Advertisement

Design, conduct and analysis of surveys on work-related asthma

  • Kathleen Kreiss
  • Dick Heederik
Part of the Progress in Inflammation Research book series (PIR)

Abstract

Surveys on work-related asthma serve public health investigation, research on exposure-response relations, screening for pre-clinical disease, and demonstrations of effectiveness of interventions. Hypotheses dictate survey design, which include cross-sectional, case-control, cohort, and intervention studies. Tools for characterizing medical risk factors and outcomes include questionnaires, spirometry, tests of bronchial hyperreactivity, exhaled indices, induced sputum, immunological tests, and nasal inflammatory indices. An important component of surveys is exposure assessment to compare a population to existing literature and other surveys with attention to exposure level, range, and variability among workers. Allergen exposures are challenging to characterize with respect to peak exposures and evolving immunochemical measurement methods. Exposure assessment strategies are developing rapidly for analysis of exposure-response relationships, whether for sensitization to allergens or for respiratory symptoms or diagnoses. Power calculations should guide decisions about whether to implement surveys. Research needs include surveys of populations with irritant or neutrophilic asthma and populations in damp buildings. The relevance of dermal exposure to sensitizers requires examination as a risk factor for asthma. New causes of work-related asthma may be identified by surveying industries with excess asthma in populationbased studies that do not have recognized causes of asthma.

Keywords

Allergy Clin Immunol Exhale Breath Condensate Occupational Asthma Natural Rubber Latex Occup Environ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rudd RA, Moorman JE (2007) Asthma incidence: Data from the National Health Interview Survey, 1980–1996. J Asthma 44: 65–70CrossRefPubMedGoogle Scholar
  2. 2.
    Kogevinas M, Zock JP, Jarvis D, Kromhout H, Lillienberg L, Plana E, Radon K, Torén K, Alliksoo A, Benke G, et al (2007) Exposure to substances in the workplace and newonset asthma: An international prospective population-based study (ECRHS-II). Lancet 370: 336–341CrossRefPubMedGoogle Scholar
  3. 3.
    Hnizdo E, Sylvain D, Lewis DM, Pechter E, Kreiss K (2004) New-onset asthma associated with exposure to 3-amino-5-mercapto-1, 2, 4-triazole. J Occup Environ Med 46: 1246–1252PubMedGoogle Scholar
  4. 4.
    Hoffman RE, Wood RC, Kreiss K (1993) Building-related asthma in Denver office workers. Am J Public Health 83: 89–93PubMedGoogle Scholar
  5. 5.
    Cox-Ganser JM, White SK, Jones R, Hilsbos K, Storey E, Enright PL, Rao CY, Kreiss K (2005) Respiratory morbidity in office workers in a water-damaged building. Environ Health Perspect 113: 485–490CrossRefPubMedGoogle Scholar
  6. 6.
    Peretz C, de Pater N, de Monchy J, Oostenbrink J, Heederik D (2005) Assessment of exposure to wheat flour and the shape of its relationship with specific sensitization. Scand J Work Environ Health 31: 65–74PubMedGoogle Scholar
  7. 7.
    Jacobs JH, Meijster T, Meijer E, Suarthana E, Heederik D (2008) Wheat allergen exposure and the prevalence of work-related sensitization and allergy in bakery workers. Allergy 63: 1597–604CrossRefPubMedGoogle Scholar
  8. 8.
    Elliott L, Heederik D, Marshall S, Peden D, Loomis D (2005) Incidence of allergy and allergy symptoms among workers exposed to laboratory animals. Occup Environ Med 62: 766–771CrossRefPubMedGoogle Scholar
  9. 9.
    Gautrin D, Ghezzo H, Infante-Rivard C, Magnan M, L’archevêque J, Suarthana E, Malo JL (2008) Long-term outcomes in a prospective cohort of apprentices exposed to highmolecular-weight agents. Am J Respir Crit Care Med 177: 871–879CrossRefPubMedGoogle Scholar
  10. 10.
    Cullinan P, Lowson D, Nieuwenhuijsen MJ, Sandiford C, Tee RD, Venables KM, McDonald JC, Newman Taylor AJ (1994) Work related symptoms, sensitisation, and estimated exposure in workers not previously exposed to flour. Occup Environ Med 51: 579–583CrossRefPubMedGoogle Scholar
  11. 11.
