Advertisement

Seawater irrigation: Effects on growth and nutrient uptake of sunflower plants

  • Riccardo Izzo
  • Annalisa Incerti
  • Claudio Bertolla

Abstract

The aim of the present research was the evaluation of the effects of irrigation with diluted seawater on main morphological characteristics of sunflower plants (cv. Katharina, Piacenza ecotype). Plants, irrigated with fresh water or with 20% or 30% seawater during the whole biological cycle, were harvested at four growth stages. At each stage, the main growth parameters were measured and the principal nutrients were quantified. In particular, Cl- and Na+ increased significantly, especially in the plants irrigated with 30% seawater. Both seawater concentrations reduced N content but did not affect P content. K+ and Ca2+ decreased during the growth.

Keywords

Salt Stress Lipoic Acid Helianthus Annuus Sunflower Plant Seawater Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reddy MP, Iyenger ERR (1999) Crop response to salt sea water application and prospects. In: M Pessarakli (ed): Handbook of plants and crop stress, 2nd edn. Marcel Dekker, New York, 1041–1068Google Scholar
  2. 2.
    D’Amico ML, Izzo R, Tognoni F, Pardossi A, Navari-Izzo F (2003) Application of diluted sea water to soilless culture of tomato Lycopersicon esculentum Mill.): Effects on plant growth, yield, fruit quality and antioxidant capacity. Food Agric Environ 1: 112–116Google Scholar
  3. 3.
    Saure MC (2001) Blossom-end rot of tomato (Lycopersicon esculentum Mill.)-A calcium-or a stress-related disorder. Sci Hort 90: 193–208CrossRefGoogle Scholar
  4. 4.
    D’Amico ML, Navari-Izzo F, Izzo R (2004) Alternative irrigation waters: Uptake of mineral nutrients by wheat plants responding to sea water application. J Plant Nutr 27: 1043–1059CrossRefGoogle Scholar
  5. 5.
    Meneguzzo S, Navari-Izzo F, Izzo R (2000) NaCl effects on water relations and accumulation of mineral nutrients in shoots, roots and cell sap of wheat seedling. J Plant Physiol 156: 711–716Google Scholar
  6. 6.
    Di Baccio D, Navari-Izzo F, Izzo R (2000) Effetti dell’irrigazione del girasole con acqua di mare e meccanismi adattativi. Atti del XVIII Convegno Nazionale della Società Italiana di Chimica Agraria-Catania, 20-22 September 2000Google Scholar
  7. 7.
    Di Baccio D, Navari-Izzo F, Izzo R (2001) Meccanismi di risposta antiossidativi in girasole irrigato con acqua di mare al 20%. Atti del XIX Convegno Nazionale della Società Italiana di Chimica Agraria-Reggio Calabria, 25-28 September 2001Google Scholar
  8. 8.
    DiBaccio D, Navari-Izzo F, Izzo R (2004) Sea water irrigation: Antioxidant defence responses in leaves and roots of a sunflower Helianthus annuus, L.) ecotype. J Plant Physiol 161: 1359–1366PubMedCrossRefGoogle Scholar
  9. 9.
    Allen RJL (1940) The estimation of phosphorus. Biochem J 34: 858–865PubMedGoogle Scholar
  10. 10.
    Binzel ML, Hasegawa PM, Rhodes D, Handa S, Handa AK, Bressan RA (1987) Solute accumulation in tobacco cells adapted to NaCl. Plant Physiol 84: 1408–1415PubMedGoogle Scholar
  11. 11.
    Izzo R, Scagnozzi A, Belligno A, Navari-Izzo F (1993) Influence of NaCl treatment on Ca, K and Na interrelations in maize shoots. In: MAC Fragoso, ML van Beusichem (eds): Optimization of Plant Nutrition. Kluwer, Dordrecht, 557–582Google Scholar
  12. 12.
    D’Amico ML, Navari-Izzo F, Izzo R (2001) Efficienza produttiva e meccanismi di adatta-mento del grano irrigato con acqua di mare al 10%. Atti del XIX Convegno Nazionale della Società Italiana di Chimica Agraria-Reggio Calabria, 25-28 September 200Google Scholar
  13. 13.
    Saneoka H, Shiota K, Kurban H, Chaudhary MI, Premachandra GS, Fujita K (1999) Effect of salinity on growth and solute accumulation in two wheat lines differing in salt tolerance. Soil Sci Plant Nutr 45: 873–880Google Scholar
