Mechanisms of occupational asthma caused by low-molecular-weight chemicals

  • Vanessa De Vooght
  • Valérie Hox
  • Benoit Nemery
  • Jeroen A. J. Vanoirbeek
Part of the Progress in Inflammation Research book series (PIR)


Understanding the pathogenesis and working mechanisms of occupational asthma (OA) is crucial towards optimizing prevention and management of the disease. The study of the sensitizing and asthma-inducing properties of low-molecular-weight (LMW) agents is evolving quickly. So far, experimental research has shown that OA caused by sensitization to LMW agents does not completely fit the pathways of the traditional allergic model, in which there is a central role for immunoglobulin E. Furthermore, recent evidence indicates that chemical respiratory allergens may induce respiratory tract sensitization by routes other than inhalation, such as dermal exposure. Knowledge on OA induced by LMW is increasing, but the pathogenesis remains largely vague. Dendritic cells, T cells, eosinophils, and several cytokines and chemokines are likely involved as in atopic asthma. However, through subtle differences in T cell subpopulations, cytokine balances and effector cells involved chemical-induced OA may well depend on processes that might differ substantially from those of atopic asthma. Furthermore, the involvement of the transient receptor potential channels in chemical-induced OA and irritant-induced asthma is intriguing. Further research in both humans and animals remains necessary to clarify the process of sensitization by LMW allergens and the mode of action inducing the OA phenotype.


Allergy Clin Immunol Respir Crit Occupational Asthma Transient Receptor Potential Ankyrin Trimellitic Anhydride 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bernstein IL, Chan-Yeung M, Malo JL, Bernstein DI. Asthma in the Workplace, 2 edn. Marcel Dekker, New York 1999Google Scholar
  2. 2.
    Bardana EJ, Jr. 10. Occupational asthma. J Allergy Clin Immunol 2008; 121(2 Suppl): S408–S411PubMedCrossRefGoogle Scholar
  3. 3.
    Chan-Yeung M, Malo JL. Occupational asthma. N Engl J Med 1995; 333(2): 107–12PubMedCrossRefGoogle Scholar
  4. 4.
    Maestrelli P, Boschetto P, Fabbri LM, Mapp CE. Mechanisms of occupational asthma. J Allergy Clin Immunol 2009; 123(3): 531–42PubMedCrossRefGoogle Scholar
  5. 5.
    Bardana EJ, Jr. Occupational asthma and allergies. J Allergy Clin Immunol 2003; 111(2 Suppl): S530–S539PubMedCrossRefGoogle Scholar
  6. 6.
    Maestrelli P, Saetta M, Mapp C, Fabbri LM. Mechanisms of occupational asthma. Clin Exp Allergy 1997; 27 (Suppl 1): 47–54PubMedCrossRefGoogle Scholar
  7. 7.
    Chan-Yeung M, Malo JL, Tarlo SM, Bernstein L, Gautrin D, Mapp C et al. Proceedings of the first Jack Pepys Occupational Asthma Symposium. Am J Respir Crit Care Med 2003; 167(3): 450–71PubMedCrossRefGoogle Scholar
  8. 8.
    Lombardo LJ, Balmes JR. Occupational asthma: A review. Environ Health Perspect 2000; 108(Suppl 4): 697–704PubMedCrossRefGoogle Scholar
  9. 9.
    Brooks SM, Weiss MA, Bernstein IL. Reactive airways dysfunction syndrome (RADS). Persistent asthma syndrome after high level irritant exposures. Chest 1985; 88(3): 376–84PubMedCrossRefGoogle Scholar
  10. 10.
    Tarlo SM, Broder I. Irritant-induced occupational asthma. Chest 1989; 96(2): 297–300PubMedCrossRefGoogle Scholar
  11. 11.
    Banauch GI, Dhala A, Alleyne D, Alva R, Santhyadka G, Krasko A et al. Bronchial hyperreactivity and other inhalation lung injuries in rescue/recovery workers after the World Trade Center collapse. Crit Care Med 2005; 33au](1 Suppl): S102–S106CrossRefGoogle Scholar
  12. 12.
    Tarlo SM. Recent advances in occupational asthma. Curr Opin Pulm Med 2000; 6au](2): 145–50CrossRefGoogle Scholar
  13. 13.
    Mapp C, Boschetto P, Miotto D, De Rosa E, Fabbri LM. Mechanisms of occupational asthma. Ann Allergy Asthma Immunol 1999; 83(6 Pt 2): 645–64PubMedCrossRefGoogle Scholar
  14. 14.
    Baur X, Czuppon A. Diagnostic validation of specific IgE antibody concentrations, skin prick testing, and challenge tests in chemical workers with symptoms of sensitivity to different anhydrides. J Allergy Clin Immunol 1995; 96(4): 489–94PubMedCrossRefGoogle Scholar
  15. 15.
    Wisnewski AV, Redlich CA. Recent developments in diisocyanate asthma. Curr Opin Allergy Clin Immunol 2001; 1(2): 169–75PubMedGoogle Scholar
  16. 16.
    Wisnewski AV, Srivastava R, Herick C, Xu L, Lemus R, Cain H et al. Identification of human lung and skin proteins conjugated with hexamethylene diisocyanate in vitro and in vivo. Am J Respir Crit Care Med 2000; 162(6): 2330–6PubMedGoogle Scholar
  17. 17.
    Wisnewski AV, Lemus R, Karol MH, Redlich CA. Isocyanate-conjugated human lung epithelial cell proteins: A link between exposure and asthma? J Allergy Clin Immunol 1999; 104(2 Pt 1): 341–7PubMedCrossRefGoogle Scholar
  18. 18.
    Wisnewski AV, Liu Q, Liu J, Redlich CA. Glutathione protects human airway proteins and epithelial cells from isocyanates. Clin Exp Allergy 2005; 35(3): 352–7PubMedCrossRefGoogle Scholar
  19. 19.
    Heath WR, Carbone FR. Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 2001; 19: 47–64PubMedCrossRefGoogle Scholar
  20. 20.
    Lutz W, Palczynski C. Advances in molecular immunotoxicology of occupational asthma induced by low molecular weight chemicals. Int J Occup Med Environ Health 2003; 16(4): 285–99PubMedGoogle Scholar
  21. 21.
    Karol MH. Respiratory allergy: What are the uncertainties? Toxicology 2002; 181–182: 305–10PubMedCrossRefGoogle Scholar
  22. 22.
    Wisnewski AV, Herrick CA, Liu Q, Chen L, Bottomly K, Redlich CA. Human gamma/ delta T-cell proliferation and IFN-gamma production induced by hexamethylene diisocyanate. J Allergy Clin Immunol 2003; 112(3): 538–46PubMedCrossRefGoogle Scholar
  23. 23.
    Mamessier E, Milhe F, Guillot C, Birnbaum J, Dupuy P, Lorec AM et al. T-cell activation in occupational asthma and rhinitis. Allergy 2007; 62(2): 162–9PubMedCrossRefGoogle Scholar
  24. 24.
    Ivanov S, Palmberg L, Venge P, Larsson K, Linden A. Interleukin-17A mRNA and protein expression within cells from the human bronchoalveolar space after exposure to organic dust. Respir Res 2005; 6: 44PubMedCrossRefGoogle Scholar
  25. 25.
    Naisbitt DJ, Williams DP, Pirmohamed M, Kitteringham NR, Park BK. Reactive metabolites and their role in drug reactions. Curr Opin Allergy Clin Immunol 2001; 1(4): 317–25PubMedGoogle Scholar
  26. 26.
    Park HS, Kim HY, Nahm DH, Son JW, Kim YY. Specific IgG, but not specific IgE, antibodies to toluene diisocyanate-human serum albumin conjugate are associated with toluene diisocyanate bronchoprovocation test results. J Allergy Clin Immunol 1999; 104(4 Pt 1): 847–51PubMedCrossRefGoogle Scholar
  27. 27.
    Karol MH, Tollerud DJ, Campbell TP, Fabbri L, Maestrelli P, Saetta M et al. Predictive value of airways hyperresponsiveness and circulating IgE for identifying types of responses to toluene diisocyanate inhalation challenge. Am J Respir Crit Care Med 1994; 149(3 Pt 1): 611–5PubMedGoogle Scholar
  28. 28.
