Cadmium and copper genotoxicity in plants

  • Chamseddine Mediouni
  • Guy Houlné
  • Marie-Edith Chabouté
  • Mohamed Habib Ghorbel
  • Fatma Jemal


Heavy metal contamination in soils is easily transmitted to human through plants via the food chain. A major concern is to understand the plant response to heavy metal soil contamination to develop phytoremediation. Two plant models have been investigated in our study, the tomato, which is of agronomical importance, Arabidopsis, which is used as a model for molecular genetics. Heavy metal toxicity is described to induce oxidative stress linked to oxidation of proteins and membrane lipids but also to alterations of DNA damage response. We have investigated the metabolic response of cadmium and copper in parallel in both plant models and analyzed the transcriptional response of Arabidopsis RNR genes coding for isoforms of ribonucleotide reductase, an essential enzyme involved in DNA synthesis. Both Cd and Cu had a dose-dependent effect on plant growth. We also observed a rapid increase of catalase activity upon Cd or Cu treatments in tomato and Arabidopsis. At the transcriptional level, treatment with Cd resulted in a biphasic induction of two RNR genes in Arabidopsis; the first induction peak could be paralleled to the increase of the catalase activity.


Heavy Metal Ribonucleotide Reductase TBARS Content Heavy Metal Treatment Phytochelatin Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequence to human health. AdvAgron 51:173–212Google Scholar
  2. 2.
    Mediouni C, Benzarti O, Tray B, Ghorbel MH, Jemal F (2006) Cadmium and copper toxicity in tomato seedlings (Lycopersicon esculentum). Agron Sustain Dev 26: 227–232CrossRefGoogle Scholar
  3. 3.
    Shah K, Dubey RS (1998) A 18 kDa cadmium inducible protein complex from rice: Its purification and characterization from rice (Oryza sativa L.) roots tissues.J Plant Physiol 152: 448–454Google Scholar
  4. 4.
    Dong J, Wu F, Zhang G (2006) Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere 64,1659–1666PubMedCrossRefGoogle Scholar
  5. 5.
    Xia JR, Li YJ, Lu J, Chen B (2004) Effects of copper and cadmium on growth, photosynthesis and pigment content in Gracilaria lemaneiformis. Bull Environ Contamin Toxicol 73: 979–986CrossRefGoogle Scholar
  6. 6.
    Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa mon-nieri L. Plant Physiol Biochem 44: 24–37CrossRefGoogle Scholar
  7. 7.
    Cho UH, Seo NH (2005) Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Sci 168:113–120CrossRefGoogle Scholar
  8. 8.
    Groppa MD, Tomaro ML, Benavides MP (2001) Polyamines as protectors against cadmium or copper-induced oxidative damage in sunflower leaf discs. Plant Sci 161: 481–488CrossRefGoogle Scholar
  9. 9.
    Smeets K, Cuypers A, Lambrechts A, Semane B, Hoet P, Van Laere A, Vangronsveld J (2005) Induction of oxidative stress and antioxidative mechanisms in Phaseolus vulgaris after Cd application. Plant Physiol Biochem 43: 437–444PubMedCrossRefGoogle Scholar
  10. 10.
    Foyer CH, Noctor G (2000) Oxygen processing in photosynthesis: Regulation and signaling. New Phytol 146: 359–388CrossRefGoogle Scholar
  11. 11.
    Lombardi L, Sebastiani L (2005) Copper toxicity in Prunus cerasifera: Growth and antioxi-dant enzymes responses of in vitro grown plants. Plant Sci 168: 797–802CrossRefGoogle Scholar
  12. 12.
    Zhang H, Jiang Y, He Z, Ma M (2005) Cadmium accumulation and oxidative burst in garlic (Allium sativum). J Plant Physiol 162: 977–984PubMedCrossRefGoogle Scholar
  13. 13.
    Drazkiewicz M, Skorzynska-Polit E, Krupa Z (2004) Copper-induced oxidative stress and antioxidant defence in Arabidopsis thaliana. Biometals 17: 379–387PubMedCrossRefGoogle Scholar
  14. 14.
    Chaoui A, ElFerjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. C R Biol 328: 23–31PubMedCrossRefGoogle Scholar
  15. 15.
    Sagun KC, Carcamo JM, Golde DW (2006) Antioxidants prevent oxidative DNA damage and cellular transformation elicited by the over-expression of c-MYC. Fund Mol Mechan Mutagen 593: 64–79CrossRefGoogle Scholar
  16. 16.
    Halliwell B, Gutteridge JMC (1989) Free radicals in biology and medicine. Clarendom, OxfordGoogle Scholar
  17. 17.
    Nordlund P, Reichard P (2006) Ribonucleotide reductase. Annu Rev Biochem 75: 681–706PubMedCrossRefGoogle Scholar
  18. 18.
    Tocquin P, Corbesier L, Havelange A, Pieltain A, Kurtem E, Bernier G, Périlleux C (2003) A novel high efficiency, low maintenance, hydroponic system for synchronous growth and flowering ofArabidopsis thaliana. BMC Plant Biol 3: 2PubMedCrossRefGoogle Scholar
  19. 19.
    Buege AJ, Aust SD (1972) Microsomal lipid peroxidation. Methods Enzymol 52: 302–310CrossRefGoogle Scholar
  20. 20.
    Bradford MM (1976) A rapid and sensitive method for the quantitative determination of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem 72: 248–254PubMedCrossRefGoogle Scholar
  21. 21.
    Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126PubMedGoogle Scholar
  22. 22.
    Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, 337–347Google Scholar
  23. 23.
    Mosulén S, Dom∷nguez MJ, Vigara J, V∷lchez C, Guiraum A, Vega JM (2003) Metal toxicity in Chlamydomonas reinhardtii. Effect on sulfate and nitrate assimilation. Biomol Eng 20: 199–203PubMedCrossRefGoogle Scholar
  24. 24.
    Ouariti O, Boussama N, Zarrouk M, Cherif A, Ghorbal MH (1997) Cadmium-and copper-induced changes in tomato membrane lipids. Phytochemistry 45:1343–1350PubMedCrossRefGoogle Scholar
  25. 25.
    Weckx JEJ, Clijsters HMM (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiol Biochem 35: 405–410Google Scholar
  26. 26.
    Skorzynska-Polit E, Krupa Z (2003) The activity of lipoxygenase in Arabidopsis thaliana (L.) Heynh-A preliminary study. Cell Mol Biol Lett 8: 279–284PubMedGoogle Scholar
  27. 27.
    DeVos CHR, Bookum VMT, Vooijs R, Schat H, Dekok LJ (1993) Effect of copper on fatty acid composition and peroxidation of lipids in roots of copper tolerant and sensitive Silene cucubalus. Plant Physiol Biochem 31:151–158Google Scholar
  28. 28.
    Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa mon-nieri L. Plant Physiol Biochem 44: 24–37CrossRefGoogle Scholar
  29. 29.
    Lindahl T (1993) Instability and decay of the primary structure of DNA. Nature 362: 709–715PubMedCrossRefGoogle Scholar
  30. 30.
    Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerrdtle T, Bürkle A (2002) Interference by toxic metal ions with DNA repair process and cell cycle control: molecular mechanisms. Environ Health Perspect 110: 797–799PubMedGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Chamseddine Mediouni
    • 1
    • 2
  • Guy Houlné
    • 2
  • Marie-Edith Chabouté
    • 2
  • Mohamed Habib Ghorbel
    • 1
  • Fatma Jemal
    • 1
  1. 1.Unité de Recherche “Nutrition et Métabolisme Azotés et Protéines de Stress” UR 99/09-20, Faculté des Sciences de TunisUniversité Tunis EL-MANARTunisie
  2. 2.Institut de Biologie Moléculaire des PlantesEquipe Signalisation de la réparation de l‘ADNStrasbourg CedexFrance

Personalised recommendations