Asthma-like diseases in agriculture

  • Torben Sigsgaard
  • Øyvind Omland
  • Peter S. Thorne
Part of the Progress in Inflammation Research book series (PIR)


Although many studies on asthma have been conducted in farming populations, no longitudinal studies have been published so far. Smoking, work in pig barns, and crop farming together with exposure to endotoxin and quaternary ammonium have been described as environmental risk factors for self-reported asthma and/or wheeze in cross-sectional studies. The prevalence of selfreported asthma has been found to range from 0.7% in female greenhouse workers to 21% in Danish smoking female farming students. Exposure in farming is diverse, but dominated by organic dust containing high amounts of compounds known to trigger the innate immune system. This is confirmed by a wide range of human experimentation where naïve persons have been introduced to swine confinements. Cross-sectional data suggest a protective effect of farming on allergy. However, differences in the diagnostic procedure and the predominantly wheezy asthma type in farming concomitant with a lower rate of allergic asthma makes the comparison difficult. Furthermore, healthy worker selection, misclassification, age differences, difference in time of study and small study populations, resulting in low statistical power, might be factors explaining the findings. Welldesigned longitudinal studies of the incidence of carefully defined phenotypes of asthma and risk factors are needed to clarify the risk of asthma, or wheezy phenotypes related to farming.


Respir Crit Occupational Asthma Bronchial Hyperresponsiveness Endotoxin Concentration Organic Dust 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Monso E, Schenker M, Radon K, Riu E, Magarolas R, McCurdy S et al. Region-related risk factors for respiratory symptoms in European and Californian farmers. Eur Respir J 2003; 21(2): 323–331PubMedGoogle Scholar
  2. 2.
    Monso E, Riu E, Radon K, Magarolas R, Danuser B, Iversen M et al. Chronic obstructive pulmonary disease in never-smoking animal farmers working inside confinement buildings. Am J Ind Med 2004; 43: 357–362Google Scholar
  3. 3.
    Iversen M, Dahl R, Korsgaard J, Hallas T, Jensen EJ. Respiratory symptoms in Danish farmers: An epidemiological study of risk factors. Thorax 1988; 43: 872–877PubMedGoogle Scholar
  4. 4.
    Dalphin JC, Debieuvre D, Pernet D, Maheu MF, Polio JC, Toson B et al. Prevalence and risk factors for chronic bronchitis and farmer’s lung in French dairy farmers. Br J Ind Med 1993; 50(10): 941–944PubMedGoogle Scholar
  5. 5.
    Terho EO. Work-related respiratory disorders among Finnish farmers. Am J Ind Med 1990; 18(3): 269–272PubMedGoogle Scholar
  6. 6.
    Senthilselvan A, Chenard L, Ulmer K, Gibson-Burlinguette N, Leuschen C, Dosman JA. Excess respiratory symptoms in full-time male and female workers in large-scale swine operations. Chest 2007; 131(4): 1197–1204PubMedGoogle Scholar
  7. 7.
    Von Essen SG, Scheppers LA, Robbins RA, Donham KJ. Respiratory tract inflammation in swine confinement workers studied using induced sputum and exhaled nitric oxide. J Toxicol Clin Toxicol 1998; 36(6): 557–565Google Scholar
  8. 8.
    Dalphin JC. [In the agricultural environment there is asthma and asthma... or the paradox of agricultural asthma]. Rev Mal Respir 2007; 24(9): 1083–1086PubMedGoogle Scholar
  9. 9.
    Tutluoglu B, Atis S, Anakkaya AN, Altug E, Tosun GA, Yaman M. Sensitization to horse hair, symptoms and lung function in grooms. Clin Exp Allergy 2002; 32(8): 1170–1173PubMedGoogle Scholar
  10. 10.
    Heederik D, Sigsgaard T. Respiratory allergy in agricultural workers: Recent developments. Curr Opin Allergy Clin Immunol 2005; 5(2): 129–134PubMedGoogle Scholar
  11. 11.
    A plea to abandon asthma as a disease concept. Lancet 2006; 368(9537): 705Google Scholar
  12. 12.
    Douwes J, Gibson P, Pekkanen J, Pearce N. Non-eosinophilic asthma: Importance and possible mechanisms. Thorax 2002; 57(7): 643–648PubMedGoogle Scholar
  13. 13.
    Wenzel SE. Asthma: Defining of the persistent adult phenotypes. Lancet 2006; 368(9537): 804–813PubMedGoogle Scholar
  14. 14.
    Karjalainen A, Kurppa K, Virtanen S, Keskinen H, Nordman H. Incidence of occupational asthma by occupation and industry in Finland. Am J Ind Med 2000; 37(5): 451–458PubMedGoogle Scholar
  15. 15.
    Baur X, Degens P, Weber K. Occupational obstructive airway diseases in Germany. Am J Ind Med 1998; 33(5): 454–462PubMedGoogle Scholar
  16. 16.
    Toren K. Self reported rate of occupational asthma in Sweden 1990-2. Occup Environ Med 1996; 53(11): 757–761PubMedGoogle Scholar
  17. 17.
    Rosenman KD, Reilly MJ, Kalinowski DJ. A state-based surveillance system for workrelated asthma. J Occup Environ Med 1997; 39(5): 415–425PubMedGoogle Scholar
  18. 18.
    Kimbell-Dunn M, Bradshaw L, Slater T, Erkinjuntti-Pekkanen R, Fishwick D, Pearce N. Asthma and allergy in New Zealand farmers. Am J Ind Med 1999; 35(1): 51–57PubMedGoogle Scholar
  19. 19.
    Danuser B, Weber C, Kunzli N, Schindler C, Nowak D. Respiratory symptoms in Swiss farmers: An epidemiological study of risk factors. Am J Ind Med 2001; 39(4): 410–418PubMedGoogle Scholar
  20. 20.
    Radon K, Danuser B, Iversen M, Jorres R, Monso E, Opravil U et al. Respiratory symptoms in European animal farmers. Eur Respir J 2001; 17(4): 747–754PubMedGoogle Scholar
  21. 21.
    Merchant JA, Stromquist AM, Kelly KM, Zwerling C, Reynolds SJ, Burmeister L. Chronic disease and injury in an agricultural county: The Keokuk County Rural Health Cohort Study. J Rural Health 2002; 18: 521–535PubMedGoogle Scholar
  22. 22.
    Eduard W, Omenaas E, Bakke PS, Douwes J, Heederik D. Atopic and non-atopic asthma in a farming and a general population. Am J Ind Med 2004; 46(4): 396–399Google Scholar
  23. 23.
    Smit LA, Zuurbier M, Doekes G, Wouters IM, Heederik D, Douwes J. Hay fever and asthma symptoms in conventional and organic farmers in The Netherlands. Occup Environ Med 2007; 64(2): 101–107PubMedGoogle Scholar
  24. 24.
    Sigsgaard T, Hjort C, Omland Ø, Miller MR, Pedersen OF. Respiratory health and allergy among young farmers and non-farming rural males. J Agromed 1997; 4: 63–78Google Scholar
  25. 25.
    Omland O, Sigsgaard T, Hjort C, Pedersen OF, Miller MR. Lung status in young Danish rurals: The effect of farming exposure on asthma-like symptoms and lung function. Eur Respir J 1999; 13(1): 31–37PubMedGoogle Scholar
  26. 26.
    Mustajbegovic J, Zuskin E, Schachter EN, Kern J, Vrcic-Keglevic M, Vitale K et al. Respiratory findings in livestock farmworkers. J Occup Environ Med 2001; 43(6): 576–584PubMedGoogle Scholar
  27. 27.
    Kern J, Mustajbegovic J, Schachter EN, Zuskin E, Vrcic-Keglevic M, Ebling Z et al. Respiratory findings in farmworkers. J Occup Environ Med 2001; 43(10): 905–913PubMedGoogle Scholar
  28. 28.
    Vogelzang PF, van der Gulden JW, Tielen MJ, Folgering H, van Schayck CP. Healthbased selection for asthma, but not for chronic bronchitis, in pig farmers: An evidencebased hypothesis. Eur Respir J 1999; 13(1): 187–189PubMedGoogle Scholar
  29. 29.
    Dalphin JC, Dubiez A, Monnet E, Gora D, Westeel V, Pernet D et al. Prevalence of asthma and respiratory symptoms in dairy farmers in the French province of the Doubs. Am J Respir Crit Care Med 1998; 158(5 Pt 1): 1493–1498PubMedGoogle Scholar
  30. 30.