    Anees W, Huggins V, Pavord ID, Robertson AS, Burge PS. Occupational asthma due to low molecular weight agents: Eosinophilic and non-eosinophilic variants. Thorax 2002; 57(3): 231–6PubMedCrossRefGoogle Scholar
  29. 29.
    Chan-Yeung M, Malo JL. Aetiological agents in occupational asthma. Eur Respir J 1994; 7(2): 346–71PubMedCrossRefGoogle Scholar
  30. 30.
    Turato G, Saetta M. Why does airway obstruction persist in asthma due to low-molecular-weight agents? A Pathologistis view. Occup Med 2000; 15(2): 445–54PubMedGoogle Scholar
  31. 31.
    Moscato G, Pignatti P, Yacoub MR, Romano C, Spezia S, Perfetti L. Occupational asthma and occupational rhinitis in hairdressers. Chest 2005; 128(5): 3590–8PubMedCrossRefGoogle Scholar
  32. 32.
    Frew AJ, Chan H, Lam S, Chan-Yeung M. Bronchial inflammation in occupational asthma due to western red cedar. Am J Respir Crit Care Med 1995; 151(2 Pt 1): 340–4PubMedGoogle Scholar
  33. 33.
    Yawalkar N, Helbling A, Pichler CE, Zala L, Pichler WJ. T cell involvement in persulfate triggered occupational contact dermatitis and asthma. Ann Allergy Asthma Immunol 1999; 82(4): 401–4PubMedCrossRefGoogle Scholar
  34. 34.
    Frew A, Chang JH, Chan H, Quirce S, Noertjojo K, Keown P et al. T-lymphocyte responses to plicatic acid-human serum albumin conjugate in occupational asthma caused by western red cedar. J Allergy Clin Immunol 1998; 101(6 Pt 1): 841–7PubMedCrossRefGoogle Scholar
  35. 35.
    Lummus ZL, Alam R, Bernstein JA, Bernstein DI. Diisocyanate antigen-enhanced production of monocyte chemoattractant protein-1, IL-8, and tumor necrosis factor-alpha by peripheral mononuclear cells of workers with occupational asthma. J Allergy Clin Immunol 1998; 102(2): 265–74PubMedCrossRefGoogle Scholar
  36. 36.
    Wisnewski AV, Liu Q, Liu J, Redlich CA. Human innate immune responses to hexamethylene diisocyanate (HDI) and HDI-albumin conjugates. Clin Exp Allergy 2008; 38(6): 957–67PubMedCrossRefGoogle Scholar
  37. 37.
    Deschamps D, Rosenberg N, Soler P, Maillard G, Fournier E, Salson D et al. Persistent asthma after accidental exposure to ethylene oxide. Br J Ind Med 1992; 49(7): 523–5PubMedGoogle Scholar
  38. 38.
    Gautrin D, Boulet LP, Boutet M, Dugas M, Bherer L, L’Archeveque J et al. Is reactive airways dysfunction syndrome a variant of occupational asthma? J Allergy Clin Immunol 1994; 93(1 Pt 1): 12–22PubMedCrossRefGoogle Scholar
  39. 39.
    Lemiere C, Malo JL, Boutet M. Reactive airways dysfunction syndrome due to chlorine: Sequential bronchial biopsies and functional assessment. Eur Respir J 1997; 10(1): 241–4PubMedCrossRefGoogle Scholar
  40. 40.
    Chan-Yeung M, Lam S, Kennedy SM, Frew AJ. Persistent asthma after repeated exposure to high concentrations of gases in pulp mills. Am J Respir Crit Care Med 1994; 149(6): 1676–80Google Scholar
  41. 41.
    Jame AJ, Lackie PM, Cazaly AM, Sayers I, Penrose JF, Holgate ST et al. Human bronchial epithelial cells express an active and inducible biosynthetic pathway for leukotrienes B4 and C4. Clin Exp Allergy 2007; 37(6): 880–92PubMedCrossRefGoogle Scholar
  42. 42.