    Cullinan P, Acquilla SD, Dhara VR (1996) Long-term morbidity in survivors of the 1984 Bhopal gas leak. Natl Med J India 9: 5–10PubMedGoogle Scholar
  12. 12.
    Elliot L, Heederik D, Marshall S, Peden D, Loomis D (2005) Progression of self-reported symptoms in laboratory animal allergy. J Allergy Clin Immunol 116: 127–132CrossRefGoogle Scholar
  13. 13.
    Gautrin D, Ghezzo H, Infante-Rivard C, Malo JL (2001) Natural history of sensitization, symptoms and occupational diseases in apprentices exposed to laboratory animals. Eur Respir J 17: 904–908CrossRefPubMedGoogle Scholar
  14. 14.
    Krop EJM, Heederik D, Lutter R, Meer G, Aalberse RC, Jansen HM, van der Zee JM (2009) Association between pre-employment immunologic and airway mucosal factors and the development of occupational allergy. J Allergy Clin Immunol 123: 694–700CrossRefPubMedGoogle Scholar
  15. 15.
    Kruize H, Post W, Heederik D, Martens B, Hollander A, van der Beek E (1997) Respiratory allergy in laboratory animal workers: A retrospective cohort study using preemployment screening data. Occup Environ Med 54: 830–835CrossRefPubMedGoogle Scholar
  16. 16.
    Portengen L, Hollander A, Doekes G, de Meer G, Heederik D (2003) Lung function decline in laboratory animal workers: The role of sensitisation and exposure. Occup Environ Med 60: 870–875CrossRefPubMedGoogle Scholar
  17. 17.
    Toren K, Brisman J, Jarvholm B (1993) Asthma and asthma-like symptoms in adults assessed by questionnaire. A literature review. Chest 104: 600–608CrossRefPubMedGoogle Scholar
  18. 18.
    Pekkanen J, Pearce N (1999) Defining asthma in epidemiologic studies. Eur Respir J 14: 951–957CrossRefPubMedGoogle Scholar
  19. 19.
    Ferris BG (1978) Epidemiology standardization project (American Thoracic Society). Am Rev Respir Dis 118: 1–120PubMedGoogle Scholar
  20. 20.
    Burney P, Chinn S (1987) Developing a new questionnaire for measuring the prevalence and distribution of asthma. Chest 91 (Suppl. 6): 79s–83sCrossRefPubMedGoogle Scholar
  21. 21.
    Pekkanen J, Sunyer J, Anto JM, Burney P, on behalf of the European Community Respiratory Health Study (ECRHS) (2005) Operational definitions of asthma in studies on its aetiology. Eur Respir J 26: 28–35CrossRefPubMedGoogle Scholar
  22. 22.
    Venables KM, Farrer N, Sharp L, Graneek BJ, Newman AJ (1993) Respiratory symptoms questionnaire for asthma epidemiology: Validity and reproducibility. Thorax 48: 214–219CrossRefPubMedGoogle Scholar
  23. 23.
    Sunyer J, Pekkanen J, Garcia-Esteban R, Svanes C, Kunzli N, Janson C, de Marco R, Anto J, Burney P (2007) Asthma score: Predictive ability and risk factors. Allergy 62: 142–148CrossRefPubMedGoogle Scholar
  24. 24.
    Grassi M, Rezzani C, Biino G, Marinoni A (2003) Asthma-like symptoms assessment through ECRHS screening questionnaire scoring. J Clin Epidemiol 56: 238–247CrossRefPubMedGoogle Scholar
  25. 25.
    Centers for Disease Control and Prevention (CDC) (1996) Third National Health and Nutrition Examination Survey, 1988–1994, NHANES III Examination Survey. Hyattsville, MD: U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention. (Public use data file documentation No. 76300.)Google Scholar
  26. 26.
    National Center for Health Statistics (2002) Data File Documentation, National Health Interview Survey, 2002 (machine readable data file and documentation). National Center for Health Statistics, Centers for Disease Control and Prevention, Hyattsville, MDGoogle Scholar
  27. 27.
    Centers for Disease Control and Prevention (CDC) (2008) Behavioral Risk Factor Surveillance System Survey Questionnaire. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and PreventionGoogle Scholar
  28. 28.
    van Rooy FG, Smit LA, Houba R, Zaat VA, Rooyackers JM, Heederik DJ (2009) A cross-sectional study on lung function and respiratory symptoms among chemical workers producing diacetyl for food flavorings. Occup Environ Med 66: 105–110CrossRefPubMedGoogle Scholar
  29. 29.
    Sahakian N, White S, Park J-H, Cox-Ganser J, Kreiss K (2008) Identification of mold and dampness-associated respiratory morbidity in two schools: Comparison of questionnaire survey responses to national data. J Sch Health 78: 32–37CrossRefPubMedGoogle Scholar
  30. 30.
    Laney AS, Cragin LA, Blevins LZ, Sumner AD, Cox-Ganser JM, Kreiss K, Moffatt SG, Lohff CJ (2009) Sarcoidosis, asthma, and asthma-like symptoms among occupants of a historically water-damaged office building. Indoor Air 19: 83–90CrossRefPubMedGoogle Scholar
  31. 31.
    Henneberger PK, Olin AC, Andersson E, Hagberg S, Toren K (2005) The incidence of respiratory symptoms and diseases among pulp mill workers with peak exposures to ozone and other irritant gases. Chest 128: 3028–3037CrossRefPubMedGoogle Scholar
  32. 32.
    Ott MG, Klees JE, Poche SL (2000) Respiratory health surveillance in a toluene diisocyanate production unit, 1967–97: Clinical observations and lung function analyses. Occup Environ Med 57: 43–52CrossRefPubMedGoogle Scholar
  33. 33.
    Leroyer C, Perfetti L, Cartier A, Malo J-L (1998) Can reactive airways dysfunction syndrome (RADS) transform into occupational asthma due to “sensitization” to isocyanates? Thorax 53: 152–153CrossRefPubMedGoogle Scholar
  34. 34.
    Petsonk EL, Wang ML, Lewis DM, Siegel PD, Husberg BJ (2000) Asthma-like symptoms in wood product plant workers exposed to methylene diphenyl diisocyanate. Chest 118: 1183–1193CrossRefPubMedGoogle Scholar
  35. 35.
    Day GA, Stefaniak AB, Schuler CR, Stanton ML, Miller WE, Kreiss K, Hoover MD (2007) Exposure pathway assessment at a copper-beryllium alloy facility. Ann Occup Hyg 51: 67–80CrossRefPubMedGoogle Scholar
  36. 36.
    Poulos LM, O’Meara TJ, Hamilton RG, Tovey ER (2002) Inhaled latex allergen (Hevb1). J Allergy Clin Immunol 109: 701–706CrossRefPubMedGoogle Scholar
  37. 37.
    Redlich CA, Herrick CA (2008) Lung/skin connections in occupational lung disease. Curr Opin Allergy Clin Immunol 8: 115–119CrossRefPubMedGoogle Scholar
  38. 38.
    Cummings K, Day G, Henneberger P, Kitt M, Kreiss K, Schuler C (2007) Enhanced preventive program at a beryllium oxide ceramics facility reduces beryllium sensitization among new workers. Occup Environ Med 64: 134–140CrossRefPubMedGoogle Scholar
  39. 39.
    Woolhiser MR, Munson AE, Meade BJ (2000) Immunological responses of mice following administration of natural rubber latex proteins by different routes of exposure. Toxicol Sci 55: 343–351CrossRefPubMedGoogle Scholar
  40. 40.
    Tinkle SS, Antonini JM, Rich BA, Roberts JR, Salmen R, DePree K, Adkins EJ (2003) Skin as a route of exposure and sensitization in chronic beryllium disease. Environ Health Perspect 111: 1202–1208CrossRefPubMedGoogle Scholar
  41. 41.
    Bello D, Herrick CA, Smith TJ, Woskie SR, Steicher RP, Cullen MR, Liu Y, Redlich CA (2007) Skin exposure to isocyanates: Reasons for concern. Environ Health Perspect 115: 328–335CrossRefPubMedGoogle Scholar
  42. 42.
    Marks GB, Sunn SM, Woolcock AJ (1992) A scale for the measurement of quality of life in adults with asthma. J Clin Epidemiol 45: 461–472CrossRefPubMedGoogle Scholar
  43. 43.
