Hepadnaviruses have a narrow host range — do they?

  • Kai Dallmeier
  • Michael Nassal
Part of the Birkhäuser Advances in Infectious Diseases book series (BAID)


Host range describes the range of species that a virus can infect to productively propagate itself. Productive infection requires compatibility between virus and host molecules. Thus host range may be restricted by lack of appropriate permissivity factors;alternatively, hosts may actively counteract infection using restriction factors. Incompatibility between virus and host can manifest on the level of individual cells,of tissues or organs,and of the entire organism. All hepatitis B viruses are hepatotropic,but individual viruses infect the livers of only selected mammalian (orthohepadnaviruses) and avian (avihepadnaviruses) hosts. Hence a narrow host range is thought to be a salient feature of hepadnaviruses. Here we briefly review general mechanisms of host range restriction,and summarise older as well as recent data pertaining to hepadnaviral host range. Clearly,the term species-specific is inadequate for many hepadnaviruses because they can infect different species from one genus,and even species from different genera. For a few others,only a single species,or genus,has been identified that supports efficient infection;however,this could as well relate to the restricted number of experimentally addressable test species. Together with the uncertainty about quantitative phylogenetic relationships between species,still largely based on morphological rather than molecular criteria,this leaves the term narrow open to interpretation. Finally,few if any of the host molecules enabling productive infection by a hepadnavirus have unambiguously been identified,the role of restriction factors has not yet been assessed,and even on the virus side the so-called host determining regions in the PreS domains of the large envelope proteins appear to be relevant only under specialised experimental conditions. Hence this important aspect of hepadnavirus biology is still far from being understood.


Human Immunodeficiency Virus Type Host Range Ground Squirrel Spider Monkey Human Hepatoma Cell Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beck J, Nassal M (2007) Hepatitis B virus replication. World J Gastroenterol 13: 48–64PubMedGoogle Scholar
  2. 2.
    Funk A, Mhamdi M, Will H, Sirma H (2007) Avian hepatitis B viruses:molecular and cellular biology, phylogenesis, and host tropism. World J Gastroenterol 13: 91–103PubMedGoogle Scholar
  3. 3.
    Glebe D, Urban S (2007) Viral and cellular determinants involved in hepadnaviral entry. World J Gastroenterol 13: 22–38PubMedGoogle Scholar
  4. 4.
    Louz D, Bergmans HE, Loos BP, Hoeben RC (2005) Cross-species transfer of viruses:implications for the use of viral vectors in biomedical research, gene therapy and as live-virus vaccines. J Gene Med 7: 1263–1274PubMedGoogle Scholar
  5. 5.
    Heeney JL, Dalgleish AG, Weiss RA (2006) Origins of HIV and the evolution of resistance to AIDS. Science 313: 462–466PubMedGoogle Scholar
  6. 6.
    Zhao GP (2007) SARS epidemiology-From descriptive to mechanistic analyses. Virus Res doi: 10. 1016/j. virusres. 2007. 01. 010Google Scholar
  7. 7.
    Peiris JS, de Jong MD, Guan Y (2007) Avian influenza virus (H5N1): a threat to human health. Clin Microbiol Rev 20: 243–267PubMedGoogle Scholar
  8. 8.
    Vilchez RA, Kusne S (2006) Molecular and clinical perspectives of polyomaviruses: emerging evidence of importance in non-kidney transplant populations. Liver Transpl 12: 1457–1463PubMedGoogle Scholar
  9. 9.
    Falcone V, Schweizer M, Neumann-Haefelin D (2003) Replication of primate foamy viruses in natural and experimental hosts. Curr Top Microbiol Immunol 277: 161–180PubMedGoogle Scholar
  10. 10.
    Brumme ZL, Harrigan PR (2006) The impact of human genetic variation on HIV disease in the era of HAART. AIDS Rev 8: 78–87PubMedGoogle Scholar
  11. 11.
    Reiche EM, Bonametti AM, Voltarelli JC, Morimoto HK, Watanabe MA (2007) Genetic polymorphisms in the chemokine and chemokine receptors: impact on clinical course and therapy of the human immunodeficiency virus type 1 infection (HIV-1). Curr Med Chem 14: 1325–1334PubMedGoogle Scholar
  12. 12.
    Thio CL, Astemborski J, Bashirova A, Mosbruger T, Greer S, Witt MD, Goedert J, Hilgartner M, Majeske A, O ’Brien SJ et al (2007) Genetic protection against hepatitis B virus conferred by CCR5Delta32: Evidence that CCR5 contributes to viral persistence. J Virol 81: 441–445PubMedGoogle Scholar
  13. 13.