    Brooks SM, Hammad Y, Richards I, Giovinco-Barbas J, Jenkins K. The spectrum of irritant-induced asthma: Sudden and not-so-sudden onset and the role of allergy. Chest 1998; 113(1): 42–9PubMedCrossRefGoogle Scholar
  43. 43.
    Jorres R, Nowak D, Magnussen H. The effect of ozone exposure on allergen responsiveness in subjects with asthma or rhinitis. Am J Respir Crit Care Med 1996; 153(1): 56–64PubMedGoogle Scholar
  44. 44.
    Meggs WJ, Elsheik T, Metzger WJ, Albernaz M, Bloch RM. Nasal pathology and ultrastructure in patients with chronic airway inflammation (RADS and RUDS) following an irritant exposure. J Toxicol Clin Toxicol 1996; 34(4): 383–96PubMedCrossRefGoogle Scholar
  45. 45.
    Irvin CG. Using the mouse to model asthma: The cup is half full and then some. Clin Exp Allergy 2008; 38(5): 701–3PubMedCrossRefGoogle Scholar
  46. 46.
    Willis-Owen SA, Valdar W. Deciphering gene-environment interactions through mouse models of allergic asthma. J Allergy Clin Immunol 2009; 123(1): 14–23PubMedCrossRefGoogle Scholar
  47. 47.
    Wenzel S, Holgate ST. The mouse trap: It still yields few answers in asthma. Am J Respir Crit Care Med 2006; 174(11): 1173–6PubMedCrossRefGoogle Scholar
  48. 48.
    Schroder NW, Maurer M. The role of innate immunity in asthma: Leads and lessons from mouse models. Allergy 2007; 62(6): 579–90PubMedCrossRefGoogle Scholar
  49. 49.
    Lutz W, Sulkowski WJ. Vagus nerve participates in regulation of the airways: Inflammatory response and hyperreactivity induced by occupational asthmogens. Int J Occup Med Environ Health 2004; 17(4): 417–31PubMedGoogle Scholar
  50. 50.
    Scheerens H, Buckley TL, Muis T, Van Loveren H, Nijkamp FP. The involvement of sensory neuropeptides in toluene diisocyanate-induced tracheal hyperreactivity in the mouse airways. Br J Pharmacol 1996; 119(8): 1665–71PubMedGoogle Scholar
  51. 51.
    Hunter DD, Satterfield BE, Huang J, Fedan JS, Dey RD. Toluene diisocyanate enhances substance P in sensory neurons innervating the nasal mucosa. Am J Respir Crit Care Med 2000; 161(2 Pt 1): 543–9PubMedGoogle Scholar
  52. 52.
    Pauluhn J, Woolhiser MR, Bloemen L. Repeated inhalation challenge with diphenylmethane-4,4′-diisocyanate in brown Norway rats leads to a time-related increase of neutrophils in bronchoalveolar lavage after topical induction. Inhal Toxicol 2005; 17(2): 67–78PubMedCrossRefGoogle Scholar
  53. 53.
    Pauluhn J, Eidmann P, Mohr U. Respiratory hypersensitivity in guinea pigs sensitized to 1,6-hexamethylene diisocyanate (HDI): Comparison of results obtained with the monomer and homopolymers of HDI. Toxicology 2002; 171(2–3): 147–60PubMedCrossRefGoogle Scholar
  54. 54.
    Pauluhn J. Respiratory hypersensitivity to trimellitic anhydride in Brown Norway rats: Analysis of dose-response following topical induction and time course following repeated inhalation challenge. Toxicology 2003; 194(1–2): 1–17PubMedCrossRefGoogle Scholar
  55. 55.
    Vanoirbeek JA, Tarkowski M, Ceuppens JL, Verbeken EK, Nemery B, Hoet PH. Respiratory response to toluene diisocyanate depends on prior frequency and concentration of dermal sensitization in mice. Toxicol Sci 2004; 80(2): 310–21PubMedCrossRefGoogle Scholar
  56. 56.
    Tarkowski M, Vanoirbeek JA, Vanhooren HM, De Vooght V, Mercier CM, Ceuppens J et al. Immunological determinants of ventilatory changes induced in mice by dermal sensitization and respiratory challenge with toluene diisocyanate. Am J Physiol Lung Cell Mol Physiol 2007; 292(1): L207–L214PubMedCrossRefGoogle Scholar
  57. 57.