    Ware J Jr, Kosinski M, Keller SD (1996) A 12-item short-form health survey: Construction of scales and preliminary tests of reliability and validity. Med Care 34: 220–233CrossRefPubMedGoogle Scholar
  44. 44.
    Gannon GF, Burge, S (1997) Serial peak expiratory flow measurement in the diagnosis of occupational asthma. Eur Respir J 24: 57s–63sGoogle Scholar
  45. 45.
    Hollander A, Heederik D, Brunekreef B (1998) Work-related changes in peak expiratory flow among laboratory animal workers. Eur Respir J 11: 929–936CrossRefPubMedGoogle Scholar
  46. 46.
    Hnizdo E, Yan T, Sircar K, Harber P, Fleming J, Glindmeyer HW (2007) Limits of longitudinal decline for the interpretation of annual changes in FEV1 in individuals. Occup Environ Med 64: 701–707CrossRefPubMedGoogle Scholar
  47. 47.
    Longitudinal Data Analysis (SPIROLA) software available at: http: //www.cdc.gov/ niosh/topics/spirometry/spirola.html (accessed 10 October 2008)Google Scholar
  48. 48.
    Bommarito L, Migliore E, Bugiani M, Heffler E, Guida G, Bucca C, de Marco R, Rolla G on behalf of ECHRS Turin, Italy Study Group (2008) Exhaled nitric oxide in a population sample of adults. Respiration 75: 386–392CrossRefPubMedGoogle Scholar
  49. 49.
    Lemiere C (2007) Induced sputum and exhaled nitric oxide as noninvasive markers of airway inflammation from work exposures. Curr Opin Allergy Clin Immunol 7: 133–137CrossRefPubMedGoogle Scholar
  50. 50.
    Lund MB, Oksne PI, Hamre R, Kongerud J (2000) Increased nitric oxide in exhaled air: An early marker of asthma in non-smoking aluminum potroom workers? Occup Environ Med 57: 274–278CrossRefPubMedGoogle Scholar
  51. 51.
    Maniscalco M, Grieco L, Galdi A, Lundberg JO, Sofia M (2004) Increase in exhaled nitric oxide in shoe and leather workers at the end of the work-shift. Occup Med (Lond) 54: 404–407CrossRefGoogle Scholar
  52. 52.
    Ulvestad B, Lund MB, Bakke B, Djupesland PG, Kongerud J, Boe J (2001) Gas and dust exposure in underground construction is associated with signs of airway inflammation. Eur Respir J 17: 416–421CrossRefPubMedGoogle Scholar
  53. 53.
    Kim JY, Wand MP, Hauser R, Mukherjee S, Herrick RF, Christiani DC (2003) The association of expired nitric oxide with occupational particulate metal exposure. Environ Health Perspect 111: 676–680CrossRefPubMedGoogle Scholar
  54. 54.
    Sundblad BM, Larsson BM, Palmberg L, Larsson K (2002) Exhaled nitric oxide and bronchial responsiveness in healthy subjects exposed to organic dust. Eur Respir J 20: 426–431CrossRefPubMedGoogle Scholar
  55. 55.
    Smit LA, Heederik D, Doekes G, Wouters IM (2009) Exhaled nitric oxide in endotoxinexposed adults: Effect modification by smoking and atopy. Occup Environ Med 66: 251–255CrossRefPubMedGoogle Scholar
  56. 56.
    Akpinar-Elci M, Siegel PD, Cox-Ganser JM, Stemple KJ, White SK, Hilsbos K, Weissman DN (2008) Respiratory inflammatory responses among occupants of a waterdamaged office building. Indoor Air 18: 125–130CrossRefPubMedGoogle Scholar
  57. 57.
    Goldoni M, Catalani S, De Palma G, Manini P, Acampa O, Corradi M, Bergonzi R, Apostoli P, Mutti A (2004) Exhaled breath condensate as a suitable matrix to assess lung dose and effects in workers exposed to cobalt and tungsten. Environ Health Perspect 112: 1293–1298CrossRefPubMedGoogle Scholar
  58. 58.
    Sikkeland LIB, Haug T, Strangeland AM, Flatberg G, Søstrand P, Halvorsen B, Kongerud J (2007) Airway inflammation in paper mill workers. J Occup Environ Med 49: 1135–1142CrossRefPubMedGoogle Scholar
  59. 59.
