Advertisement

Growth and nitrogen-fixing performances of medicago truncatula-Sinorhizobium meliloti symbioses under salt (NaCl) stress: Micro- and macro-symbiont contribution into symbiosis tolerance

  • Haythem Mhadhbi
  • Mohamed Elarbi Aouani

Abstract

The effect of salt (NaCl) stress on plant growth and nitrogen-fixing apparatus was studied for symbiotic associations established between three Medicago truncatula lines inoculated and two Sinorhizobium meliloti strains. Salinity modulated all parameters analyzed as indices of growth performance, nitrogen-fixing capacity (acetylene-reduction assay) and nodule antioxidant system. Under stressful conditions, symbioses showed variability of response to salt application. Contrasting symbiotic associations were identified for nodulation, nitrogen-fixing capacity and salt tolerance. The total variance of analyzed performance indices under stressful conditions depended essentially on plant genotype factor. In nodules, the NaCl application had a decreasing effect on the rates of protein content and some antioxidant enzymes mainly catalase. Other enzymes such as guaiacol peroxidase increased in stressed nodules.

Keywords

Salt Stress Rhizobial Strain Guaiacol Peroxidase Symbiotic Nitrogen Fixation Symbiotic Partner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6: 66–71PubMedCrossRefGoogle Scholar
  2. 2.
    Graham PH, Vance CP (2003) Legumes: Importance and constraints to greater use. Plant Physiol 131: 872–877PubMedCrossRefGoogle Scholar
  3. 3.
    Zahran HH (1999) Rhizobium legume symbiosis and nitrogen fixation under severe conditions and in arid climate. Microbiol Mol Biol Rev 63: 968–989PubMedGoogle Scholar
  4. 4.
    Drevon JJ, Abdelly C, Amarger N, Aouani ME, Aurag J, Gherbi H, Jebara M, Lluch C, Payre H, Schump O et al (2001) An interdisciplinary research strategy to improve symbiotic nitrogen fixation and yield of common bean (Phaseolus vulgaris) in salinised areas of the Mediterranean basin. J Biotechnol 91: 257–268PubMedCrossRefGoogle Scholar
  5. 5.
    Serraj R., Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50: 143–155CrossRefGoogle Scholar
  6. 6.
    Sadiki M, Rabih K (2001) Selection of chickpea (Cicer arietinum) for yield and symbiotic nitrogen fixation ability under salt stress. Agronomie 21: 659–666CrossRefGoogle Scholar
  7. 7.
    Fesenko AN, Provorov NA, Orlova IF, Simarov BV (1994) The role of the pea (Pisum sati-vum L.) cultivar genotype and the Rhizobium leguminosarum strain in the effectiveness of symbiosis. Russian J Genet 30: 725–729Google Scholar
  8. 8.
    Robinson KO, Beyene DA, van Berkum P, Knight-Mason R, Bhardwaj HL (2000) Variability in plant-microbe interaction between Lupinus lines and Bradyrhizobium strains. Plant Sci 159: 257–264PubMedCrossRefGoogle Scholar
  9. 9.
    Tonon G, Kevers C, Faivre-Ranpant O, Graziani M, Gaspar T (2004) Effect of NaCl and mannitol iso-osmotic stresses on proline and free polyamine levels in embryogenic Fraxinus angustifolia callus. J Plant Physiol 161: 701–708PubMedCrossRefGoogle Scholar
  10. 10.
    Matamoros MA, Dalton DA, Ramos J, Clemente MR, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133: 449–509CrossRefGoogle Scholar
  11. 11.
    Mhadhbi H, Jebara M, Limam F, Aouani ME (2004) Rhizobial strain involvement in plant growth, nodule protein composition and antioxidant enzyme activities of chickpea-rhizobia symbioses: modulation by salt stress. Plant Physiol Biochem 42: 717–722PubMedCrossRefGoogle Scholar
  12. 12.
    Mhadhbi H, Jebara M, Limam F, Huguet T, Aouani ME (2005) Interaction between Medicago truncatula lines and Sinorhizobium meliloti strains for symbiotic efficiency and nodule antioxidant activities. Physiol Plant 124: 4–11CrossRefGoogle Scholar
  13. 13.
    Jebara M, Mhamdi R, Aouani ME, Ghrir R, Mars M (2001) Genetic diversity of Sinorhizobium populations recovered from different Medicago varieties cultivated in Tunisian soils. Can J Microbiol 47: 139–147PubMedCrossRefGoogle Scholar
  14. 14.
    Aydi S, Drevon JJ, Abdelly C (2004) Effect of salinity on root-nodule conductance to the oxygen diffusion in the Medicago truncatula-Sinorhizobium meliloti symbiosis. Plant Physiol Biochem 42: 833–840PubMedCrossRefGoogle Scholar
  15. 15.
    Santos R, Hérouart D, Puppo A, Touati D (2000) Critical protective role of bacterial super-oxide dismutase in Rhizobium-legume symbiosis. Mol Microbiol 38: 750–759PubMedCrossRefGoogle Scholar
  16. 16.
    Jamet A, Sigaud S, Van de Sype G, Puppo A, Herouart D (2003) Expression of the bacterial catalase genes during Sinorhizobium meliloti-Medicago sativa symbiosis and their crucial role during the infection process. Mol Plant Microbe Interact 16: 217–225PubMedCrossRefGoogle Scholar
  17. 17.
    Tejera NA, Campos R, Sanjuan J, Lluch C (2004) Nitrogenase and antioxidant enzyme activities in Phaseolus vulgaris nodules formed by Rhizobium tropici isogenic strains with varying tolerance to salt stress. J Plant Physiol 161: 329–338PubMedCrossRefGoogle Scholar
  18. 18.
    Lee DH, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158: 737–745CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Haythem Mhadhbi
    • 1
  • Mohamed Elarbi Aouani
    • 1
  1. 1.Laboratoire Interactions Légumineuses Microorganismes (LILM)Centre de Biotechnologie de Borj Cedria (CBBC)Hammam lifTunisie

Personalised recommendations