    Vanoirbeek JA, Tarkowski M, Vanhooren HM, De Vooght V, Nemery B, Hoet PH. and dinitrochlorobenzene, a dermal sensitizer. J Allergy Clin Immunol 2006; 117(5): 1090–7PubMedCrossRefGoogle Scholar
  58. 58.
    Matheson JM, Johnson VJ, Vallyathan V, Luster MI. Exposure and immunological determinants in a murine model for toluene diisocyanate (TDI) asthma. Toxicol Sci 2005; 84(1): 88–98PubMedCrossRefGoogle Scholar
  59. 59.
    Matheson JM, Johnson VJ, Luster MI. Immune mediators in a murine model for occupational asthma: Studies with toluene diisocyanate. Toxicol Sci 2005; 84(1): 99–109PubMedCrossRefGoogle Scholar
  60. 60.
    Vanoirbeek JA, De V, V, Vanhooren HM, Nawrot TS, Nemery B, Hoet PH. How long do the systemic and ventilatory responses to toluene diisocyanate persist in dermally sensitized mice? J Allergy Clin Immunol 2008; 121(2): 456–63PubMedCrossRefGoogle Scholar
  61. 61.
    Vanoirbeek JA, De V, V, Nemery B, Hoet PH. Multiple challenges in a mouse model of chemical-induced asthma lead to tolerance: Ventilatory and inflammatory responses are blunted, immunologic humoral responses are not. Toxicology 2009; 257(3): 144–52PubMedCrossRefGoogle Scholar
  62. 62.
    De Vooght V, Vanoirbeek JA, Haenen S, Verbeken E, Nemery B, Hoet PH. Oropharyngeal aspiration: An alternative route for challenging in a mouse model of chemicalinduced asthma. Toxicology 2009; 259(1–2): 84–9CrossRefGoogle Scholar
  63. 63.
    Matheson JM, Lange RW, Lemus R, Karol MH, Luster MI. Importance of inflammatory and immune components in a mouse model of airway reactivity to toluene diisocyanate (TDI). Clin Exp Allergy 2001; 31(7): 1067–76PubMedCrossRefGoogle Scholar
  64. 64.
    Herrick CA, Das J, Xu L, Wisnewski AV, Redlich CA, Bottomly K. Differential roles for CD4 and CD8 T cells after diisocyanate sensitization: Genetic control of TH2-induced lung inflammation. J Allergy Clin Immunol 2003; 111(5): 1087–94PubMedCrossRefGoogle Scholar
  65. 65.
    Lee YC, Song CS, Lee HB, Oh JL, Rhee YK, Park HS et al. A murine model of toluene diisocyanate-induced asthma can be treated with matrix metalloproteinase inhibitor. J Allergy Clin Immunol 2001; 108(6): 1021–6PubMedCrossRefGoogle Scholar
  66. 66.
    Herrick CA, Xu L, Wisnewski AV, Das J, Redlich CA, Bottomly K. A novel mouse model of diisocyanate-induced asthma showing allergic-type inflammation in the lung after inhaled antigen challenge. J Allergy Clin Immunol 2002; 109(5 Pt 1): 873–8PubMedCrossRefGoogle Scholar
  67. 67.
    Johnson VJ, Yucesoy B, Luster MI. Prevention of IL-1 signaling attenuates airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanateinduced asthma. J Allergy Clin Immunol 2005; 116(4): 851–8PubMedCrossRefGoogle Scholar
  68. 68.
    Lee YC, Kwak YG, Song CH. Contribution of vascular endothelial growth factor to airway hyperresponsiveness and inflammation in a murine model of toluene diisocyanateinduced asthma. J Immunol 2002; 168(7): 3595–600PubMedGoogle Scholar
  69. 69.
    Matheson JM, Lemus R, Lange RW, Karol MH, Luster MI. Role of tumor necrosis factor in toluene diisocyanate asthma. Am J Respir Cell Mol Biol 2002; 27(4): 396–405PubMedGoogle Scholar
  70. 70.