    Adelroth E, Hedlund U, Blomberg A, Helleday R, Ledin MC, Levin JO, Pourazar J, Sandström T, Järvholm B (2006) Airway inflammation in iron ore miners exposed to dust and diesel exhaust. Eur Respir J 27: 714–719CrossRefPubMedGoogle Scholar
  60. 60.
    Tanaka H, Saikai T, Sugawara H, Takeya I, Tsunematsu K, Matsuura A, Abe S (2002) Workplace-related chronic cough on a mushroom farm. Chest 122: 1080–1085CrossRefPubMedGoogle Scholar
  61. 61.
    Heldal KK, Halstensen AS, Thorn J, Eduard W, Halstensen TS (2003) Airway inflammation in waste handlers exposed to bioaerosols assessed by induced sputum. Eur Respir J 21: 641–645CrossRefPubMedGoogle Scholar
  62. 62.
    Murgia N, Muzi G, Dell’Omo M, Montuschi P, Melchiorri D, Ciabattoni G, Abbritti EP, Orazi N, Sapia IE, Abbritti G (2006) Induced sputum, exhaled breath condensate and nasal lavage fluid in electroplating workers exposed to chromium. Int J Immunopathol Pharmacol 19: 67–71PubMedGoogle Scholar
  63. 63.
    Kreiss K, Day G, Schuler C (2007) Beryllium: A modern industrial hazard. Annu Rev Public Health 28: 259–277CrossRefPubMedGoogle Scholar
  64. 64.
    Redlich CA, Stowe MH, Wisnewski AV, Eisen EA, Karol MH, Lemus R, Holm CT, Chung JS, Sparer J, Liu Y, Woskie SR et al (2001) Subclinical immunologic and physiologic responses in hexamethylene diisocyanate-exposed auto body shop workers. Am J Ind Med 39: 587–597CrossRefPubMedGoogle Scholar
  65. 65.
    Wisnewski AV, Herrick CA, Liu Q, Chen L, Bottomly K, Redlich CA (2003) Human gamma/delta T cell proliferation and IFN-gamma production induced by hexamethylene diisocyanate. J Allergy Clin Immunol 112: 538–546CrossRefPubMedGoogle Scholar
  66. 66.
    Shaaban R, Zureik M, Soussan D, Neukirch C, Heinrich J, Sunyer J, Wjst M, Cerveri I, Pin I, Bousquet J et al (2008) Rhinitis and onset of asthma: A longitudinal populationbased study. Lancet 372: 1049–1057CrossRefPubMedGoogle Scholar
  67. 67.
    Heederik D, van Rooy F (2008) Exposure assessment should be integrated in studies on the prevention and management of occupational asthma. Occup Environ Med 65: 149–150CrossRefPubMedGoogle Scholar
  68. 68.
    Allmers HR, Brehler Z, Chen M, Raulf-Heimsoth H, Fels X, Baur X (1998) Reduction of latex aeroallergens and latex-specific IgE antibodies in sensitized workers after removal of powdered natural rubber latex gloves in a hospital. J Allergy Clin Immunol 102: 841–846CrossRefPubMedGoogle Scholar
  69. 69.
    Jones KP, Rolf S, Stingl C, Edmunds D, Davies BH (2004) Longitudinal study of sensitization to natural rubber latex among dental school students using powder-free gloves. Ann Occup Hyg 48: 455–457CrossRefPubMedGoogle Scholar
  70. 70.
    Brosseau LM, Parker DL, Lazovich D, Milton T, Dugan S (2002) Designing intervention effectiveness studies for occupational health and safety: The Minnesota Wood Dust Study. Am J Ind Med 41: 54–61CrossRefPubMedGoogle Scholar
  71. 71.
    Lazovich D, Murray DM, Brosseau LM, Parker DL, Milton FT, Dugan SK (2002) Sample size considerations for studies of intervention efficacy in the occupational setting. Ann Occup Hyg 46: 219–227CrossRefPubMedGoogle Scholar
  72. 72.
    Lazovich D, Parker DL, Brosseau LM, Milton FT, Dugan SK, Pan W, Hock L (2002) Effectiveness of a worksite intervention to reduce an occupational exposure: The Minnesota Wood Dust Study. Am J Public Health 92: 1498–1505CrossRefPubMedGoogle Scholar
  73. 73.