  14. 14.
    Chaparzadeh N, Khavari-Nejad RA, Navari-Izzo F, Izzo R (2003) Water relations and ionic balance in Calendula officinalis L. under salinity conditions. Agrochimica XLVII: 69–79Google Scholar
  15. 15.
    Cramer GR, Alberico GJ, Schmidt C (1994) Salt tolerance is not associated with the sodium accumulation of two maize hybrids. Aust J Plant Physiol 21: 675–692Google Scholar
  16. 16.
    Asada K, Takahashi M (1987) Production and scavenging of active oxygen in photosynthesis. In: DJ Kyle, CB Osmond, CJ Arntzen (eds): Photohinibition. Elsevier, Amsterdam, 227–287Google Scholar
  17. 17.
    Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25: 239–250PubMedCrossRefGoogle Scholar
  18. 18.
    Hernandez J, Zerega L, Ordosgoitti A (2000) Necrosis del apice y del borde de las hojas y retraso en el crecimiento de la cana de azucar (Saccharum sp. Hibrido) en el Bajo Yaracuy, Venezuela. Rev FacAgron Univ Zulia 17: 226–238Google Scholar
  19. 19.
    El-Siddig K, Ludders P (1994) N-nutrition and salinity tolerance in apple trees. Angew Bot Berichte 5: 184–188Google Scholar
  20. 20.
    Wang-Rui G, Chen-Shao L, Liu-Li Y, Hao-Zhi Y, Weng-Hai J, Li-He J, Yang-Shiang H, Duan-Shan L (2005) Genotypic differences in antioxidative ability and salt tolerance of three poplars under salt stress. J Beijing Forestry Univ 27: 46–52Google Scholar
  21. 21.
    Schroppel-Meier G, Kaiser WM (1988) Ion homeostasis in chloroplasts under salinity and mineral deficiency. I. Solute concentrations in leaves and chloroplasts from spinach plants under NaCl or NaNO3 salinity. Plant Physiol 87: 822–827PubMedGoogle Scholar
  22. 22.
    Walker RR, Blackmore DH, Qing S (1993) Carbon dioxide assimilation and foliar ion concentrations in leaves of lemon (Citrus lemon L.) trees irrigated with NaCl or Na2SO4. Aust J Plant Physiol 20: 173–185CrossRefGoogle Scholar
  23. 23.
    Izzo R, Navari-Izzo F, Quartacci MF (1991) Growth and mineral adsorption in maize seedlings as affected by increasing NaCl concentrations. J Plant Nutr 14: 687–699CrossRefGoogle Scholar
  24. 24.
    Botella MA, Martinez V, Pardines J, Cerdà A (1997) Salinity induced potassium deficiency in maize plants. J Plant Physiol 150: 200–205Google Scholar
  25. 25.
    Izzo R, Belligno A, Muratore G, Navari-Izzo F (1996) Seedlings growth and Ca2+, K+ and Na+ accumulation in maize roots as affected by NaCl. Agrochimica 40: 25–32Google Scholar
  26. 26.
    Brugnoli E, Björkman O (1992) Growth of cotton under continuous salinity stress: Influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy. Planta 187: 335–347CrossRefGoogle Scholar
  27. 27.
    Cramer GR, Epstein E, Läuchli A (1989) Na-Ca interactions in barley seedlings: Relationship to ion transport and growth. Plant Cell Environ 12: 551–558CrossRefGoogle Scholar
  28. 28.
    Luo Y, Rimmer DL (1995) Zinc-copper interaction affecting plant growth on a metal-contaminated soil. Environ Pollut 88: 79–93PubMedCrossRefGoogle Scholar
  29. 29.
    Cornillon P, Palloix A (1997) Influence of sodium chloride on the growth and mineral nutrition of pepper cultivars. J Plant Nutr 20: 1085–1094Google Scholar
  30. 30.
    Meneguzzo S, Navari-Izzo F, Izzo R (1998) Stromal and thylakoid-bound ascorbate peroxi-dases in NaCl-treated wheat. Physiol Plant 104: 735–740CrossRefGoogle Scholar
  31. 31.
    Meneguzzo S, Navari-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155: 274–280Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Riccardo Izzo
    • 1
  • Annalisa Incerti
    • 2
  • Claudio Bertolla
    • 1
  1. 1.Dipartimento di Chimica e Biotecnologie AgrarieUniversità di PisaPisaItaly
  2. 2.Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni AnimaliUniversità degli Studi di CataniaCataniaItaly

Personalised recommendations