    Lim JK, Glass WG, McDermott DH, Murphy PM (2006) CCR5: no longer a good for nothing’ gene-chemokine control of West Nile virus infection. Trends Immunol 27: 308–312PubMedGoogle Scholar
  14. 14.
    Marsh M, Helenius A (2006) Virus entry: open sesame. Cell 124: 729–740PubMedGoogle Scholar
  15. 15.
    Baranowski E, Ruiz-Jarabo CM, Domingo E (2001) Evolution of cell recognition by viruses. Science 292: 1102–1105PubMedGoogle Scholar
  16. 16.
    Weissenhorn W, Hinz A, Gaudin Y (2007) Virus membrane fusion. FEBS Lett 581: 2150–2155PubMedGoogle Scholar
  17. 17.
    Neumann G, Kawaoka Y (2006) Host range restriction and pathogenicity in the context of influenza pandemic. Emerg Infect Dis 12: 881–886PubMedGoogle Scholar
  18. 18.
    Law LK, Davidson BL (2005) What does it take to bind CAR? Mol Ther 12: 599–609PubMedGoogle Scholar
  19. 19.
    Briz V, Poveda E, Soriano V (2006) HIV entry inhibitors: mechanisms of action and resistance pathways. J Antimicrob Chemother 57: 619–627PubMedGoogle Scholar
  20. 20.
    McFadden G (2005) Poxvirus tropism. Nat Rev Microbiol 3: 201–213PubMedGoogle Scholar
  21. 21.
    Mayer MP (2005) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 153: 1–46PubMedGoogle Scholar
  22. 22.
    Mayer MP, Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62: 670–684PubMedGoogle Scholar
  23. 23.
    Ambrose Z, Kewalramani VN, Bieniasz PD, Hatziioannou T (2007) HIV/AIDS: in search of an animal model. Trends Biotechnol 25: 333–337PubMedGoogle Scholar
  24. 24.
    Goff SP (2007) Host factors exploited by retroviruses. Nat Rev Microbiol 5: 253–263PubMedGoogle Scholar
  25. 25.
    Tsurutani N, Yasuda J, Yamamoto N, Choi BI, Kadoki M, Iwakura Y (2007) Nuclear import of the preintegration complex is blocked upon infection by human immunodeficiency virus type 1 in mouse cells. J Virol 81: 677–688PubMedGoogle Scholar
  26. 26.
    Sun J, Soos T, Kewalramani VN, Osiecki K, Zheng JH, Falkin L, Santambrogio L, Littman DR, Goldstein H (2006) CD4-specific transgenic expression of human cyclin T1 markedly increases human immunodeficiency virus type 1 (HIV-1) production by CD4+T lymphocytes and myeloid cells in mice transgenic for a provirus encoding a monocyte-tropic HIV-1 isolate. J Virol 80: 1850–1862PubMedGoogle Scholar
  27. 27.
    Lambert C, Doring T, Prange R (2007) Hepatitis B Virus Maturation is Sensitive to Functional Inhibition of ESCRT-III, Vps4, and gamma2-Adaptin. J Virol 81: 9050–9060PubMedGoogle Scholar
  28. 28.
    Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P (2007) Involvement of host cellular multivesicular body functions in hepatitis B virus budding. Proc Natl Acad Sci USA 104: 10205–10210PubMedGoogle Scholar
  29. 29.
    Mhamdi M, Funk A, Hohenberg H, Will H, Sirma H (2007) Assembly and budding of a hepatitis B virus is mediated by a novel type of intracellular vesicles. Hepatology 46: 95–106PubMedGoogle Scholar
  30. 30.
    Goff SP (2004) Retrovirus restriction factors. Mol Cell 16: 849–859PubMedGoogle Scholar
  31. 31.
    Goff SP (2004) Genetic control of retrovirus susceptibility in mammalian cells. Annu Rev Genet 38: 61–85PubMedGoogle Scholar
  32. 32.
    Perez O, Hope TJ (2006) Cellular restriction factors affecting the early stages of HIV replication. Curr HIV/AIDS Rep 3: 20–25PubMedGoogle Scholar
  33. 33.
    Nisole S, Stoye JP, Saib A (2005) TRIM family proteins: retroviral restriction and antiviral defence. Nat Rev Microbiol 3: 799–808PubMedGoogle Scholar
  34. 34.
    James LC, Keeble AH, Khan Z, Rhodes DA, Trowsdale J (2007) Structural basis for PRYSPRY-mediated tripartite motif (TRIM) protein function. Proc Natl Acad Sci USA 104: 6200–6205PubMedGoogle Scholar
  35. 35.
    Sebastian S, Luban J (2007) The Retroviral Restriction Factor TRIM5alpha. Curr Infect Dis Rep 9: 167–173PubMedGoogle Scholar
  36. 36.
