Seawater effects on antioxidant production in berries of three cultivars of tomato (Lycopersicon esculentum mill.)

  • Annalisa Incerti
  • Riccardo Izzo
  • Adalgisa Belligno
  • Flavia Navari-Izzo
Conference paper


Tomato is moderately tolerant to salt. However, under stress conditions, antioxidative defense mechanisms in tomato are activated. The effects of diluted seawater on the antioxidant capacity, namely ascorbate, tocopherols and cellular redox status, have been evaluated in three tomato cultivars. Two salad tomato cultivars, Jama and Gimar and a cherry tomato cv. Naomi were used. Our results indicate that the three cultivars had different salt tolerance. Naomi showed the best adaptive response due to its increased antioxidant pool after salinization.


Salt Stress Lipoic Acid Tomato Cultivar Ascorbate Content Total Ascorbate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gawad G A, Arslan A, Gaihbe A., Kadouri F (2005) The effects of saline irrigation water management and salt tolerant tomato varieties on sustainable production of tomato in Syria (1999-2002). Agric Water Manag 78: 39–53CrossRefGoogle Scholar
  2. 2.
    D’Amico ML, Navari-Izzo F, Sgherri C, Izzo R (2004) The role of lipoic acid in the regulation of the redox status of wheat irrigated with 20% seawater. Plant Physiol Biochem 42: 329–334PubMedCrossRefGoogle Scholar
  3. 3.
    Hajer AS, Malibari AA, Al-Zahrani HS, Almaghrabi OA (2006) Responses of three tomato cultivars to seawater salinity. Effect of salinity on the seedling growth. Afr J Biotechnol 5: 855–861Google Scholar
  4. 4.
    Cuartero J, Fernandez-Munoz R (1999) Tomato and salinity. Sci Hort 78: 83–125CrossRefGoogle Scholar
  5. 5.
    Ferrari CKB (2004) Functional foods, herbs and nutraceuticals: Towards biochemical mechanisms of healthy aging. Biogerontology 5: 275–289PubMedCrossRefGoogle Scholar
  6. 6.
    Diplock AT, Agget PJ, Ashwell M, Bornet F, Fern EB, Roberfroid MB (1999) Scientific concepts of functional foods in Europe: Consensus Document. Br J Nutr 81: 1–27Google Scholar
  7. 7.
    Hercberg S, Galan P, Preziosi P, Alfarez MJ, Vazques C (1998) The potential role of antioxidant vitamins in preventing cardiovascular diseases and cancer. Nutrition 14: 513–520PubMedCrossRefGoogle Scholar
  8. 8.
    Blum A, Monir M, Wirsansky I, Ben-Arz S (2005) The beneficial effects of tomatoes. Eur J Intern Med 16: 402–404PubMedCrossRefGoogle Scholar
  9. 9.
    Willcox JK, Catignani GL, Lazarus S (2003) Tomatoes and cardiovascular health. Crit Rev Food Sci Nutr 43: 1–18PubMedCrossRefGoogle Scholar
  10. 10.
    De Pascale S, Maggio A, Fogliano V, Ambrosino P, Ritieni A (2001) Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J Hort Sci Biotechnol 76: 447–453Google Scholar
  11. 11.
    D’Amico ML, Izzo R,Tognoni F, Pardossi A, Navari-Izzo F (2003) Application of diluted sea water to soil-less culture of tomato (Lycopersicon esculentum Mill.): Effects on plant growth, yield, fruit quality and antioxidant capacity. Food Agric Environ 1: 112–Google Scholar
  12. 12.
    Krauss S, Schnitzler WH, Grassmann J, Woitke M (2006) The influence of different electrical conductivity values in a simplified recirculating soilless system on inner and outer fruit quality characteristics of tomato. J Agric Food Chem 54: 441–448PubMedCrossRefGoogle Scholar
  13. 13.
    Quartacci MF, Cosi E, Navari-Izzo F (2001) Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots of wheat grown under copper deficiency or excess. J Exp Bot 52: 77–84PubMedCrossRefGoogle Scholar
  14. 14.
    Galatro A, Simontacchi M, Puntaruolo S (2001) Free radical generation and antioxidant content in chloroplasts from soybean leaves exposed to ultraviolet-B. Physiol Plant 113: 564–570CrossRefGoogle Scholar
  15. 15.
    Sgherri C, Quartacci MF, Izzo R, Navari-Izzo F (2002) Relation between lipoic acid and cell redox status in wheat grown in excess copper. Plant Physiol Biochem 40: 591–597CrossRefGoogle Scholar
  16. 16.
    Meneguzzo S, Navari-Izzo F, Izzo R (1999) Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations. J Plant Physiol 155: 274–280Google Scholar
  17. 17.
    Olsson ME, Gustavsson KE, Andersson S, Nilsson A, Duan RD (2004) Inhibition of cancer cell proliferation in vitro by fruit and berry extracts and correlations with antioxidant levels. J Agric Food Chem 52: 7264–7271PubMedCrossRefGoogle Scholar
  18. 18.
    Hernandez JA, Jimenez A, Mullineaux P, Sevilla F (2000) Tolerance of pea (Pisum tsativum L.) to long-term salt is associated with induction of antioxidant defences. Plant Cell Environ 23: 853–862CrossRefGoogle Scholar
  19. 19.
    Navari-Izzo F, Rascio N (1999) Plant response to water-deficit conditions. In: M. Pessarakli (ed): Handbook of plant and crop stress. Marcel Dekker, New York, 231–270Google Scholar
  20. 20.
    Brigelius-Flohè R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13: 1145–1155PubMedGoogle Scholar
  21. 21.
    Abushita AA, Daood HG, Biacs PA (2000) Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J Agric Food Chem 48:2075–2078PubMedCrossRefGoogle Scholar
  22. 22.
    Chericoni L (2005) Markers per l’identificazione precoce di stress ossidativo in piante di grano cresciute in eccesso di rame. Degree thesis, University of Pisa, ItalyGoogle Scholar
  23. 23.
    Sgherri C, Kadlecovà Z, Chericoni L, Izzo R, Navari-Izzo F (2004) Ruolo dei tocoferoli in grano e pomodoro: Effetti di stress diversi. Atti del XXII Convegno SICA, Perugia, 263–267Google Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Annalisa Incerti
    • 1
  • Riccardo Izzo
    • 2
  • Adalgisa Belligno
    • 1
  • Flavia Navari-Izzo
    • 2
  1. 1.Dipartimento di Scienze Agronomiche, Agrochimiche e delle Produzioni AnimaliUniversità degli Studi di CataniaCataniaItalia
  2. 2.Dipartimento di Chimica e Biotecnologie AgrarieUniversità di PisaPisaItalia

Personalised recommendations