    Zuskin E, Schachter EN, Mustajbegovic J. Respiratory function in greenhouse workers. Int Arch Occup Environ Health 1993; 64: 521–526PubMedGoogle Scholar
  31. 31.
    Rees D, Nelson G, Kielkowski D, Wasserfall C, da Costa A. Respiratory health and immunological profile of poultry workers. S Afr Med J 1998; 88(9): 1110–1117PubMedGoogle Scholar
  32. 32.
    Chatzi L, Prokopakis E, Tzanakis N, Alegakis A, Bizakis I, Siafakas N et al. Allergic rhinitis, asthma, and atopy among grape farmers in a rural population in Crete, Greece. Chest 2005; 127(1): 372–378PubMedGoogle Scholar
  33. 33.
    Jenkins PL, Earle-Richardson G, Bell EM, May JJ, Green A. Chronic disease risk in central New York dairy farmers: Results from a large health survey 1989–1999. Am J Ind Med 2005; 47(1): 20–26PubMedGoogle Scholar
  34. 34.
    Douwes J, Travier N, Huang K, Cheng S, McKenzie J, Le GG et al. Lifelong farm exposure may strongly reduce the risk of asthma in adults. Allergy 2007; 62(10): 1158–1165PubMedGoogle Scholar
  35. 35.
    Vogelzang PFJ, van der Gulden JWJ, Preller L, Tielen MJM, van Schayck CP, Folgering H. Bronchial hyperresponsiveness and exposure in pig farmers. Int Arch Occup Environ Health 1997; 70: 327–333PubMedGoogle Scholar
  36. 36.
    Thorne PS, Ansley AC, Perry SS. Concentrations of bioaerosols, odors, and hydrogen sulfide inside and downwind from two types of swine livestock operations. J Occup Environ Hyg 2009; 6(4): 211–220PubMedGoogle Scholar
  37. 37.
    Schiffman SS, Bennett J.L., Raymer JH. Quantification of odors and odorants from swine operatins in North Carolina. Agric Forest Meteorol 2001; 108: 213–240Google Scholar
  38. 38.
    Gilchrist MJ, Greko C, Wallinga DB, Beran GW, Riley DG, Thorne PS. The potential role of concentrated animal feeding operations in infectious disease epidemics and antibiotic resistance. Environ Health Perspect 2007; 115(2): 313–316PubMedGoogle Scholar
  39. 39.
    Gibbs SG, Green CF, Tarwater PM, Mota LC, Mena KD, Scarpino PV. Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environ Health Perspect 2006; 114(7): 1032–1037PubMedGoogle Scholar
  40. 40.
    Webster R, Hulse D. Controlling avian flu at the source. Nature 2005; 435(7041): 415–416PubMedGoogle Scholar
  41. 41.
    Hadina S, Weiss JP, McCray PB Jr, Kulhankova K, Thorne PS. MD-2-dependent pulmonary immune responses to inhaled lipooligosaccharides: Effect of acylation state. Am J Respir Cell Mol Biol 2008; 38(6): 647–654PubMedGoogle Scholar
  42. 42.
    Spaan S, Heederik DJ, Thorne PS, Wouters IM. Optimization of airborne endotoxin exposure assessment: Effects of filter type, transport conditions, extraction solutions, and storage of samples and extracts. Appl Environ Microbiol 2007; 73(19): 6134–6143Google Scholar
  43. 43.
    Spaan S, Doekes G, Heederik D, Thorne PS, Wouters IM. Effect of extraction and assay media on analysis of airborne endotoxin. Appl Environ Microbiol 2008; 74(12): 3804–3811PubMedGoogle Scholar
  44. 44.
    Saito R, Cranmer BK, Tessari JD, Larsson L, Mehaffy JM, Keefe TJ et al. Recombinant factor C (rFC) assay and gas chromatography/mass spectrometry (GC/MS) analysis of endotoxin variability in four agricultural dusts. Ann Occup Hyg 2009; 53(7): 713–722PubMedGoogle Scholar
  45. 45.
    Tamura H, Arimoto Y, Tanaka S, Yoshida M, Obayashi T, Kawai T. Automated kinetic assay for endotoxin and (1→3)-beta-D-glucan in human blood. Clin Chim Acta 1994; 226(1): 109–112PubMedGoogle Scholar
  46. 46.
    Douwes J, Doekes G, Montijn R, Heederik D, Brunekreef B. Measurement of beta(1→3)-glucans in occupational and home environments with an inhibition enzyme immunoassay. Appl Environ Microbiol 1996; 62(9): 3176–3182PubMedGoogle Scholar
  47. 47.