    Sakuma R, Noser JA, Ohmine S, Ikeda Y (2007) Rhesus monkey TRIM5alpha restricts HIV-1 production through rapid degradation of viral Gag polyproteins. Nat Med 13: 631–635PubMedGoogle Scholar
  37. 37.
    Towers GJ, Hatziioannou T, Cowan S, Goff SP, Luban J, Bieniasz PD (2003) Cyclophilin A modulates the sensitivity of HIV-1 to host restriction factors. Nat Med 9: 1138–1143PubMedGoogle Scholar
  38. 38.
    Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, Takeuchi O, Akira S, Chen Z, Inoue S et al (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446: 916–920PubMedGoogle Scholar
  39. 39.
    Cullen BR (2006) Role and mechanism of action of the APOBEC3 family of antiretroviral resistance factors. J Virol 80: 1067–1076PubMedGoogle Scholar
  40. 40.
    Mariani R, Chen D, Schrofelbauer B, Navarro F, Konig R, Bollman B, Munk C, Nymark-McMahon H, Landau NR (2003) Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114: 21–31PubMedGoogle Scholar
  41. 41.
    Nguyen DH, Gummuluru S, Hu J (2007) Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G. J Virol 81: 4465–4472PubMedGoogle Scholar
  42. 42.
    Rösler C, Köck J, Kann M, Malim MH, Blum HE, Baumert TF, von Weizsäcker F (2005) APOBEC-mediated interference with hepadnavirus production. Hepatology 42: 301–309PubMedGoogle Scholar
  43. 43.
    Conticello SG, Thomas CJ, Petersen-Mahrt SK, Neuberger MS (2005) Evolution of the AID/APOBEC family of polynucleotide (deoxy) cytidine deaminases. Mol Biol Evol 22: 367–377PubMedGoogle Scholar
  44. 44.
    Gao G, Guo X, Goff SP (2002) Inhibition of retroviral RNA production by ZAP, a CCCH-type zinc finger protein. Science 297: 1703–1706PubMedGoogle Scholar
  45. 45.
    Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci USA 104: 151–156PubMedGoogle Scholar
  46. 46.
    Müller S, Möller P, Bick MJ, Wurr S, Becker S, Günther S, Kümmerer BM (2007) Inhibition of filovirus replication by the zinc finger antiviral protein. J Virol 81: 2391–2400PubMedGoogle Scholar
  47. 47.
    Uematsu S, Akira S (2007) Toll-like Receptors and Type I Interferons. J Biol Chem 282: 15319–15323PubMedGoogle Scholar
  48. 48.
    Bowie AG, Fitzgerald KA (2007) RIG-I: tri-ing to discriminate between self and non-self RNA. Trends Immunol 28: 147–150PubMedGoogle Scholar
  49. 49.
    Vitour D, Meurs EF (2007) Regulation of interferon production by RIG-I and LGP2: a lesson in self-control. Sci STKE 2007: pe20Google Scholar
  50. 50.
    Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167–1172PubMedGoogle Scholar
  51. 51.
    Christen V, Duong F, Bernsmeier C, Sun D, Nassal M, Heim MH (2007) Inhibition of alpha interferon signaling by hepatitis B virus. J Virol 81: 159–165PubMedGoogle Scholar
  52. 52.
    Cullen BR (2006) Is RNA interference involved in intrinsic antiviral immunity in mammals? Nat Immunol 7: 563–567PubMedGoogle Scholar
  53. 53.
    Yang PL, Althage A, Chung J, Chisari FV (2002) Hydrodynamic injection of viral DNA: a mouse model of acute hepatitis B virus infection. Proc Natl Acad Sci USA 99: 13825–13830PubMedGoogle Scholar
  54. 54.
    Bruss V (2007) Hepatitis B virus morphogenesis. World J Gastroenterol 13: 65–73PubMedGoogle Scholar
  55. 55.
    Lu X, Block TM, Gerlich WH (1996) Protease-induced infectivity of hepatitis B virus for a human hepatoblastoma cell line. J Virol 70: 2277–2285PubMedGoogle Scholar
  56. 56.
    Maenz C, Chang SF, Iwanski A, Bruns M (2007) Entry of duck hepatitis B virus into primary duck liver and kidney cells after discovery of a fusogenic region within the large surface protein. J Virol 81: 5014–5023PubMedGoogle Scholar
  57. 57.
    Stoeckl L, Funk A, Kopitzki A, Brandenburg B, Oess S, Will H, Sirma H, Hildt E (2006) Identification of a structural motif crucial for infectivity of hepatitis B viruses. Proc Natl Acad Sci USA 103: 6730–6734PubMedGoogle Scholar
  58. 58.