    Ban M, Morel G, Langonne I, Huguet N, Pepin E, Binet S. TDI can induce respiratory allergy with Th2-dominated response in mice. Toxicology 2006; 218(1): 39–47PubMedCrossRefGoogle Scholar
  71. 71.
    Redlich CA, Wisnewski AV, Gordon T. Mouse models of diisocyanate asthma. Am J Respir Cell Mol Biol 2002; 27(4): 385–90PubMedGoogle Scholar
  72. 72.
    Scheerens H, Buckley TL, Muis TL, Garssen J, Dormans J, Nijkamp FP et al. Long-term topical exposure to toluene diisocyanate in mice leads to antibody production and in vivo airway hyperresponsiveness three hours after intranasal challenge. Am J Respir Crit Care Med 1999; 159(4 Pt 1): 1074–80PubMedGoogle Scholar
  73. 73.
    Lemiere C, Cartier A, Malo JL, Lehrer SB. Persistent specific bronchial reactivity to occupational agents in workers with normal nonspecific bronchial reactivity. Am J Respir Crit Care Med 2000; 162(3 Pt 1): 976–80PubMedGoogle Scholar
  74. 74.
    Lemiere C. Persistence of bronchial reactivity to occupational agents after removal from exposure and identification of associated factors. Ann Allergy Asthma Immunol 2003; 90(5 Suppl 2): 52–5PubMedCrossRefGoogle Scholar
  75. 75.
    Jatakanon A, Uasuf C, Maziak W, Lim S, Chung KF, Barnes PJ. Neutrophilic inflammation in severe persistent asthma. Am J Respir Crit Care Med 1999; 160(5 Pt 1): 1532–9PubMedGoogle Scholar
  76. 76.
    Park H, Jung K, Kim H, Nahm D, Kang K. Neutrophil activation following TDI bronchial challenges to the airway secretion from subjects with TDI-induced asthma. Clin Exp Allergy 1999; 29(10): 1395–401PubMedCrossRefGoogle Scholar
  77. 77.
    Lemiere C, Romeo P, Chaboillez S, Tremblay C, Malo JL. Airway inflammation and functional changes after exposure to different concentrations of isocyanates. J Allergy Clin Immunol 2002; 110(4): 641–6PubMedCrossRefGoogle Scholar
  78. 78.
    Bello D, Herrick CA, Smith TJ, Woskie SR, Streicher RP, Cullen MR et al. Skin exposure to isocyanates: Reasons for concern. Environ Health Perspect 2007; 115(3): 328–35PubMedCrossRefGoogle Scholar
  79. 79.
    Redlich CA, Herrick CA. Lung/skin connections in occupational lung disease. Curr Opin Allergy Clin Immunol 2008; 8(2): 115–9PubMedCrossRefGoogle Scholar
  80. 80.
    Petsonk EL, Wang ML, Lewis DM, Siegel PD, Husberg BJ. Asthma-like symptoms in wood product plant workers exposed to methylene diphenyl diisocyanate. Chest 2000; 118(4): 1183–93PubMedCrossRefGoogle Scholar
  81. 81.
    Pronk A, Yu F, Vlaanderen J, Tielemans E, Preller L, Bobeldijk I et al. Dermal, inhalation, and internal exposure to 1,6-HDI and its oligomers in car body repair shop workers and industrial spray painters. Occup Environ Med 2006; 63(9): 624–31PubMedCrossRefGoogle Scholar
  82. 82.
    Bello D, Redlich CA, Stowe MH, Sparer J, Woskie SR, Streicher RP et al. Skin exposure to aliphatic polyisocyanates in the auto body repair and refinishing industry: II. A quantitative assessment. Ann Occup Hyg 2008; 52(2): 117–24PubMedCrossRefGoogle Scholar
  83. 83.
    Liu Y, Stowe MH, Bello D, Sparer J, Gore RJ, Cullen MR et al. Skin exposure to aliphatic polyisocyanates in the auto body repair and refinishing industry: III. A personal exposure algorithm. Ann Occup Hyg 2009; 53(1): 33–40PubMedCrossRefGoogle Scholar
  84. 84.