    Milton DK, Alwis KU, Fisette L, Muilenberg M. Enzyme-linked immunosorbent assay specific for (1→6) branched, (1→3)-beta-D-glucan detection in environmental samples. Appl Environ Microbiol 2001; 67(12): 5420–5424PubMedGoogle Scholar
  48. 48.
    Sander I, Fleischer C, Borowitzki G, Bruning T, Raulf-Heimsoth M. Development of a two-site enzyme immunoassay based on monoclonal antibodies to measure airborne exposure to (1→3)-beta-D-glucan. J Immunol Methods 2008; 337(1): 55–62PubMedGoogle Scholar
  49. 49.
    Blanc PD, Eisner MD, Katz PP, Yen IH, Archea C, Earnest G et al. Impact of the home indoor environment on adult asthma and rhinitis. J Occup Environ Med 2005; 47(4): 362–372PubMedGoogle Scholar
  50. 50.
    Schwartz J, Morris R. Air pollution and hospital admissions for cardiovasclar disease in Detroit, Michigan. Am J Epidemiol 1995; 142: 23–35PubMedGoogle Scholar
  51. 51.
    Jagielo PJ, Thorne PS, Watt JL, Fress KL, Quinn TJ, Schwartz DA. Grain dust and endotoxin inhalation challenges produce similar inflammatory response in normal subjects. Chest 1996; 110: 263–270PubMedGoogle Scholar
  52. 52.
    Blaski CA, Clapp WD, Thorne PS, Quinn TJ, Watt JL, Fress KL et al. The role of atopy in grain dust-induced airway disease. Am J Respir Crit Care Med 1996; 154: 334–340PubMedGoogle Scholar
  53. 53.
    Deetz DC, Jagielo PJ, Quinn TJ, Thorne PS, Bleuer SA, Schwartz DA. The kinetics of grain dust-induced inflammation of the lower respiratory tract. Am J Respir Crit Care Med 1997; 155: 254–259PubMedGoogle Scholar
  54. 54.
    Rylander R, Peterson Y, Donham KJ. Health effects of organic dust in the farm environment. Am J Ind Med 1986; 10: 199–200Google Scholar
  55. 55.
    Heederik D, van ZR, Brouwer R. Across-shift lung function changes among pig farmers. Am J Ind Med 1990; 17(1): 57–58PubMedGoogle Scholar
  56. 56.
    Muller-Suur C, Larsson K, Malmberg P, Larsson PH. Increased number of activated lymphocytes in human lung following swine dust inhalation. Eur Respir J 1997; 10(2): 376–380PubMedGoogle Scholar
  57. 57.
    Zhiping W, Malmberg P, Larsson BM, Larsson KA, Larsson L, Saraf A. Exposure to bacteria in swine-house dust and acute inflammatory reactions in humans. Am J Respir Crit Care Med 1996; 154: 1261–1266PubMedGoogle Scholar
  58. 58.
    Wang Z, Larsson KA, Palmberg L, Malmberg P, Larsson P, Larsson L. Inhalation of swine dust induces cytokine release in the upper and lower airways. Eur Respir J 1997; 10: 381–387PubMedGoogle Scholar
  59. 59.
    Larsson KA, Eklund AG, Hansson L-O, Isaksson B-M, Malmberg PO. Swine dust causes intensive airways inflammation in healthy subjects. Am J Respir Crit Care Med 1994; 150: 973–977PubMedGoogle Scholar
  60. 60.
    Malmberg P, Larsson K. Acute exposure to to swine dust causes bronchial hyperresponsiveness in healthy subjects. Eur Respir J 1993; 6: 400–404PubMedGoogle Scholar
  61. 61.
    O’Sullivan S, Dahlén S-E, Larsson KA, Larsson BM, Malmberg P, Kumlin M et al. Exposure of healthy volunteers to swine house dust increases formation of leucotrienes, prostaglandin D-2 and bronchial responsiveness to methacholine. Thorax 1998; 53: 1041–1044PubMedGoogle Scholar
  62. 62.
    Palmberg L, Larssson BM, Malmberg P, Larsson K. Airway responses of healthy farmers and nonfarmers to exposure in a swine confinement building. Scand J Work Environ Health 2002; 28(4): 256–263PubMedGoogle Scholar
  63. 63.