    Blanchet M, Sureau C (2007) Infectivity determinants of the hepatitis B virus pre-S domain are confined to the N-terminal 75 amino acid residues. J Virol 81: 5841–5849PubMedGoogle Scholar
  59. 59.
    Lepere C, Regeard M, Le Seyec J, Gripon P (2007) The Translocation Motif of Hepatitis B Virus Envelope Proteins is Dispensable for Infectivity. J Virol 81: 7816–7818PubMedGoogle Scholar
  60. 60.
    Kann M, Schmitz A, Rabe B (2007) Intracellular transport of hepatitis B virus. World J Gastroenterol 13: 39–47PubMedGoogle Scholar
  61. 61.
    Raney AK, Eggers CM, Kline EF, Guidotti LG, Pontoglio M, Yaniv M, McLachlan A (2001) Nuclear covalently closed circular viral genomic DNA in the liver of hepatocyte nuclear factor 1 alpha-null hepatitis B virus transgenic mice. J Virol 75: 2900–2911PubMedGoogle Scholar
  62. 62.
    Gao W, Hu J (2007) Formation of hepatitis B virus covalently closed circular DNA: removal of genome-linked protein. J Virol 81: 6164–6174PubMedGoogle Scholar
  63. 63.
    Tang H, McLachlan A (2002) Avian and Mammalian hepadnaviruses have distinct transcription factor requirements for viral replication. J Virol 76: 7468–7472PubMedGoogle Scholar
  64. 64.
    Di Q, Summers J, Burch JB, Mason WS (1997) Major differences between WHV and HBV in the regulation of transcription. Virology 229: 25–35PubMedGoogle Scholar
  65. 65.
    Galle PR, Schlicht HJ, Fischer M, Schaller H (1988) Production of infectious duck hepatitis B virus in a human hepatoma cell line. J Virol 62: 1736–1740PubMedGoogle Scholar
  66. 66.
    Hirsch R, Colgrove R, Ganem D (1988) Replication of duck hepatitis B virus in two differentiated human hepatoma cell lines after transfection with cloned viral DNA. Virology 167: 136–142PubMedGoogle Scholar
  67. 67.
    Pugh JC, Yaginuma K, Koike K, Summers J (1988) Duck hepatitis B virus (DHBV) particles produced by transient expression of DHBV DNA in a human hepatoma cell line are infectious in vitro. J Virol 62: 3513–3516PubMedGoogle Scholar
  68. 68.
    Jilbert AR, Miller DS, Scougall CA, Turnbull H, Burrell CJ (1996) Kinetics of duck hepatitis B virus infection following low dose virus inoculation: one virus DNA genome is infectious in neonatal ducks. Virology 226: 338–345PubMedGoogle Scholar
  69. 69.
    Marion PL, Oshiro LS, Regnery DC, Scullard GH, Robinson WS (1980) A virus in Beechey ground squirrels that is related to hepatitis B virus of humans. Proc Natl Acad Sci USA 77: 2941–2945PubMedGoogle Scholar
  70. 70.
    Summers J, Smolec JM, Snyder R (1978) A virus similar to human hepatitis B virus associated with hepatitis and hepatoma in woodchucks. Proc Natl Acad Sci USA 75: 4533–4537PubMedGoogle Scholar
  71. 71.
    Zhang YY, Summers J (2004) Rapid production of neutralizing antibody leads to transient hepadnavirus infection. J Virol 78: 1195–1201PubMedGoogle Scholar
  72. 72.
    Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen-Guillouzo C (2002) Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci USA 99: 15655–15660PubMedGoogle Scholar
  73. 73.
    Lanford RE, Chavez D, Barrera A, Brasky KM (2003) An infectious clone of woolly monkey hepatitis B virus. J Virol 77: 7814–7819PubMedGoogle Scholar
  74. 74.
    Guo H, Mason WS, Aldrich CE, Saputelli JR, Miller DS, Jilbert AR, Newbold JE (2005) Identification and characterization of avihepadnaviruses isolated from exotic anseriformes maintained in captivity. J Virol 79: 2729–2742PubMedGoogle Scholar
  75. 75.
    Robertson BH, Margolis HS (2002) Primate hepatitis B viruses-genetic diversity, geography and evolution. Rev Med Virol 12: 133–141PubMedGoogle Scholar
  76. 76.
    Lanford RE, Chavez D, Brasky KM, Burns RB 3rd, Rico-Hesse R (1998) Isolation of a hepadnavirus from the woolly monkey, a New World primate. Proc Natl Acad Sci USA 95: 5757–5761PubMedGoogle Scholar
  77. 77.
