Functional genomics to discover genes for salt tolerance in annual and perennial plants

  • Isacco Beritognolo
  • Maurizio Sabatti
  • Mikael Brosché
  • Giuseppe Scarascia Mugnozza


With the progress in plant genomics, more and more information is being gained about genes that respond to different stresses. Microarray analyses of transcriptome regulation under salt stress have uncovered the complex gene networks involved in mechanisms of sensing, signaling, and short-term response. Most of this knowledge has been derived from shock-stress experiments conducted on one genotype under laboratory conditions, but the long-term acclimation to salt stress has been addressed by only few studies. The genes responsible for the variability of salt tolerance could be valuable resources in breeding programs but they are difficult to identify in typical microarray experiments. The genes revealed by transcriptome analyses of salt-stressed plants are often common to other stresses and other species and do not explain the heritable variation. Comparative genomics is based on the comparison of genotypes differing in pheno-typical behavior and is a promising approach to identify genes that control the heritable genetic variation of salt tolerance.


Salt Stress Salt Tolerance Glycine Betaine Rice Genotype Tolerant Genotype 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Munns R, Husain S, Rivelli AR, James RA, Condon AGT, Lindsay MP, Lagudah ES, Schacht-man DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. Plant Soil 247: 93–105CrossRefGoogle Scholar
  2. 2.
    Williams WD (1999) Salinisation: A major threat to water resources in the arid and semi-arid regions of the world. Lakes Reserv Res Manag 4: 85–91CrossRefGoogle Scholar
  3. 3.
    Munns R (2005) Genes and salt tolerance: Bringing them together. New Phytologist 167: 645–663PubMedCrossRefGoogle Scholar
  4. 4.
    Klaus A, Heribert H (2004) Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55: 373–399CrossRefGoogle Scholar
  5. 5.
    Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12: 432–434CrossRefGoogle Scholar
  6. 6.
    Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151PubMedCrossRefGoogle Scholar
  7. 7.
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51: 463–499PubMedCrossRefGoogle Scholar
  8. 8.
    Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6: 66–71PubMedCrossRefGoogle Scholar
  9. 9.
    Sahi C, Singh A, Kumar K, Blumwald E, Grover A (2006) Salt stress response in rice: Genetics, molecular biology, and comparative genomics. Funct Integr Genomics 6: 263–284PubMedCrossRefGoogle Scholar
  10. 10.
    Chen W, Chang S, Hudson M, Kwan WK, Li J, Estes B, Knoll D, Shi L, Zhu T (2005) Contribution of transcriptional regulation to natural variations in Arabidopsis. Genome Biol 6: R32PubMedCrossRefGoogle Scholar
  11. 11.
    Inan G, Zhang Q, Li P, Wang Z, Cao Z, Zhang H, Zhang C, Quist TM, Goodwin SM, Zhu J et al (2004) Salt cress. A halophyte and cryophyte Arabidopsis relative model system and its applicability to molecular genetic analyses of growth and development of extremophiles. Plant Physiol 135:1718–1737PubMedCrossRefGoogle Scholar
  12. 12.
    Wang ZL, Li PH, Fredricksen M, Gong ZZ, Kim CS, Zhang C, Bohnert HJ, Zhu JK, Bressan RA, Hasegawa PM et al (2004) Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci 166: 609–616CrossRefGoogle Scholar
  13. 13.
    Taji T, Seki M, Satou M, Sakurai T, Kobayashi M, Ishiyama K, Narusaka Y, Narusaka M, Zhu JK, Shinozaki K (2004) Comparative genomics in salt tolerance between Arabidopsis and Arabidopsis-related halophyte salt cress using Arabidopsis microarray. Plant Physiol 135: 1697–1709PubMedCrossRefGoogle Scholar
  14. 14.
    Gong Q, Li P, Ma S, Indu Rupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44: 826–839PubMedCrossRefGoogle Scholar
  15. 15.
    Weber M, Harada E, Vess C, Roepenack-Lahaye E, Clemens S (2004) Comparative microar-ray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281PubMedCrossRefGoogle Scholar
  16. 16.
    Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ (2001) Gene expression profiles during the initial phase of salt stress in rice.Plant Cell 13:889–905PubMedCrossRefGoogle Scholar
  17. 17.
    Walia H, Wilson C, Condamine P, Liu X, Ismail AM, Zeng L, Wanamaker SI, Mandal J, Xu J, Cui X et al (2005) Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol 139: 822–835PubMedCrossRefGoogle Scholar
  18. 18.
    Ueda A, Kathiresan A, Bennett J, Takabe T (2006) Comparative transcriptome analyses of barley and rice under salt stress. Theor Appl Genet 112:1286–1294PubMedCrossRefGoogle Scholar
  19. 19.
    Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, Yoshiwara K, Seki M, Shi-nozaki K, Yamaguchi-Shinozaki K (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analysis. Plant Physiol 133:1755–1767PubMedCrossRefGoogle Scholar
  20. 20.
    Seki M, Narusaka M, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shino-zaki K (2001) Arabidopsis encyclopedia using full-length cDNAs and its application. Plant Physiol Biochem 39: 211–220CrossRefGoogle Scholar
  21. 21.
    Seki M, Narusaka M, Ishida J, Nanjo T, Fujita MF, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31: 279–292PubMedCrossRefGoogle Scholar
  22. 22.
    Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang HS, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA et al (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14: 559–574PubMedCrossRefGoogle Scholar
  23. 23.
    Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress.Plant Physiol 130: 2129–2141PubMedCrossRefGoogle Scholar
  24. 24.
    Tuskan GA, DiFazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam M, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood,Populus trichocarpa (Torr. & Gray).Science 313:1596–1604PubMedCrossRefGoogle Scholar
  25. 25.
    Taylor G (2002) Populus: Arabidopsis for forestry. Do we need a model tree? Ann Bot 90: 681–689PubMedCrossRefGoogle Scholar
  26. 26.
    Fung LE, Wang SS, Altman A, Hüttermann A (1998) Effect of NaCl on growth, photosynthesis, ion and water relations of four poplar genotypes. Forest Ecol Manag 107:135–146CrossRefGoogle Scholar
  27. 27.
    Chen S, Li J, Wang S, Hüttermann A, Altman A (2001) Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl. Trees 15: 186–194CrossRefGoogle Scholar
  28. 28.
    Chang Y, Chen SL, Yin WL, Wang RG, Liu YF, Shi Y, Shen YY, Li Y, Jiang J, Liu Y (2006) Growth, gas exchange, abscisic acid, and calmodulin response to salt stress in three poplars. J Integr Plant Biol 48: 286–293CrossRefGoogle Scholar
  29. 29.
    Brosché M, Vinocur B, Alatalo ER, Lamminmaki A, Teichmann T, Ottow EA, Djilianov D, Afif D, Bogeat-Triboulot MB, Altman A et al (2005) Gene expression and metabolite profiling of Populus euphratica growing in the Negev desert. Genome Biol 6: R101PubMedCrossRefGoogle Scholar
  30. 30.
    Gu R, Fonseca S, Puskás LG, Hackler LJ, Zvara Á, Dudits D, Pais MS (2004) Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol 24: 265–276PubMedGoogle Scholar
  31. 31.
    Sixto H, Grau JM, Alba N, Alia R (2005) Response to sodium chloride in different species and clones of genus Populus L. Forestry 78: 93–104CrossRefGoogle Scholar
  32. 32.
    Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumoto TK, Zhu J, Cushman JC, Bressan RA et al (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126: 363–375PubMedCrossRefGoogle Scholar
  33. 33.
    Maathuis FJM, Filatov V, Herzyk P, Krijger C, Axelsen B, Chen S, Green BJ, Li Y, Madagan KL, Sanchez-Fernandez R et al (2003) Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant J35: 675–692PubMedCrossRefGoogle Scholar
  34. 34.
    Wong CE, Li Y, Whitty BR, Díaz-Camino C, Akhter SR, Brandle JE, Golding GB, Weretil-nyk EA, Moffatt BA, Griffith M (2005) Expressed sequence tags from the Yukon ecotype of Thellungiella reveal that gene expression in response to cold, drought and salinity shows little overlap. Plant Mol Biol 58: 561–574PubMedCrossRefGoogle Scholar
  35. 35.
    Shiozaki N, Yamada M, Yoshiba Y (2005) Analysis of salt-stress-inducible ESTs isolated by PCR-subtraction in salt-tolerant rice. TheorAppl Genet 110:1177–1186CrossRefGoogle Scholar
  36. 36.
    Wang H, Miyazaki S, Kawai K, Deyholos M, Galbraith DW, Bohnert HJ (2003) Temporal progression of gene expression responses to salt shock in maize roots.Plant Mol Biol 52: 873–891PubMedCrossRefGoogle Scholar
  37. 37.
    Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE et al (2005) Sorghum bicolor’ s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58: 699–720PubMedCrossRefGoogle Scholar
  38. 38.
    Kawaura K, Mochida K, Yamazaki Y, Ogihara Y (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct Integr Genom-ics 6:132–142CrossRefGoogle Scholar
  39. 39.
    Ozturk ZN, Talamé V, Deyholos M, Michalowski CB, Galbraith DW, Gozukirmizi N, Tuberosa R, Bohnert HJ (2002) Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 48: 551–573CrossRefGoogle Scholar
  40. 40.
    Atienza SG, Faccioli P, Perrotta G, Dalfino G, Zschiesche W, Humbeck K, Stanca AM, Cat-tivelli L (2004) Large scale analysis of transcripts abundance in barley subjected to several single and combined abiotic stress conditions. Plant Sci 167:1359–1365CrossRefGoogle Scholar
  41. 41.
    Walia H, Wilson C, Wahid A, Condamine P, Cui X, Close T (2006) Expression analysis of barley (Hordeum vulgare L.) during salinity stress. Funct Integr Genomics 6:143–156PubMedCrossRefGoogle Scholar
  42. 42.
    Kore-eda S, Cushman MA, Akselrod I, Bufford D, Fredrickson M, Clark E, Cushman JC (2004) Transcript profiling of salinity stress responses by large-scale expressed sequence tag analysis in Mesembryanthemum crystallinum. Gene 341: 83–92PubMedCrossRefGoogle Scholar
  43. 43.
    Rensink WA, Iobst S, Hart A, Stegalkina S, Liu J, Buell CR (2005) Gene expression profiling of potato responses to cold, heat, and salt stress. Funct Integr Genomics 5: 201–207PubMedCrossRefGoogle Scholar
  44. 44.
    Sreenivasulu N, Miranda M, Prakash HS, Wobus U, Weschke W (2004) Transcriptome changes in foxtail millet genotypes at high salinity: Identification and characterization of a PHGPX gene specifically up-regulated by NaCl in a salt-tolerant line. J Plant Physiol 161: 467–477PubMedCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag/Switzerland 2008

Authors and Affiliations

  • Isacco Beritognolo
    • 1
  • Maurizio Sabatti
    • 1
  • Mikael Brosché
    • 2
  • Giuseppe Scarascia Mugnozza
    • 1
  1. 1.DI.S.A.F.RI - Università della Tuscia, via S. Camillo de Lellis, sncViterboItaly
  2. 2.Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations