, Roggel F, Gerbes AL (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26: 1175–1186PubMedCrossRefGoogle Scholar
  4. 4.
    Fey GH, Gauldie J (1990) The acute phase response of the liver in inflammation. Prog Liver Dis 9: 89–116PubMedGoogle Scholar
  5. 5.
    Winwood PI, Arthur MJ (1993) Kupffer cells: their activation and role in animal models of liver injury and human liver disease. Semin Liver Dis 13: 50–59PubMedCrossRefGoogle Scholar
  6. 6.
    Falasca L, Bergamini A, Serafino A, Balabaud C, Dini L (1996) Human Kupffer cell recognition and phagocytosis of apoptotic peripheral blood lymphocytes. Exp Cell Res 224: 152–162PubMedCrossRefGoogle Scholar
  7. 7.
    MacPhee PJ, Schmidt Groom AC (1992) Evidence for Kupffer cell migration along liver sinusoids, from high-resolution in vivo microscopy. Am J Physiol G17–23Google Scholar
  8. 8.
    Wisse E (1970) An electron microscopic study of the fenestrated endothelial lining of rat liver sinusoids. J Ultrastruct Res 31: 125–150PubMedCrossRefGoogle Scholar
  9. 9.
    Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS (1985) The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5: 683–692PubMedCrossRefGoogle Scholar
  10. 10.
    Braet F, Wisse E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp Hepatol 1: 1PubMedCrossRefGoogle Scholar
  11. 11.
    Limmer A, Ohi J, Wingender G, Berg M, Jungerkes F, Schumak B, Djandji D, Scholz K, Klevenz A, Hegenbarth S et al (2005) Cross-presentation of oral antigens by liver sinusoidal endothelial cells leads to CD8 T-cell tolerance. Eur J Immunol 35: 2970–2981PubMedCrossRefGoogle Scholar
  12. 12.
    Reynaert H, Thompson MG, Thomas T, Geerts A (2002) Hepatic stellate cells: role in microcirculation and pathophysiology of portal hypertension. Gut 50: 571–581PubMedCrossRefGoogle Scholar
  13. 13.
    Safadi R, Friedman SL (2002) Hepatic fibrosis-role of hepatic stellate cell activation. MedGenMed 4: 27–37PubMedGoogle Scholar
  14. 14.
    McCuskey RS (2004) Anatomy of efferent hepatic nerves. Anat Rec A Discov Mol Cell Evol Biol 280: 821–826PubMedCrossRefGoogle Scholar
  15. 15.
    Norris S, Collins C, Doherty DG, Smith F, McEntee G, Traynor O, Nolan N, Hegarty J, O’Farrelly (1998) Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28: 84–90PubMedCrossRefGoogle Scholar
  16. 16.
    Heydtmann M, Adams DH (2002) Understanding selective trafficking of lymphocyte subsets. Gut 50: 150–152PubMedCrossRefGoogle Scholar
  17. 17.
    Geissmann F, Cameron TO, Sidobre S, Manlongat N, Kronenberg M, Briskin MJ, Dustin ML, Littman DR (2005) Intravascular immune surveillance by CXCR6+ NKT-cells patrolling liver sinusoids. PLoS Biol 3: e113PubMedCrossRefGoogle Scholar
  18. 18.
    Gregory SH, Wing EJ (1998) Neutrophil-Kupffer-cell interaction in host defenses to systemic infections. Immunol Today 19: 507–510PubMedCrossRefGoogle Scholar
  19. 19.
    Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD et al (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13: 463–469PubMedCrossRefGoogle Scholar
  20. 20.
    Schwabe RF, Seki E, Brenner DA (2006) Toll-like receptor signaling in the liver. Gastroenterology 130: 1886–1900PubMedCrossRefGoogle Scholar
  21. 21.
    Bomsel M (1997) Transcytosis of infectious human immunodeficiency virus across a tight human epithelial cell line barrier. Nat Med 3: 42–47PubMedCrossRefGoogle Scholar
  22. 22.
    Geijtenbeek Kwon DS, Torensma R, van Vliet SJ, van Duijnhoven GC, Middel J, Cornelissen IL, Nottet HS, KewalRamani VN, Littman DR et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T-cells. Cell 100: 587–597CrossRefGoogle Scholar
  23. 23.
    Dotzauer A, Brenner M, Gebhardt U, Vallbracht A (2005) IgA-coated particles of Hepatitis A virus are translocalized antivectorially from the apical to the basolateral site of polarized epithelial cells via the polymeric immunoglobulin receptor. J Gen Virol 86: 2747–2751PubMedCrossRefGoogle Scholar
  24. 24.
    Shin SC, Vanderberg JP, Terzakis JA (1982) Direct infection of hepatocytes by sporozoites of Plasmodium berghei. J Protozool 29: 448–454PubMedGoogle Scholar
  25. 25.
    Pradel G, Frevert U (2001) Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33: 1154–1165PubMedCrossRefGoogle Scholar
  26. 26.
    Mota MM, Pradel G, Vanderberg JP, Hafalla JC, Frevert U, Nussenzweig RS, Nussenzweig V, Rodriguez A (2001) Migration of Plasmodium sporozoites through cells before infection. Science 291: 141–144PubMedCrossRefGoogle Scholar
  27. 27.
    Schlepper-Schafer J, Hulsmann D, Djovkar A, Meyer HE, Herbertz L, Kolb H, Kolb-Bachofen V (1986) Endocytosis via galactose receptors in vivo. Ligand size directs uptake by hepatocytes and/or liver macrophages. Exp Cell Res 165: 494–506PubMedCrossRefGoogle Scholar
  28. 28.
    Smedsrod (2004) Clearance function of scavenger endothelial cells. Comp Hepatol 3 Suppl 1: S22PubMedCrossRefGoogle Scholar
  29. 29.
    Breiner KM, Sehaller H, Knolle PA (2001) Endothelial cell-mediated uptake of a hepatitis virus: a new concept of liver targeting of hepatotropic microorganisms. Hepatology 34: 803–808PubMedCrossRefGoogle Scholar
  30. 30.
    Limmer A, Ohi J, Kurts Ljunggren FIG, Reiss Y, Groettrup M, Momburg F, Arnold B, Knolle PA (2000) Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T-cells results in antigen-specific T-cell tolerance. Nat Med 6: 1348–1354PubMedCrossRefGoogle Scholar
  31. 31.
    Jilbert AR, Miller DS, Scougall CA, Turnbull H, Burrell CJ (1996) Kinetics of duck hepatitis virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology 226: 338–345PubMedCrossRefGoogle Scholar
  32. 32.
    Geuze HJ, Slot JW, Strous GJ, Peppard J, von Figura Hasilik A, Schwartz AL (1984) Intracellular receptor sorting during endocytosis: comparative immuno-electron microscopy of multiple receptors in rat liver. Cell 37: 195–204PubMedCrossRefGoogle Scholar
  33. 33.
    Wang E, Brown PS, Aroeti B, Chapin SJ, Mostov KE, Dunn KW (2000) Apical and basoiateral endocytic pathways of MDCK cells meet in acidic common endosomes distinct from a nearly-neutral apical recycling endosome. Traffic 1: 480–493PubMedCrossRefGoogle Scholar
  34. 34.
    Leung SM, Ruiz WG, Apod G (2000) Sorting of membrane and fluid at the apical pole of polarized Madin-Darby canine kidney cells. Mol Biol Cell 11: 2131–2150PubMedGoogle Scholar
  35. 35.
    Tuma PL, Hubbard AL (2003) Transcytosis: crossing cellular barriers. Physiol Rev 83: 871–932PubMedGoogle Scholar
  36. 36.
    Ibrke G, Martin GV, Shanks MR, Schrader M, Schroer TA, Hubbard AL (1998) Apical plasma membrane proteins and endolyn-78 travel through a subapical compartment in polarized WIF-B hepatocytes. J Cell Biol 141: 115–133CrossRefGoogle Scholar
  37. 37.
    Rojas R, Apodaca G (2002) Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3: 944–955PubMedCrossRefGoogle Scholar
  38. 38.
    Breitfeld PP, Harris JM, Mostov KE (1989) Postendocytotic sorting of the ligand for the polymeric immunoglobulin receptor in Madin-Darby canine kidney cells. J Cell Biol 109: 475–486PubMedCrossRefGoogle Scholar
  39. 39.
    Bomsel M, Heyman M, Hocini H, Lagaye S, Belec L, Dupont C, Desgranges (1998) Intracellular neutralization of HIV transcytosis across tight epithelial barriers by anti-HIV envelope protein dlgA or IgM. Immunity 9: 277–287PubMedCrossRefGoogle Scholar
  40. 40.
    Ghetie V, Ward ES (2000) Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu Rev Immunol 18: 739–766PubMedCrossRefGoogle Scholar
  41. 41.
    Israel EJ, Taylor S, Wu Z, Mizoguchi E, Blumberg RS, Bhan A, Simister NE (1997) Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92: 69–74PubMedCrossRefGoogle Scholar
  42. 42.
    Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, Blumberg RS, Lencer WI (1999) Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104: 903–911PubMedCrossRefGoogle Scholar
  43. 43.
    Kempka G, Kolb-Bachofen V (1988) Binding, uptake, and transcytosis of ligands for mannose-specific receptors in rat liver: an electron microscopic study. Exp Cell Res 176: 38–48PubMedCrossRefGoogle Scholar
  44. 44.
    Simionescu M, Simionescu N (1991) Endothelial transport of macromolecules: transcytosis and endocytosis. A look from cell biology. Cell Biol Rev 25: 1–78PubMedGoogle Scholar
  45. 45.
    Shannon-Lowe CD, Neuhierl B, Baldwin G, Rickinson AB, Delecluse HJ (2006) Resting cells as a transfer vehicle for Epstein-Barr virus infection of epithelial cells. Proc Natl Acad Sci USA 103: 7065–7070PubMedCrossRefGoogle Scholar
  46. 46.
    Alvarez CP, basala F, Carrillo J, Muniz O, Corbi AL, Delgado R (2002) C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in eis and in trans. J Virol 76: 6841–6844PubMedCrossRefGoogle Scholar
  47. 47.
    Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller Finke J, Sun W, Eller MA, Pattanapanyasat K, Sarasombath S, Birx DL et al (2003) DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med 197: 823–829PubMedCrossRefGoogle Scholar
  48. 48.
    Klimstra WB, Nangle EM, Smith MS, Yurochko AD, Ryman KD (2003) DC-SIGN and L-SIGN can act as attachment receptors for alphaviruses and distinguish between mosquito cell-and mammalian cell-derived viruses. J Virol 77: 12022–12032PubMedCrossRefGoogle Scholar
  49. 49.
    Bashirova AA, Geijtenbeek van Duijnhoven GC, van Vliet S J, Eilering JB, Martin MP, Wu L, Martin TD, Viebig N, Knolle PA et al (2001) A dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN)-related protein is highly expressed on human liver sinusoidal endothelial cells and promotes HIV-1 infection. J Exp Med 193: 671–678PubMedCrossRefGoogle Scholar
  50. 50.
    Lai WK, Sun PJ, Zhang J, Jennings A, Lalor PF, Hübscher S, McKeating JA, Adams DH (2006) Expression of DC-SIGN and DC-SIGNR on human sinusoidal endothelium: a role for capturing hepatitis virus particles. Am J Pathol 169: 200–208PubMedCrossRefGoogle Scholar
  51. 51.
    Nahmias Y, Casali M, Barbe L, Berthiaume F, Yarmush ML (2006) Liver endothelial cells promote LDL-R expression and the uptake of HCV-like particles in primary rat and human hepatocytes. Hepatology 43: 257–265PubMedCrossRefGoogle Scholar
  52. 52.
    Kyewski B, Klein L (2006) A central role for central tolerance. Annu Rev Immunol 24: 571–606PubMedCrossRefGoogle Scholar
  53. 53.
    Feuerer M, Beckhove P, Garbi N, Mahnke Y, Limmer A, Hommel M, Hammerling GJ, Kyewski B, Hamann A, Umansky V et al (2003) Bone marrow as a priming site for T-cell responses to blood-borne antigen. Nat Med 9: 1151–1157PubMedCrossRefGoogle Scholar
  54. 54.
    Cantor H, Dumont A (1967) Hepatic suppression of sensitization to antigen absorbed into the portal system. Nature 215: 744–745PubMedCrossRefGoogle Scholar
  55. 55.
    Calne RY (1969) Induction of immunological tolerance by porcine liver allografts. Nature 223: 472–476PubMedCrossRefGoogle Scholar
  56. 56.
    Dahmen U, Qian S, Rao AS, Demetris AJ, Fu F, Sun H, Gao L, Fung JJ, Starai TE (1994) Split tolerance induced by orthotopic liver transplantation in mice. Transplantation 58: 1–8PubMedGoogle Scholar
  57. 57.
    Bettolino P, Trescol-Biemont MC, Rabourdin-Combe (1998) Hepatocytes induce functional activation of naive CD8+ T lymphocytes but fail to promote survival. Eur J Immunol 28: 221–236CrossRefGoogle Scholar
  58. 58.
    Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bettolino P (2004) The site of primary T-cell activation is a determinant of the balance between intra-hepatic tolerance and immunity. J Clin Invest 114: 701–712PubMedGoogle Scholar
  59. 59.
    Warren A, Le Couteur DG, Fraser R, Bowen DG, McCaughan GW, Bettolino P (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44: 1182–1190PubMedCrossRefGoogle Scholar
  60. 60.
    Carman CV, Sage PT, Scinto TE, de la Fuente MA, Geha RS, Ochs HD, Dvorak HF, Dvorak AM, Springer TA (2007) Transcellular diapedesis is initiated by invasive podosomes. Immunity 26: 784–797PubMedCrossRefGoogle Scholar
  61. 61.
    Bettolino P, Schräge A, Bowen DG, Klugewitz K, Ghani S, Eulenburg Holz L, Hogg N, McCaughan GW, Hamann A (2005) Early intrahepatic antigen-specific retention of naive CD8+ T-cells is predominantly ICAM-1/LFA-1 dependent in mice. Hepatology 42: 1063–1071CrossRefGoogle Scholar
  62. 62.
    Limmer A, Sacher T, Alferink J, Kretschmar M, Schonrich G, Nichterlein T, Arnold B, Hammerling GJ (1998) Failure to induce organ-specific autoim-munity by breaking of tolerance: importance of the microenvironment. Eur J Immunol 28: 2395–2406PubMedCrossRefGoogle Scholar
  63. 63.
    Sacher T, Knolle P, Nichterlein T, Arnold B, Hammerling GJ, Limmer A (2002) CpG-ODN-induced inflammation is sufficient to cause T-cell-mediated autoag-gression against hepatocytes. Eur J Immunol 32: 3628–3637PubMedCrossRefGoogle Scholar
  64. 64.
    Dikopoulos N, Wegenka U, Kroger A, Hauser H, Schirmbeck R, Reimann J (2004) Recently primed CD8+ T-cells entering the liver induce hepatocytes to interact with naive CD8+ T-cells in the mouse. Hepatology 39: 1256–1266PubMedCrossRefGoogle Scholar
  65. 65.
    Kamei T, Gallery MP, Flye MW (1990) Kupffer cell blockade prevents induction of portal venous tolerance in rat cardiac allograft transplantation. J Surg Res 48: 393–396PubMedCrossRefGoogle Scholar
  66. 66.
    Jacob AI, Goldberg PK, Blooni N, Degenshein GA, Kozinn PJ (1977) Endotoxin and bacteria in portal blood. Gastroenterology 72: 1268–1270PubMedGoogle Scholar
  67. 67.
    Nolan JP (1981) Endotoxin, reticuloendothelial function, and liver injury. Hepatology 1: 458–465PubMedCrossRefGoogle Scholar
  68. 68.
    Knolle P, Schlaak J, Uhrig A, Kempf P, Meyer zum Buschenfelde KH, Gerken G (1995) Human Kupffer cells secrete IL-10 in response to lipopolysaccharide (LPS) challenge. J Hepatol 22: 226–229PubMedCrossRefGoogle Scholar
  69. 69.
    Sigal LJ, Crotty S, Andino R, Rock KL (1999) Cytotoxic T-cell immunity to virus-infected non-haematopoietic cells requires presentation of exogenous antigen. Nature 398: 77–80PubMedCrossRefGoogle Scholar
  70. 70.
    Jomantaite I, Dikopoulos N, Kroger A, Leithauser F, Hauser H, Schirmbeck R, Reimann J (2004) Hepatic dendritic cell subsets in the mouse. Eur J Immunol 34: 355–365PubMedCrossRefGoogle Scholar
  71. 71.
    De Creus A, Abe M, Lau AH, Hackstein H, Raimondi G, Thomson AW (2005) Low TLR4 expression by liver dendritic cells correlates with reduced capacity to activate allogeneic T-cells in response to endotoxin. J Immunol 174: 2037–2045PubMedGoogle Scholar
  72. 72.
    Lau AH, Thomson AW (2003) Dendritic cells and immune regulation in the liver. Gut 52: 307–314PubMedCrossRefGoogle Scholar
  73. 73.
    Friedman SL (2004) Stellate cells: a moving target in hepatic fibrogenesis. Hepatology 40: 1041–1043PubMedCrossRefGoogle Scholar
  74. 74.
    Paik YH, Schwabe RF, Bataller R, Russo MP, Jobin Brenner DA (2003) Toll-like receptor 4 mediates inflammatory signaling by bacterial lipopolysaccharide in human hepatic stellate cells. Hepatology 37: 1043–1055PubMedCrossRefGoogle Scholar
  75. 75.
    Winau F, Flegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, Modlin RL, Liblau RS, Gressner AM, Kaufmann SH (2007) Ito cells are liver-resident antigen-presenting cells for activating T-cell responses. Immunity 26: 117–129PubMedCrossRefGoogle Scholar
  76. 76.
    Knolle PA, Gerken G (2000) Local control of the immune response in the liver. Immunol Rev 174: 21–34PubMedCrossRefGoogle Scholar
  77. 77.
    Magnussen S, Berg T (1989) Extremely rapid endocytosis mediated by the mannose receptor of sinusoidal endothelial rat liver cells. Biochem J 257: 651–656Google Scholar
  78. 78.
    Hansen Longati P, Elvevold Nedredal GI, Schledzewski Olsen R, Falkowski M, Kzhyshkowska J, Calisson F, Johansson S et al (2005) Stabilin-1 and stabilin-2 are both directed into the early endocytic pathway in hepatic sinusoidal endothelium via interactions with clathrin/AP-2, independent of ligand binding. Exp Cell Res 303: 160–173CrossRefGoogle Scholar
  79. 79.
    Lohse AW, Knolle PA, Bilo K, Uhrig A, Waldmann Ibe M, Schmitt E, Gerken G, Meyer Zum Buschenfelde KH (1996) Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology 110: 1175–1181PubMedCrossRefGoogle Scholar
  80. 80.