    Minuk GY, Shaffer EA, Hoar DI, Kelly J (1986) Ground squirrel hepatitis virus (GSHV) infection and hepatocellular carcinoma in the Canadian Richardson ground squirrel (Spermophilus richardsonii). Liver 6: 350–356PubMedGoogle Scholar
  78. 78.
    Testut P, Renard CA, Terradillos O, Vitvitski-Trepo L, Tekaia F, Degott C, Blake J, Boyer B, Buendia MA (1996) A new hepadnavirus endemic in arctic ground squirrels in Alaska. J Virol 70: 4210–4219PubMedGoogle Scholar
  79. 79.
    Mason WS, Seal G, Summers J (1980) Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol 36: 829–836PubMedGoogle Scholar
  80. 80.
    Chang SF, Netter HJ, Bruns M, Schneider R, Frolich K, Will H (1999) A new avian hepadnavirus infecting snow geese (Anser caerulescens) produces a significant fraction of virions containing single-stranded DNA. Virology 262: 39–54PubMedGoogle Scholar
  81. 81.
    Pult I, Netter HJ, Bruns M, Prassolov A, Sirma H, Hohenberg H, Chang SF, Frolich K, Krone O, Kaleta EF et al (2001) Identification and analysis of a new hepadnavirus in white storks. Virology 289: 114–128PubMedGoogle Scholar
  82. 82.
    Sprengel R, Kaleta EF, Will H (1988) Isolation and characterization of a hepatitis B virus endemic in herons. J Virol 62: 3832–3839PubMedGoogle Scholar
  83. 83.
    Lin L, Prassolov A, Funk A, Quinn L, Hohenberg H, Frolich K, Newbold J, Ludwig A, Will H, Sirma H et al (2005) Evidence from nature: interspecies spread of heron hepatitis B viruses. J Gen Virol 86: 1335–1342PubMedGoogle Scholar
  84. 84.
    Prassolov A, Hohenberg H, Kalinina T, Schneider C, Cova L, Krone O, Frolich K, Will H, Sirma H (2003) New hepatitis B virus of cranes that has an unexpected broad host range. J Virol 77: 1964–1976PubMedGoogle Scholar
  85. 85.
    Schultz U, Grgacic E, Nassal M (2004) Duck hepatitis B virus: an invaluable model system for HBV infection. Adv Virus Res 63: 1–70PubMedGoogle Scholar
  86. 86.
    Menne S, Cote PJ (2007) The woodchuck as an animal model for pathogenesis and therapy of chronic hepatitis B virus infection. World J Gastroenterol 13: 104–124PubMedGoogle Scholar
  87. 87.
    Norder H, Courouce AM, Coursaget P, Echevarria JM, Lee SD, Mushahwar IK, Robertson BH, Locarnini S, Magnius LO (2004) Genetic diversity of hepatitis B virus strains derived worldwide: genotypes, subgenotypes, and HBsAg subtypes. Intervirology 47: 289–309PubMedGoogle Scholar
  88. 88.
    Simmonds P, Midgley S (2005) Recombination in the genesis and evolution of hepatitis B virus genotypes. J Virol 79: 15467–15476PubMedGoogle Scholar
  89. 89.
    Chimpanzee Sequencing and Analysis Consortium (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437: 69–87Google Scholar
  90. 90.
    Gibbs RA, Rogers J, Katze MG, Bumgarner R, Weinstock GM, Mardis ER, Remington KA, Strausberg RL, Venter JC, Wilson RK et al (2007) Evolutionary and biomedical insights from the rhesus macaque genome. Science 316: 222–234PubMedGoogle Scholar
  91. 91.
    Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zoo J Linnean Soc 149: 1–95Google Scholar
  92. 92.
    Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: A study in molecular evolution. Yale University Press, New Haven, CTGoogle Scholar
  93. 93.
    Lanford RE, Chavez D, Rico-Hesse R, Mootnick A (2000) Hepadnavirus infection in captive gibbons. J Virol 74: 2955–2959PubMedGoogle Scholar
  94. 94.
    Michaels MG, Lanford R, Demetris AJ, Chavez D, Brasky K, Fung J, Starzl TE (1996) Lack of susceptibility of baboons to infection with hepatitis B virus. Transplantation 61: 350–351PubMedGoogle Scholar
  95. 95.
    Kedda MA, Kramvis A, Kew MC, Lecatsas G, Paterson AC, Aspinall S, Stark JH, De Klerk WA, Gridelli B (2000) Susceptibility of chacma baboons (Papio ursinus orientalis) to infection by hepatitis B virus. Transplantation 69: 1429–1434PubMedGoogle Scholar
  96. 96.
    Herron MD, Castoe TA, Parkinson CL (2004) Sciurid phylogeny and the paraphyly of Holarctic ground squirrels (Spermophilus). Mol Phylogenet Evol 31: 1015–1030PubMedGoogle Scholar
  97. 97.
    Huchon D, Madsen O, Sibbald MJ, Ament K, Stanhope MJ, Catzeflis F, de Jong WW, Douzery EJ (2002) Rodent phylogeny and a timescale for the evolution of Glires: evidence from an extensive taxon sampling using three nuclear genes. Mol Biol Evol 19: 1053–1065PubMedGoogle Scholar
  98. 98.
    Walter E, Keist R, Niederost B, Pult I, Blum HE (1996) Hepatitis B virus infection of tupaia hepatocytes in vitro and in vivo. Hepatology 24: 1–5PubMedGoogle Scholar
  99. 99.
    Glebe D, Aliakbari M, Krass P, Knoop EV, Valerius KP, Gerlich WH (2003) Pre-S1 antigen-dependent infection of Tupaia hepatocyte cultures with human hepatitis B virus. J Virol 77: 9511–9521PubMedGoogle Scholar
  100. 100.
    Köck J, Nassal M, MacNelly S, Baumert TF, Blum HE, von Weizsäcker F (2001) Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. J Virol 75: 5084–5089PubMedGoogle Scholar
  101. 101.
    Murphy WJ, Eizirik E, Johnson WE, Zhang YP, Ryder OA, O’Brien SJ (2001) Molecular phylogenetics and the origins of placental mammals. Nature 409: 614–618PubMedGoogle Scholar
  102. 102.
    Dyke GJ, van Tuinen M (2004) The evolutionary radiation of modern birds (Neornithes): reconciling molecules, morphology and the fossil record. Zool J Linnean Soc 141: 153–177Google Scholar
  103. 103.
    Fain MG, Krajewski C, Houde P (2007) Phylogeny of “core Gruiformes” (Aves: Grues) and resolution of the Limpkin-Sungrebe problem. Mol Phylogenet Evol 43: 515–529PubMedGoogle Scholar
  104. 104.
    Donne-Goussé C, Laudet V, Hänni C (2002) A molecular phylogeny of anseriformes based on mitochondrial DNA analysis. Mol Phylogenet Evol 23: 339–356PubMedGoogle Scholar
  105. 105.
    Cracraft J, Keith Barker F, Braun MJ, Harshman J, Dyke GJ, Feinstein J, Stanley S, Cibois A, Schikler P, Beresford P et al (2004) Phylogenetic relationships among modern birds (Neornithes): Toward an avian tree of life. Oxford University Press, New YorkGoogle Scholar
  106. 106.
    Marion PL, Cullen JM, Azcarraga RR, Van Davelaar MJ, Robinson WS (1987) Experimental transmission of duck hepatitis B virus to Pekin ducks and to domestic geese. Hepatology 7: 724–731PubMedGoogle Scholar
  107. 107.
    Pugh JC, Simmons H (1994) Duck hepatitis B virus infection of Muscovy duck hepatocytes and nature of virus resistance in vivo. J Virol 68: 2487–2494PubMedGoogle Scholar
  108. 108.
    Gibb GC, Kardailsky O, Kimball RT, Braun EL, Penny D (2007) Mitochondrial genomes and avian phylogeny: complex characters and resolvability without explosive radiations. Mol Biol Evol 24: 269–280PubMedGoogle Scholar
  109. 109.
    Pereira SL, Baker AJ (2006) A mitogenomic timescale for birds detects variable phylogenetic rates of molecular evolution and refutes the standard molecular clock. Mol Biol Evol 23: 1731–1740PubMedGoogle Scholar
  110. 110.
    Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Arnason U, Penny D (2006) Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol Biol Evol 23: 1144–1155PubMedGoogle Scholar
  111. 111.
    van Tuinen M, Dyke GJ (2004) Calibration of galliform molecular clocks using multiple fossils and genetic partitions. Mol Phylogenet Evol 30: 74–86PubMedGoogle Scholar
  112. 112.
    Will H, Cattaneo R, Darai G, Deinhardt F, Schellekens H, Schaller H (1985) Infectious hepatitis B virus from cloned DNA of known nucleotide sequence. Proc Natl Acad Sci USA 82: 891–895PubMedGoogle Scholar
  113. 113.
    Will H, Cattaneo R, Koch HG, Darai G, Schaller H, Schellekens H, van Eerd PM, Deinhardt F (1982) Cloned HBV DNA causes hepatitis in chimpanzees. Nature 299: 740–742PubMedGoogle Scholar
  114. 114.
    Seeger C, Ganem D, Varmus HE (1984) The cloned genome of ground squirrel hepatitis virus is infectious in the animal. Proc Natl Acad Sci USA 81: 5849–5852PubMedGoogle Scholar
  115. 115.
    Sprengel R, Kuhn C, Manso C, Will H (1984) Cloned duck hepatitis B virus DNA is infectious in Pekin ducks. J Virol 52: 932–937PubMedGoogle Scholar
  116. 116.
    Tuttleman JS, Pugh JC, Summers JW (1986) In vitro experimental infection of primary duck hepatocyte cultures with duck hepatitis B virus. J Virol 58: 17–25PubMedGoogle Scholar
  117. 117.
    Gripon P, Diot C, Theze N, Fourel I, Loreal O, Brechot C, Guguen-Guillouzo C (1988) Hepatitis B virus infection of adult human hepatocytes cultured in the presence of dimethyl sulfoxide. J Virol 62: 4136–4143PubMedGoogle Scholar
  118. 118.
    Shimizu Y, Nambu S, Kojima T, Sasaki H (1986) Replication of hepatitis B virus in culture systems with adult human hepatocytes. J Med Virol 20: 313–327PubMedGoogle Scholar
  119. 119.
    Barrera A, Guerra B, Lee H, Lanford RE (2004) Analysis of host range phenotypes of primate hepadnaviruses by in vitro infections of hepatitis D virus pseudotypes. J Virol 78: 5233–5243PubMedGoogle Scholar
  120. 120.
    Sureau C (2006) The role of the HBV envelope proteins in the HDV replication cycle. Curr Top Microbiol Immunol 307: 113–131PubMedGoogle Scholar
  121. 121.
    Gudima S, Meier A, Dunbrack R, Taylor J, Bruss V (2007) Two potentially important elements of the hepatitis B virus large envelope protein are dispensable for the infectivity of hepatitis delta virus. J Virol 81: 4343–4347PubMedGoogle Scholar
  122. 122.
    Barrera A, Lanford RE (2004) Infection of primary chimpanzee hepatocytes with recombinant hepatitis D virus particles: a surrogate model for hepatitis B virus. Methods Mol Med 96: 131–142PubMedGoogle Scholar
  123. 123.
    Lee WY, Yoo NC (1989) Hepatitis B virus (HBV) infections in turtles. Yonsei Med J 30: 144–150PubMedGoogle Scholar
  124. 124.
    Ganem D, Weiser B, Barchuk A, Brown RJ, Varmus HE (1982) Biological characterization of acute infection with ground squirrel hepatitis virus. J Virol 44: 366–373PubMedGoogle Scholar
  125. 125.
    Trueba D, Phelan M, Nelson J, Beck F, Pecha BS, Brown RJ, Varmus HE, Ganem D (1985) Transmission of ground squirrel hepatitis virus to homologous and heterologous hosts. Hepatology 5: 435–439PubMedGoogle Scholar
  126. 126.
    Seeger C, Marion PL, Ganem D, Varmus HE (1987) In vitro recombinants of ground squirrel and woodchuck hepatitis viral DNAs produce infectious virus in squirrels. J Virol 61: 3241–3247PubMedGoogle Scholar
  127. 127.
    Ishikawa T, Ganem D (1995) The pre-S domain of the large viral envelope protein determines host range in avian hepatitis B viruses. Proc Natl Acad Sci USA 92: 6259–6263PubMedGoogle Scholar
  128. 128.
    Glebe D, Urban S, Knoop EV, Cag N, Krass P, Grun S, Bulavaite A, Sasnauskas K, Gerlich WH (2005) Mapping of the hepatitis B virus attachment site by use of infection-inhibiting preS1 lipopeptides and tupaia hepatocytes. Gastroenterology 129: 234–245PubMedGoogle Scholar
  129. 129.
    Ren S, Nassal M (2001) Hepatitis B virus (HBV) virion and covalently closed circular DNA formation in primary tupaia hepatocytes and human hepatoma cell lines upon HBV genome transduction with replication-defective adenovirus vectors. J Virol 75: 1104–1116PubMedGoogle Scholar
  130. 130.
    Seeger C, Baldwin B, Hornbuckle WE, Yeager AE, Tennant BC, Cote P, Ferrell L, Ganem D, Varmus HE (1991) Woodchuck hepatitis virus is a more efficient oncogenic agent than ground squirrel hepatitis virus in a common host. J Virol 65: 1673–1679PubMedGoogle Scholar
  131. 131.
    Lambert V, Cova L, Chevallier P, Mehrotra R, Trepo C (1991) Natural and experimental infection of wild mallard ducks with duck hepatitis B virus. J Gen Virol 72: 417–420PubMedGoogle Scholar
  132. 132.
    Deng Q, Zhai JW, Michel ML, Zhang J, Qin J, Kong YY, Zhang XX, Budkowska A, Tiollais P, Wang Y et al (2007) Identification and characterization of peptides that interact with hepatitis B virus via the putative receptor binding site. J Virol 81: 4244–4254PubMedGoogle Scholar
  133. 133.