    Meijster T, Warren N, Heederik, D, Tielemans E (2009) Comparison of the effect of different intervention strategies for occupational asthma on the burden of disease in bakers. Occup Environ Med 66: 810–817CrossRefPubMedGoogle Scholar
  74. 74.
    Meijster T, Tielemans E, Schinkel J, Heederik D (2008) Evaluation of peak exposures in the Dutch flour processing industry: Implications for intervention strategies. Ann Occup Hyg 52: 587–596CrossRefPubMedGoogle Scholar
  75. 75.
    Pronk A, Tielemans E, Skarping G, Bobeldijk I, Van Hemmen J, Heederik D, Preller L (2006) Inhalation exposure to isocyanates of car body repair shop workers and industrial spray painters. Ann Occup Hyg 50: 1–14CrossRefPubMedGoogle Scholar
  76. 76.
    Sparer J, Stowe MH, Bello D, Liu Y, Gore RJ, Youngs F, Cullen MR, Redlich CA, Mskie SR (2004) Isocyanate exposures in autobody shop work: The SPRAY study. J Occup Environ Hyg 9: 570–581CrossRefGoogle Scholar
  77. 77.
    International Standardization Organization (1992) Air quality — particle size fraction definitions for health related sampling. mGoogle Scholar
  78. 78.
    Perkins JL (Editor) (1997) Modern industrial hygiene: Vol. I Recognition, evaluation of chemical agents. American Conference of Governmental Industrial Hygienists, Cincinnati, OH, USAGoogle Scholar
  79. 79.
    Perkins JL (Editor) (2002) Modern Industrial Hygiene: Vol. II Biological Aspects. American Conference of Governmental Industrial Hygienists, Cincinnati, OH, USAGoogle Scholar
  80. 80.
    O’Meara TJ, DeLucca S, Sporik R, Graham A, Tovey E (1998) Detection of inhaled cat allergen. Lancet 351: 1488–1489CrossRefPubMedGoogle Scholar
  81. 81.
    Graham JA, Pavlicek PK, Sercombe JK, Xavier ML, Tovey ER (2000) The nasal air sampler: A device for sampling inhaled aeroallergens. Ann Allergy Asthma Immunol 84: 599–604CrossRefPubMedGoogle Scholar
  82. 82.
    Renström A, Karlsson AS, Tovey E (2002) Nasal air sampling used for the assessment of occupational allergen exposure and the efficacy of respiratory protection. Clin Exp Allergy 32: 1769–1775CrossRefPubMedGoogle Scholar
  83. 83.
    Schlünssen V, Sigsgaard T, Schaumburg I, Kromhout H (2004) Cross-shift changes in FEV1 in relation to wood dust exposure: The implications of different exposure assessment methods. Occup Environ Med 61: 824–830CrossRefPubMedGoogle Scholar
  84. 84.
    Gordon S, Tee RD, Lowson D, Newman Taylor AJ (1992) Comparison and optimization of filter elution methods for the measurement of airborne allergens. Ann Occup Hyg 36: 575–587CrossRefGoogle Scholar
  85. 85.
    Hollander A, Gordon S, Renström A, Thissen J, Doekes G, Larsson PH, Malmberg P, Venables KM, Heederik D (1999) Comparison of methods to assess airborne rat and mouse allergen levels I. Analysis of air samples. Allergy 54: 142–149CrossRefPubMedGoogle Scholar
  86. 86.
    Renström A, Gordon S, Larsson PH, Tee RD, Newman Taylor AJ, Malmberg P (1997) Comparison of a radioallergosorbent (RAST) inhibition method and a monoclonal enzyme-linked immunosorbent assay (ELISA) for aeroallergen measurement. Clin Exp Allergy 27: 1314–1321CrossRefPubMedGoogle Scholar
  87. 87.
    Renström A, Hollander A, Gordon S, Thissen J, Doekes G, Larsson P, Venables K, Malmberg P, Heederik D (1999) Comparison of methods to assess airborne rat or mouse allergen levels II. Factors influencing antigen detection. Allergy 54: 150–157CrossRefPubMedGoogle Scholar
  88. 88.
    Zock JP, Hollander A, Doekes G, Heederik D (1996) The influence of different filter elution methods on the measurement of airborne potato antigens. Am Ind Hyg Assoc J 57: 567–570Google Scholar
  89. 89.