    Knolle PA, Schmitt E, Jin S, Germann T, Duchmann R, Hegenbarth S, Gerken G, Lolise AW (1999) Induction of cytokine production in naive CD4(+) T-cells by antigen-presenting murine liver sinusoidal endothelial cells but failure to induce differentiation toward Thl cells. Gastroenterology 116: 1428–1440PubMedCrossRefGoogle Scholar
  81. 81.
    Mowat AM (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3: 331–341PubMedCrossRefGoogle Scholar
  82. 82.
    Huang L, Soldevila G, Leeker M, Flavell R, Crispe IN (1994) The liver eliminates T-cells undergoing antigen-triggered apoptosis in vivo. Immunity 1: 741–749PubMedCrossRefGoogle Scholar
  83. 83.
    Dini L, Pagliara P, Carla EC (2002) Phagocytosis of apoptotic cells by liver: a morphological study. Microsc Res Tech 57: 530–540PubMedCrossRefGoogle Scholar
  84. 84.
    Morelli AE, Larregina AT, Shufesky W.T, Zahorchak AF, Logar AJ, Papworth GD, Wang Z, Watkins SC, Falò LD Jr, Thomson AW (2003) Internalization of circulating apoptotic cells by splenic marginal zone dendritic cells: dependence on complement receptors and effect on cytokine production. Blood 101: 611–620PubMedCrossRefGoogle Scholar
  85. 85.
    Berg M, Wingender G, Djandji D, Hegenbarth S, Momburg F, Hammerling G, Limmer A, Knolle P (2006) Cross-presentation of antigens from apoptotic tumor cells by liver sinusoidal endothelial cells leads to tumor-specific CD8(+) T-cell tolerance. Eur J Immunol 36: 2960–2970PubMedCrossRefGoogle Scholar
  86. 86.
    Diehl L, Schurich A, Kern M, von Oppen N, Grochtmann R, Hegenbarth S, Chen L, Limmer A, Knolle PA (2008) Liver sinusoidal endothelial cell-induced CD8+ T-cell tolerance is mediated by B7-H1 and reversed by co-stimulation in the presence of infection. Hepatology 47: 296–305PubMedCrossRefGoogle Scholar
  87. 87.
    Probst HC, McCoy K, Okazaki T, Honjo T, van den Broek M (2005) Resting dendritic cells induce peripheral CD8+ T-cell tolerance through PD-1 and CTLA-4. Nat Immunol 6: 280–286PubMedCrossRefGoogle Scholar
  88. 88.
    Müschen M, Warskulat U, Douillard P, Gilbert E, Häussinger D (1998) Regulation of CD95 (APO-1/Fas) receptor and ligand expression by lipopoly-saccharide and dexamethasone in parenchymal and nonparenchymal rat liver cells. Hepatology 27: 200–208PubMedCrossRefGoogle Scholar
  89. 89.
    Mehal WZ, Juedes AE, Crispe IN (1999) Selective retention of activated CD8+ T-cells by the normal liver. J Immunol 163: 3202–3210PubMedGoogle Scholar
  90. 90.
    Mehal WZ, Azzaroli F, Crispe IN (2001) Antigen presentation by liver cells controls intrahepatic T-cell trapping, whereas bone marrow-derived cells preferentially promote intrahepatic T-cell apoptosis. J Immunol 167: 667–673PubMedGoogle Scholar
  91. 91.
    Dong H, Zhu G, Tamada K, Flies DB, van Deursen JM, Chen L (2004) B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 20: 327–336PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Percy A. Knolle
    • 1
  • Dirk Stabenow
    • 1
  1. 1.Institute of Molecular Medicine and Experimental ImmunologyUniversity Hospital Bonn, Friedrich-Wilhelm-University BonnBonnGermany

Personalised recommendations