    Kuroki K, Cheung R, Marion PL, Ganem D (1994) A cell surface protein that binds avian hepatitis B virus particles. J Virol 68: 2091–2096PubMedGoogle Scholar
  134. 134.
    Kuroki K, Eng F, Ishikawa T, Turck C, Harada F, Ganem D (1995) gp180, a host cell glycoprotein that binds duck hepatitis B virus particles, is encoded by a member of the carboxypeptidase gene family. J Biol Chem 270: 15022–15028PubMedGoogle Scholar
  135. 135.
    Li J, Tong S, Lee HB, Perdigoto AL, Spangenberg HC, Wands JR (2004) Glycine decarboxylase mediates a postbinding step in duck hepatitis B virus infection. J Virol 78: 1873–1881PubMedGoogle Scholar
  136. 136.
    Li JS, Tong SP, Wands JR (1996) Characterization of a 120-Kilodalton pre-S-binding protein as a candidate duck hepatitis B virus receptor. J Virol 70: 6029–6035PubMedGoogle Scholar
  137. 137.
    Horwich AL, Furtak K, Pugh J, Summers J (1990) Synthesis of hepadnavirus particles that contain replication-defective duck hepatitis B virus genomes in cultured HuH7 cells. J Virol 64: 642–650PubMedGoogle Scholar
  138. 138.
    Lewellyn EB, Loeb DD (2007) Base pairing between cis-acting sequences contributes to template switching during plus-strand DNA synthesis in human hepatitis B virus. J Virol 81: 6207–6215PubMedGoogle Scholar
  139. 139.
    Blanchet M, Sureau C (2006) Analysis of the cytosolic domains of the hepatitis B virus envelope proteins for their function in viral particle assembly and infectivity. J Virol 80: 11935–11945PubMedGoogle Scholar
  140. 140.
    Barrera A, Guerra B, Notvall L, Lanford RE (2005) Mapping of the hepatitis B virus pre-S1 domain involved in receptor recognition. J Virol 79: 9786–9798PubMedGoogle Scholar
  141. 141.
    Gudima S, He Y, Meier A, Chang J, Chen R, Jarnik M, Nicolas E, Bruss V, Taylor J (2007) Assembly of hepatitis delta virus: particle characterization, including the ability to infect primary human hepatocytes. J Virol 81: 3608–3617PubMedGoogle Scholar
  142. 142.
    Engelke M, Mills K, Seitz S, Simon P, Gripon P, Schnolzer M, Urban S (2006) Characterization of a hepatitis B and hepatitis delta virus receptor binding site. Hepatology 43: 750–760PubMedGoogle Scholar
  143. 143.
    Jaoude GA, Sureau C (2005) Role of the antigenic loop of the hepatitis B virus envelope proteins in infectivity of hepatitis delta virus. J Virol 79: 10460–10466PubMedGoogle Scholar
  144. 144.
    Le Seyec J, Chouteau P, Cannie I, Guguen-Guillouzo C, Gripon P (1999) Infection process of the hepatitis B virus depends on the presence of a defined sequence in the pre-S1 domain. J Virol 73: 2052–2057PubMedGoogle Scholar
  145. 145.
    Chouteau P, Le Seyec J, Cannie I, Nassal M, Guguen-Guillouzo C, Gripon P (2001) A short N-proximal region in the large envelope protein harbors a determinant that contributes to the species specificity of human hepatitis B virus. J Virol 75: 11565–11572PubMedGoogle Scholar
  146. 146.
    Urban S, Gripon P (2002) Inhibition of duck hepatitis B virus infection by a myristoylated pre-S peptide of the large viral surface protein. J Virol 76: 1986–1990PubMedGoogle Scholar
  147. 147.
    Nassal M, Dallmeier K, Schultz U, Sun D (2005) Phenotyping hepatitis B virus variants: from transfection towards a small animal in vivo infection model. J Clin Virol 34 Suppl 1: S89–95PubMedGoogle Scholar
  148. 148.
    Urban S, Schwarz C, Marx UC, Zentgraf H, Schaller H, Multhaup G (2000) Receptor recognition by a hepatitis B virus reveals a novel mode of high affinity virus-receptor interaction. EMBO J 19: 1217–1227PubMedGoogle Scholar
  149. 149.
    Nassal M, Schaller H (1993) Hepatitis B virus replication. Trends Microbiol 1: 221–228PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Kai Dallmeier
    • 1
  • Michael Nassal
    • 1
  1. 1.Internal Medicine II /Molecular BiologyUniversity Hospital FreiburgFreiburgGermany

Personalised recommendations