    Hoffmann HJ, Iversen M, Sigsgaard T, Omland O, Takai H, Bonefeld-Jorgensen E et al. A single exposure to organic dust of non-naive non-exposed volunteers induces long-lasting symptoms of endotoxin tolerance. Int Arch Allergy Immunol 2005; 138(2): 121–126PubMedGoogle Scholar
  64. 64.
    Hoffmann HJ, Iversen M, Brandslund I, Sigsgaard T, Omland O, Oxvig C et al. Plasma C3d levels of young farmers correlate with respirable dust exposure levels during normal work in swine confinement buildings. Ann Agric Environ Med 2003; 10(1): 53–60PubMedGoogle Scholar
  65. 65.
    Thorne PS. Inhalation toxicology models of endotoxin-and bioaerosol-induced inflammation. Toxicology 2000; 152(1–3): 13–23PubMedGoogle Scholar
  66. 66.
    Jagielo PJ, Thorne PS, Watt JL, Frees KL, Quinn TJ, Schwartz DA. Grain dust and endotoxin inhalation challenges produce similar inflammatory responses in normal subjects. Chest 1996; 110(1): 263–270PubMedGoogle Scholar
  67. 67.
    Schwartz DA, Thorne PS, Jagielo PJ, White GE, Bleuer SA, Frees KL. Endotoxin responsiveness and grain dust-induced inflammation in the lower respiratory tract. Am J Physiol 1994; 267(5 Pt 1): L609–L617PubMedGoogle Scholar
  68. 68.
    Thorne PS, McCray PB, Howe TS, O’Neill MA. Early-onset inflammatory responses in vivo to adenoviral vectors in the presence or absence of lipopolysaccharide-induced inflammation. Am J Respir Cell Mol Biol 1999; 20(6): 1155–1164PubMedGoogle Scholar
  69. 69.
    Lorenz E, Jones M, Wohlford-Lenane C, Meyer N, Frees KL, Arbour NC et al. Genes other than TLR4 are involved in the response to inhaled LPS. Am J Physiol Lung Cell Mol Physiol 2001; 281(5): L1106–L1114PubMedGoogle Scholar
  70. 70.
    Gioannini TL, Weiss JP. Regulation of interactions of Gram-negative bacterial endotoxins with mammalian cells. Immunol Res 2007; 39(1–3): 249–260Google Scholar
  71. 71.
    Gioannini TL, Teghanemt A, Zhang D, Coussens NP, Dockstader W, Ramaswamy S et al. Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA 2004; 101(12): 4186–4191PubMedGoogle Scholar
  72. 72.
    Jia HP, Kline JN, Penisten A, Apicella MA, Gioannini TL, Weiss J et al. Endotoxin responsiveness of human airway epithelia is limited by low expression of MD-2. Am J Physiol Lung Cell Mol Physiol 2004; 287(2): L428–L437PubMedGoogle Scholar
  73. 73.
    Delayre-Orthez C, Becker J, de BF, Frossard N, Pons F. Exposure to endotoxins during sensitization prevents further endotoxin-induced exacerbation of airway inflammation in a mouse model of allergic asthma. Int Arch Allergy Immunol 2005; 138(4): 298–304PubMedGoogle Scholar
  74. 74.
    Watanabe J, Miyazaki Y, Zimmerman GA, Albertine KH, McIntyre TM. Endotoxin contamination of ovalbumin suppresses murine immunologic responses and development of airway hyper-reactivity. J Biol Chem 2003; 278(43): 42361–42368PubMedGoogle Scholar
  75. 75.
    Ormstad H, Groeng EC, Duffort O, Lovik M. The effect of endotoxin on the production of IgE, IgG1 and IgG2a antibodies against the cat allergen Fel d 1 in mice. Toxicology 2003; 188(2–3): 309–318PubMedGoogle Scholar
  76. 76.
    Pirie RS, Dixon PM, McGorum BC. Endotoxin contamination contributes to the pulmonary inflammatory and functional response to Aspergillus fumigatus extract inhalation in heaves horses. Clin Exp Allergy 2003; 33(9): 1289–1296Google Scholar
  77. 77.
    Kulhankova K, George CL, Kline JN, Snyder JM, Darling M, Field EH et al. Early-life co-administration of cockroach allergen and endotoxin augments pulmonary and systemic responses. Clin Exp Allergy 2009; 39(7): 1069–1079PubMedGoogle Scholar
  78. 78.
    Braun-Fahrlander C. The role of the farm environment and animal contact for the development of asthma and allergies. Clin Exp Allergy 2001; 31(12): 1799–1803PubMedGoogle Scholar
  79. 79.
    Braun-Fahrlander C, Riedler J, Herz U, Eder W, Waser M, Grize L et al. Environmental exposure to endotoxin and its relation to asthma in school-age children. N Engl J Med 2002; 347(12): 869–877PubMedGoogle Scholar
  80. 80.
    Merchant JA, Naleway AL, Svendsen ER, Kelly KM, Burmeister LF, Stromquist AM et al. Asthma and farm exposures in a cohort of rural Iowa children. Environ Health Perspect 2005; 113(3): 350–356PubMedGoogle Scholar
  81. 81.
    Portengen L, Sigsgaard T, Omland O, Hjort C, Heederik D, Doekes G. Low prevalence of atopy in young Danish farmers and farming students born and raised on a farm. Clin Exp Allergy 2002; 32(2): 247–253PubMedGoogle Scholar
  82. 82.
    Eduard W, Douwes J, Omenaas E, Heederik D. Do farming exposures cause or prevent asthma? Results from a study of adult Norwegian farmers. Thorax 2004; 59(5): 381–386PubMedGoogle Scholar
  83. 83.
    Douwes J, Travier N, Huang K, Cheng S, McKenzie J, Le GG et al. Lifelong farm exposure may strongly reduce the risk of asthma in adults. Allergy 2007; 62(10): 1158–1165PubMedGoogle Scholar
  84. 84.
    Smit LA, Heederik D, Doekes G, Blom C, van Z.I, Wouters IM. Exposure-response analysis of allergy and respiratory symptoms in endotoxin-exposed adults. Eur Respir J 2008; 31(6): 1241–1248PubMedGoogle Scholar
  85. 85.
    Castellan RM, Olenchock SA, Kinsley KB, Hankinson JL. Inhaled endotoxin and decreased spirometric values. N Engl J Med 1987; 317: 605–610PubMedGoogle Scholar
  86. 86.
    Sigsgaard T, Brandslund I, Omland O, Hjort C, Lund ED, Pedersen OF et al. S and Z alpha1-antitrypsin alleles are risk factors for bronchial hyperresponsiveness in young farmers: An example of gene/environment interaction. Eur Respir J 2000; 16(1): 50–55PubMedGoogle Scholar
  87. 87.
    Sigsgaard T, Brandslund I, Lund E, Rasmussen JB, Varming H. Low normal alpha-1-antitrypsin serum concentrations and MZ phenotype are associated with byssinosis and familial allergy in cotton mill workers. Pharmacogenetics 1994; 4: 135–141PubMedGoogle Scholar
  88. 88.
    Alexis N, Eldridge M, Reed W, Bromberg P, Peden DB. CD14-dependent airway neutrophil response to inhaled LPS: Role of atopy. J Allergy Clin Immunol 2001; 107(1): 31–35PubMedGoogle Scholar
  89. 89.
    Blaski CA, Clapp WD, Thorne PS, Quinn TJ, Watt JL, Fress KL et al. The role of atopy in grain dust-induced airway disease. Am J Respir Crit Care Med 1996; 154: 334–340PubMedGoogle Scholar
  90. 90.
    Sigsgaard T, Bonefeld-Jorgensen EC, Kjaergaard SK, Mamas S, Pedersen OF. Cytokine release from the nasal mucosa and whole blood after experimental exposures to organic dusts. Eur Respir J 2000; 16(1): 140–145PubMedGoogle Scholar
  91. 91.
    Kruger T, Sigsgaard T, Bonefeld-Jorgensen EC. Ex vivo induction of cytokines by mould components in whole blood of atopic and non-atopic volunteers. Cytokine 2004; 25(2): 73–84Google Scholar
  92. 92.
    Sigsgaard T, Abell A, Jensen LD, Malmros P. Lung function changes among recycling workers exposed to organic dust. Am J Ind Med 1994; 25: 69–72PubMedGoogle Scholar
  93. 93.
    Arbour NC, Lorenz E, Schutte BC, Zabner J, Kline JN, Jones M, Frees K, Watt JL, Schwartz DA. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 2000; 25(2): 187–191PubMedGoogle Scholar
  94. 94.
    Raby BA, Klimecki WT, Laprise C, Renaud Y, Faith J, Lemire M et al. Polymorphisms in toll-like receptor 4 are not associated with asthma or atopy-related phenotypes. Am J Respir Crit Care Med 2002; 166(11): 1449–1456PubMedGoogle Scholar
  95. 95.
    Eder W, Klimecki W, Yu L, von ME, Riedler J, Braun-Fahrlander C et al. Toll-like receptor 2 as a major gene for asthma in children of European farmers. J Allergy Clin Immunol 2004; 113(3): 482–488PubMedGoogle Scholar
  96. 96.
    Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: The Toll-like receptors and their transducers. J Leukoc Biol 2003; 74(4): 479–485PubMedGoogle Scholar
  97. 97.
    Lazarus R, Raby BA, Lange C, Silverman EK, Kwiatkowski DJ, Vercelli D et al. Toll-like Receptor 10 (TLR10) Genetic variation is associated with asthma in two independent samples. Am J Respir Crit Care Med 2004Google Scholar
  98. 98.
    Kullman GJ, Thorne PS, Waldron PF, Marx JJ, Ault B, Lewis DM et al. Organic dust exposures from work in dairy barns. Am Ind Hyg Assoc J 1998; 59(6): 403–413Google Scholar
  99. 99.
    Preller L, Heederik D, Kromhout H, Boleij JS, Tielen MJ. Determinants of dust and endotoxin exposure of pig farmers: Development of a control strategy using empirical modelling. Ann Occup Hyg 1995; 39(5): 545–557PubMedGoogle Scholar
  100. 100.
    Thorne PS, Ansley AC, Perry SS. Concentrations of bioaerosols, odors, and hydrogen sulfide inside and downwind from two types of swine livestock operations. J Occup Environ Hyg 2009; 6(4): 211–220PubMedGoogle Scholar
  101. 101.
    Duchaine C, Thorne PS, Meriaux A, Grimard Y, Whitten P, Cormier Y. Comparison of endotoxin exposure assessment by bioaerosol impinger and filter-sampling methods. Appl Environ Microbiol 2001; 67(6): 2775–2780PubMedGoogle Scholar
  102. 102.
    Thorne PS, Reynolds SJ, Milton DK, Bloebaum PD, Zhang X, Whitten P et al. Field evaluation of endotoxin air sampling assay methods. Am Ind Hyg Assoc J 1997; 58(11): 792–799PubMedGoogle Scholar
  103. 103.
    Smid T, Heederik D, Houba R, Quanjer PH. Dust-and endotoxin-related respiratory effects in the animal feed industry. Am Rev Respir Dis 1992; 146: 1474–1479PubMedGoogle Scholar
  104. 104.
    Schwartz DA, Thorne PS, Yagla SJ, Burmeister LF, Olenchock SA, Watt JL et al. The role of endotoxin in grain dust-induced lung disease. Am J Respir Crit Care Med 1995; 152(2): 603–608PubMedGoogle Scholar
  105. 105.
    Zock JP, Hollander A, Heederik D, Douwes J. Acute lung function changes and low endotoxin exposures in the potato processing industry. Am J Ind Med 1998; 33(4): 384–391PubMedGoogle Scholar
  106. 106.
    Roy CJ, Thorne PS. Exposure to particulates, microorganisms, beta(1-3)-glucans, and endotoxins during soybean harvesting. AIHA J (Fairfax, VA) 2003; 64(4): 487–495Google Scholar
  107. 107.
    Smit LA, Wouters IM, Hobo MM, Eduard W, Doekes G, Heederik D. Agricultural seed dust as a potential cause of organic dust toxic syndrome. Occup Environ Med 2006; 63(1): 59–67.PubMedGoogle Scholar

Copyright information

© Birkhäuser / Springer Basel 2010

Authors and Affiliations

  • Torben Sigsgaard
    • 1
  • Øyvind Omland
    • 1
    • 2
  • Peter S. Thorne
    • 3
  1. 1.School of Public Health, Department of Environmental and Occupational MedicineAarhus UniversityÅrhus CDenmark
  2. 2.Department of Occupational and Environmental Medicine AalborgAarhus University HospitalDenmark
  3. 3.Environmental Health Sciences Research CenterUniversity of IowaIowa CityUSA

Personalised recommendations