Skip to main content

Molecular biology and transport properties of grapevine Na+/H+ antiporter

  • Conference paper

Abstract

Na+/H+ antiporters are involved in the transport of sodium and hydrogen ions across membranes and contribute in pH regulation of actively metabolizing cells. They play a primary role in homeo-stasis and are found in every biological kingdom, from bacteria to humans to higher plants. In plants, vacuolar Na+/H+ antiporters use the proton electrochemical gradient generated by the vacuolar H+-translocating enzymes, H+-ATPase, and H+-PPiase to couple the downhill movement of H+ with the uphill movement of Na+. Moreover, it has been shown that they compartmentalize Na+ into the vacuoles for detoxification and improve consequently the salt tolerance in yeasts and plants. Recently, genes encoding these Na+/H+ antiporters have been identified and studied using a molecular genetic approach in the model systemsArabidopsis or Saccharomyces cerevisiae. We describe here the identification, cloning, molecular characterization and functional properties in yeast heterologous system of a vacuolar Na+/H+antiporter from grapevine. To identify a Na+/H+ antiporter from grapevine we applied a candidate gene approach. A 1.83-kb genomic sequence adjacent to the VvNHX1 gene was isolated using the thermal asymmetric interlaced-PCR. Histochemical localization of β-glucuronidase gene (GUS) activity was directed by VvNHX1 promoter-GUS fusion in transgenic Arabidopsis. To determine the subcellular localization of the VvNHX1 protein by heterologous expression in yeast and transient expression in onion epidermal cells, chimera constructions were prepared using a modified green fluorescent protein mGFP6. An RT-PCR approach was used to examine the VvNHX1 mRNA levels in different organs and tissues of grapevine plants. To assess VvNHX1 transport properties, VvNHX1 was expressed in the nhx1 mutant TY001 (that lacks the endogenous Nhx1 Na+/H+ antiporter) and the rates of H+-coupled transport was measured by fluorescence quenching. Rates of cation-dependent proton movements in vacuoles isolated from yeast expressing VvNHX1 were measured.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhu JK (2000) Genetic analysis of plant salt tolerance using arabidopsis. Plant Physiol 124: 941–948

    Article  PubMed  CAS  Google Scholar 

  2. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Physiol Plant Mol Biol 51: 463–499

    Article  CAS  Google Scholar 

  3. Padan E, Venturi M, Gerchman Y, Dover N (2001) Na+/H+ antiporters. Biochim Biophys Acta 1505:144–157

    Article  PubMed  CAS  Google Scholar 

  4. Orlowski J, Grinstein S (1997) Na+/H+ exchangers of mammalian cells. J Biol Chem 272: 22373–22376

    Article  PubMed  CAS  Google Scholar 

  5. Yamaguchi T, Apse MP, Shi H, Blumwald E (2003) Topological analysis of a plant vacuolar Na+/H+ antiporter reveals a luminal C terminus that regulates antiporter cation selectivity. Proc Natl Acad Sci USA100:12510–12515

    Article  PubMed  CAS  Google Scholar 

  6. Yamaguchi T, Aharon GS, Sottosanto JB, Blumwald E (2005) Vacuolar Na+/H+ antiporter cation selectivity is regulated by calmodulin from within the vacuole in a Ca2+ and pH-dependent manner. Proc Nal Acad Sci USA 102:16107–16112

    Article  CAS  Google Scholar 

  7. Nass R, Cunningham KW, Rao R (1997) Intracellular sequestration of sodium by a novel Na+/H+ exchanger in yeast is enhanced by mutations in the plasma membrane H+-ATPase-Insights into mechanisms of sodium tolerance. J Biol Chem 272: 26145–26152

    Article  PubMed  CAS  Google Scholar 

  8. Gaxiola RA, Rao R, Sherman A, Grisafi P, Alper SL, Fink GR (1999) The Arabidopsis thali-na proton transporters, AtNhx1 and Avp1, can function in cation detoxification in yeast. Proc NatlAcad Sci USA 96:1480–1485

    Article  CAS  Google Scholar 

  9. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12: 431–434

    Article  PubMed  CAS  Google Scholar 

  10. Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13: 146–150

    Article  PubMed  CAS  Google Scholar 

  11. Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36: 229–239

    Article  PubMed  CAS  Google Scholar 

  12. Zorb C, Noll A, Karl S, Leib K, Yan F, Schubert S (2005) Molecular characterization of Na+/H+ antiporters (ZmNHX) of maize (Zea mays L.) and their expression under salt stress.J Plant Physiol 162: 55–66

    Article  PubMed  CAS  Google Scholar 

  13. Liu YG, Chen Y, Zhang Q (2005) Amplification of genomic sequences flanking T-DNA insertions by thermal asymmetric interlaced polymerase chain reaction. Methods Mol Biol 286:341–348

    PubMed  CAS  Google Scholar 

  14. Clough SJ, Bent AF (1998) Technical advance: Floral dip: A simplified method for Agrobac-terium-mediated transformation ofArabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  15. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15: 473–497

    Article  CAS  Google Scholar 

  16. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: β-Glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901–3907.

    PubMed  CAS  Google Scholar 

  17. Haseloff J (1999) GFP variants for multispectral imaging of living cells. Methods Cell Biol 58:139–151

    Article  PubMed  CAS  Google Scholar 

  18. Töpfer R, Matzeit V, Gronenborn B, Schell J, Steinbiss HH (1987) A set of plant expression vectors for transcriptional and translational fusion. Nucleic Acids Res 15: 5890

    Article  PubMed  Google Scholar 

  19. Decendit A, Ramawat KG, Waffo P, Deffieux G, Badoc A, Mérillon JM (1996) Anthocyanins, catechins, condensed tannins and piceid production in Vitis vinifera cell bioreactor cultures. Biotechnol Lett 18: 659–662

    Article  CAS  Google Scholar 

  20. Atanassova R, Leterrier M, Gaillard C, Agasse A, Sagot E, Coutos-Thévenot P, Delrot S (2003) Sugar-regulated expression of a putative hexose transport gene in grape. Plant Physiol 131: 326–334

    Article  PubMed  CAS  Google Scholar 

  21. Neuhaus JM, Boevink P (2001) The green fluorescent protein (GFP) as reporter gene in plant cells. In: CR Haves, B Satiat-Jeunemaitre (eds): Plant Cell Biology. Oxford University Press, Oxford, 127–142

    Google Scholar 

  22. Gietz RD, Schiestl RH, Willems AR, Woods RA (1995) Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 11: 355–360

    Article  PubMed  CAS  Google Scholar 

  23. Ohsumi Y, Anraku Y (1981) Active transport of basic amino acids driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem 256: 2079–2082

    PubMed  CAS  Google Scholar 

  24. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876–4882

    Article  PubMed  CAS  Google Scholar 

  25. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403–410

    PubMed  CAS  Google Scholar 

  26. Quintero FJ, Blatt MR, Pardo JM (2000) Functional conservation between yeast and plant endosomal Na+/H+ antiporters. FEBS Lett 471: 224–228

    Article  PubMed  CAS  Google Scholar 

  27. Aharon GS, Apse MP, Duan SL, Hua XJ, Blumwald E (2003) Characterization of a family of vacuolar Na+/H+ antiporters in Arabidopsis thaliana. Plant Soil 253: 245–256

    Article  CAS  Google Scholar 

  28. Darley CP, VanWuytswinkel OC, Van der Woude K, Mager WH, De Boer AH (2000) Arabidopsis thaliana and Saccharomyces cerevisiae NHX1 genes encode amiloride sensitive electroneutral Na+/H+ exchangers. Biochem J 351: 241–249

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Birkhäuser Verlag/Switzerland

About this paper

Cite this paper

Hanana, M., Cagnac, O., Yamaguchi, T., Hamdi, S., Ghorbel, A., Blumwald, E. (2008). Molecular biology and transport properties of grapevine Na+/H+ antiporter. In: Abdelly, C., Öztürk, M., Ashraf, M., Grignon, C. (eds) Biosaline Agriculture and High Salinity Tolerance. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8554-5_28

Download citation

Publish with us

Policies and ethics