    Mapp CE, Boschetto P, Maestrelli P, Fabbri LM. Occupational asthma. Am J Respir Crit Care Med 2005; 172(3): 280–305PubMedCrossRefGoogle Scholar
  85. 85.
    Son M, Lee M, Kim YT, Youn JK, Park H. Heterogeneity of IgE response to TDI-HSA conjugates by ELISA in toluene diisocyanate (TDI)-induced occupational asthma (OA) patients. J Korean Med Sci 1998; 13(2): 147–52PubMedGoogle Scholar
  86. 86.
    Pronk A, Preller L, Raulf-Heimsoth M, Jonkers IC, Lammers JW, Wouters IM et al. Respiratory symptoms, sensitization, and exposure response relationships in spray painters exposed to isocyanates. Am J Respir Crit Care Med 2007; 176(11): 1090–7PubMedCrossRefGoogle Scholar
  87. 87.
    Morris JB, Wilkie WS, Shusterman DJ. Acute respiratory responses of the mouse to chlorine. Toxicol Sci 2005; 83(2): 380–7PubMedCrossRefGoogle Scholar
  88. 88.
    Martin JG, Campbell HR, Iijima H, Gautrin D, Malo JL, Eidelman DH et al. Chlorineinduced injury to the airways in mice. Am J Respir Crit Care Med 2003; 168(5): 568–74PubMedCrossRefGoogle Scholar
  89. 89.
    Koohsari H, Tamaoka M, Campbell HR, Martin JG. The role of gamma delta T cells in airway epithelial injury and bronchial responsiveness after chlorine gas exposure in mice. Respir Res 2007; 8: 21PubMedCrossRefGoogle Scholar
  90. 90.
    Tuck SA, Ramos-Barbon D, Campbell H, McGovern T, Karmouty-Quintana H, Martin JG. Time course of airway remodelling after an acute chlorine gas exposure in mice. Respir Res 2008; 9: 61PubMedCrossRefGoogle Scholar
  91. 91.
    Guo Y, Krumwiede M, White JG, Wangensteen OD. HOCl effects on the tight junctions of rabbit tracheal epithelium. Am J Physiol 1996; 270(2 Pt 1): L224–L231PubMedGoogle Scholar
  92. 92.
    Venglarik CJ, Giron-Calle J, Wigley AF, Malle E, Watanabe N, Forman HJ. Hypochlorous acid alters bronchial epithelial cell membrane properties and prevention by extracellular glutathione. J Appl Physiol 2003; 95(6): 2444–52PubMedGoogle Scholar
  93. 93.
    Pichavant M, Goya S, Meyer EH, Johnston RA, Kim HY, Matangkasombut P et al. Ozone exposure in a mouse model induces airway hyperreactivity that requires the presence of natural killer T cells and IL-17. J Exp Med 2008; 205(2): 385–93PubMedCrossRefGoogle Scholar
  94. 94.
    Kierstein S, Krytska K, Sharma S, Amrani Y, Salmon M, Panettieri RA, Jr. et al. Ozone inhalation induces exacerbation of eosinophilic airway inflammation and hyperresponsiveness in allergen-sensitized mice. Allergy 2008; 63(4): 438–46PubMedCrossRefGoogle Scholar
  95. 95.
    Samuelsen M, Nygaard UC, Lovik M. Allergy adjuvant effect of particles from wood smoke and road traffic. Toxicology 2008; 246(2–3): 124–31PubMedCrossRefGoogle Scholar
  96. 96.
    Liu J, Ballaney M, Al-alem U, Quan C, Jin X, Perera F et al. Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 2008; 102(1): 76–81PubMedCrossRefGoogle Scholar
  97. 97.
    Trimble NJ, Botelho FM, Bauer CM, Fattouh R, Stampfli MR. Adjuvant and antiinflammatory properties of cigarette smoke in murine allergic airway inflammation. Am J Respir Cell Mol Biol 2009; 40(1): 38–46PubMedCrossRefGoogle Scholar
  98. 98.
    Robays LJ, Lanckacker EA, Moerloose KB, Maes T, Bracke KR, Brusselle GG et al. Concomitant inhalation of cigarette smoke and aerosolized protein activates airway dendritic cells and induces allergic airway inflammation in a TLR-independent way. J Immunol 2009; 183(4): 2758–66PubMedCrossRefGoogle Scholar
  99. 99.