    Lillienberg L, Baur X, Doekes G, Belin L, Raulf-Heimsoth M, Sander I, Ståhl A, Thissen J, Heedrik D (2000) Comparison of four methods to assess fungal α-amylase in flour dust. Ann Occup Hyg 44: 427–433PubMedGoogle Scholar
  90. 90.
    Preller L, Heederik D, Kromhout H, Boleij JS, Tielen MJ (1995) Determinants of dust and endotoxin exposure of pig farmers: Development of a control strategy using empirical modeling. Ann Occup Hyg 39: 545–557PubMedGoogle Scholar
  91. 91.
    Seixas NS, Sheppard L (1996) Maximizing accuracy and precision using individual and grouped exposure assessments. Scand J Work Environ Health 22: 94–101PubMedGoogle Scholar
  92. 92.
    Houba R, Heederik DJ, Doekes G, van Run PE (1996) Exposure-sensitization relationship for α-amylase allergens in the baking industry. Am J Respir Crit Care Med 154: 130–136PubMedGoogle Scholar
  93. 93.
    Houba R, Heederik D, Doekes G (1998) Wheat sensitization and work related symptoms in the baking industry are preventable: An epidemiological study. Am J Respir Crit Care Med 158: 1499–1503PubMedGoogle Scholar
  94. 94.
    Heederik D, Venables KM, Malmberg P, Hollander A, Karlsson AS, Renström A, Doekes G, Nieuwenhijsen M, Gordon S (1999) Exposure-response relationships for work-related sensitization in workers exposed to rat urinary allergens: Results from a pooled study. J Allergy Clin Immunol 103: 678–684CrossRefPubMedGoogle Scholar
  95. 95.
    Hollander A, Heederik D, Doekes G (1997) Respiratory allergy to rats: Exposureresponse relationships in laboratory animal workers. Am J Respir Crit Care Med 155: 562–567PubMedGoogle Scholar
  96. 96.
    Nieuwenhuijsen MJ, Putcha V, Gordon S, Heederik D, Venables KM, Cullinan P, Newman-Taylor AJ (2003) Exposure-response relations among laboratory animal workers exposed to rats. Occup Environ Med 60: 104–108CrossRefPubMedGoogle Scholar
  97. 97.
    Becklake M (1999) Epidemiological approaches in occupational asthma. In: IL Bernstein, M Chan-Yeung, JL Malo, DI Bernstein (eds): Asthma in the Workplace, 2nd edn. Marcel Dekker, New YorkGoogle Scholar
  98. 98.
    Marine WM, Gurr D, Jacobsen M (1988) Clinically important respiratory effects of dust exposure and smoking in British coal miners. Am Rev Respir Dis 137: 106–112PubMedGoogle Scholar
  99. 99.
    Rose G (1981) Strategy of prevention: Lessons from cardiovascular disease. Br Med J (Clin Res Ed) 282: 1847–1851CrossRefGoogle Scholar
  100. 100.
    Berry G (1974) Longitudinal observations, their usefulness and limitations with special reference to the forced expiratory volume. Bull Physiopathol Respir 10: 643–655Google Scholar
  101. 101.
    Schlesselman JJ (1973) Planning a longitudinal study. I. Sample size determination. J Chronic Dis 26: 553–560CrossRefPubMedGoogle Scholar
  102. 102.
    Schlesselman JJ (1973) Planning a longitudinal study. II. Frequency of measurement and study duration. J Chronic Dis 26: 561–570CrossRefPubMedGoogle Scholar
  103. 103.
    Douwes J, Gibson P, Pekkanen J, Pearce N (2002) Non-eosinophilic asthma: Importance and possible mechanisms. Thorax 57: 643–648CrossRefPubMedGoogle Scholar
  104. 104.
    Park JH, Cox-Ganser J, Kreiss K, White S, Rao C (2008) Hydrophilic fungi and ergosterol associated with respiratory illness in a water-damaged building. Environ Health Perspect 116: 45–50CrossRefPubMedGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel 2010

Authors and Affiliations

  • Kathleen Kreiss
    • 1
  • Dick Heederik
    • 2
  1. 1.National Institute for Occupational Safety and HealthMorgantownUSA
  2. 2.Division of Environmental Epidemiology, Institute for Risk Assessment SciencesUniversity of UtrechtUtrechtThe Netherlands

Personalised recommendations