    Bessac BF, Jordt SE. Breathtaking TRP channels: TRPA1 and TRPV1 in airway chemosensation and reflex control. Physiology (Bethesda) 2008; 23: 360–70Google Scholar
  100. 100.
    Nassenstein C, Kwong K, Taylor-Clark T, Kollarik M, Macglashan DM, Braun A et al. Expression and function of the ion channel TRPA1 in vagal afferent nerves innervating mouse lungs. J Physiol 2008; 586(6): 1595–604PubMedCrossRefGoogle Scholar
  101. 101.
    Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science 2000; 288(5464): 306–13PubMedCrossRefGoogle Scholar
  102. 102.
    Bautista DM, Jordt SE, Nikai T, Tsuruda PR, Read AJ, Poblete J et al. TRPA1 mediates the inflammatory actions of environmental irritants and proalgesic agents. Cell 2006; 124(6): 1269–82PubMedCrossRefGoogle Scholar
  103. 103.
    Jordt SE, Bautista DM, Chuang HH, McKemy DD, Zygmunt PM, Hogestatt ED et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 2004; 427(6971): 260–5PubMedCrossRefGoogle Scholar
  104. 104.
    Bessac BF, Sivula M, von Hehn CA, Caceres AI, Escalera J, Jordt SE. Transient receptor potential ankyrin 1 antagonists block the noxious effects of toxic industrial isocyanates and tear gases. FASEB J 2009; 23(4): 1102–14PubMedCrossRefGoogle Scholar
  105. 105.
    Taylor-Clark TE, Kiros F, Carr MJ, McAlexander MA. Transient receptor potential ankyrin 1 mediates toluene diisocyanate-evoked respiratory irritation. Am J Respir Cell Mol Biol 2009; 40(6): 756–62PubMedCrossRefGoogle Scholar
  106. 106.
    Bessac BF, Sivula M, von Hehn CA, Escalera J, Cohn L, Jordt SE. TRPA1 is a major oxidant sensor in murine airway sensory neurons. J Clin Invest 2008; 118(5): 1899–910PubMedCrossRefGoogle Scholar
  107. 107.
    Caceres AI, Brackmann M, Elia MD, Bessac BF, del CD, D’Amours M et al. A sensory neuronal ion channel essential for airway inflammation and hyperreactivity in asthma. Proc Natl Acad Sci USA 2009; 106(22): 9099–104PubMedGoogle Scholar
  108. 108.
    Grabbe S, Schwarz T. Immunoregulatory mechanisms involved in elicitation of allergic contact hypersensitivity. Immunol Today 1998; 19(1): 37–44PubMedCrossRefGoogle Scholar
  109. 109.
    Novak N, Allam JP, Betten H, Haberstok J, Bieber T. The role of antigen presenting cells at distinct anatomic sites: They accelerate and they slow down allergies. Allergy 2004; 59(1): 5–14PubMedCrossRefGoogle Scholar
  110. 110.
    Wisnewski AV, Liu Q, Miller JJ, Magoski N, Redlich CA. Effects of hexamethylene diisocyanate exposure on human airway epithelial cells: In vitro cellular and molecular studies. Environ Health Perspect 2002; 110(9): 901–7PubMedCrossRefGoogle Scholar
  111. 111.
    Liu Q, Wisnewski AV. Recent developments in diisocyanate asthma. Ann Allergy Asthma Immunol 2003; 90(5 Suppl 2): 35–41PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel 2010

Authors and Affiliations

  • Vanessa De Vooght
    • 1
    • 2
  • Valérie Hox
    • 1
    • 2
  • Benoit Nemery
    • 1
    • 2
  • Jeroen A. J. Vanoirbeek
    • 1
    • 2
  1. 1.Research Unit for Lung ToxicologyK. U. Leuven, Faculty of Medicine, School of Public Health, Occupational, Environmental and Insurance MedicineLeuvenBelgium
  2. 2.Research Unit for Lung Toxicology (Pneumology)O&N 1LeuvenBelgium

Personalised recommendations