Advertisement

Growth enhancement in two potential cereal crops, maize and wheat, by exogenous applicationation of glycinebetaine

  • Muhammad Ashraf
  • Khalid Nawaz
  • Habib-ur-Rehman Athar
  • SyedHammad Raza

Abstract

Ameliorative effect of exogenously applied glycinebetaine (GB) on growth, photosynthetic and antioxidant capacities of two potential cereals wheat (cv. S-24) and maize (cv. Golden) grown under salt stress was assessed in two different independent experiments. Plants of maize were grown at 0 or 10 dS/m NaCl, while those of wheat were subjected to 2.17 or 14.67 dS/m NaCl salinity. Different levels of GB, i.e., 0 (unsprayed), 50 and 100 mM (in 0.10% Tween-20 solution) were applied as a foliar spray to both wheat and maize plants at the vegetative growth stage. Salt stress reduced the growth and yield of both maize and wheat plants. However, salt-induced reduction in growth and yield of both maize and wheat was ameliorated by exogenous application of GB, but this enhancement effect was more in wheat than that in maize. Furthermore, this GB-induced growth and yield enhancement was positively associated with increased endogenous GB, photosynthetic capacity, and superoxide dismutase (SOD) activity. Although exogenous application of GB improved photosynthetic capacity of both maize and wheat by increasing stomatal conductance, and thus favoring higher CO2 fixation rate, this effect seemed to be partial in maize. In addition, the GB-induced reduction in transpiration rate in wheat compared with that in maize was found to be an additional factor that might have contributed to a better growth and yield of wheat under salt stress. The activity of only SOD was enhanced by GB application in both maize and wheat under saline conditions. Thus, it is likely that both applied GB and intrinsic SOD scavenged reactive oxygen species in these potential cereals under saline conditions. In view of all these findings, it can be concluded that the adverse effects of salt stress on cereals such as maize and wheat can be alleviated by the exogenous application of GB, which in turn enhances photosynthetic capacity and modulates activities of antioxidant enzymes. Furthermore, effectiveness of GB application on regulation of photosynthetic and antioxidant capacities was found to be species specific.

Keywords

Salt Stress Salt Tolerance Stomatal Conductance Photosynthetic Capacity Saline Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bray EA, Bailey-Serres J, Weretilnyk E(2000)Response stoabi oticst ress.In:B Buchanan, W Gruissem, R Jones(eds):Biochemistry and Molecular Biology of Plants.American Society ofPlant Physiology, Rockville,1158–1203Google Scholar
  2. 2.
    Owen S(2001)Salt of earth. Geneticengineering may helpto reclaimagri cultural land lost duet osalinization.EMBO Rep2:877–879Google Scholar
  3. 3.
    Skovmand B, Reynolds MP, DeLacy IH(2001)Searching geneticr esources for physiological trait swithpotential for increasing yield.In:MP Reynolds, I Ortiz-Monasterio, A. McNab(eds):Application of physiology in wheat breeding,CIMMYT, DF,Mexico,17–28Google Scholar
  4. 4.
    Flowers TJ(2004)Improving crop salt tolerance.J ExpBot55:307–319Google Scholar
  5. 5.
    Munns R(2007)Utilisin ggeneticre sources to enhance productivity of salt-proneland.CAB Reviews: Perspective sin Agriculture, Veterinary Science, Nutrition and Natural Resources,2,No.009Google Scholar
  6. 6.
    Hussain SS, Revandi A(2007)Molecular breeding for drought tolerance in plants: Wheat perspective.Proc Pak Acad Sci44:35–62Google Scholar
  7. 7.
    Rosegrant MW, Leach N, Gerpacio RV(1999)Alternative futures for world cereal and meat consumption. Summer meeting of the Nutrition Society.Guild ford,UK,29June-2July 1998.Proc Nutr Soc58:1–16CrossRefGoogle Scholar
  8. 8.
    Ashraf M(2004)Some important physiological selection criteria for salt tolerance in plants.Flora199:361–376Google Scholar
  9. 9.
    Munns R(2005)Gene sand salt tolerance: Bringingthem together.New Phytol167:645–663Google Scholar
  10. 10.
    Cuartero J, Bolarin MC, Asinns MJ, Moreno V(2006)Increasingsalttoleranceinthetomato.JExpBot57:1045–1058Google Scholar
  11. 11.
    Flowers TJ, Flowers SA(2005)Whydoessalinityposesuchadifficultproblemforplantbreeders?AgricWaterManage78:15–24Google Scholar
  12. 12.
    Ashraf M, Foolad MR(2007)Improvingplantabiotic-stressresistancebyexogenousapplicationofosmoprotectantsglycinebetaineandproline.EnvironExpBot59:206–216Google Scholar
  13. 13.
    Murata N, Mohanty PS, Hayashi H, Papageorgiou GC(1992)Glycinebetainestabilizestheassociationofextrinsicproteinswiththephotosyntheticoxygen-evolvingcomplex.FEBSLett296:187–189CrossRefGoogle Scholar
  14. 14.
    Mäkela P, Kontturi M, Pehu E, Somersalo S(1999)Photosyntheticresponseofdroughtandsaltstressedtomatoandturniprapeplantstofoliarlyappliedglycinebetaine.PhysiolPlant105:45–50Google Scholar
  15. 15.
    Raza SH, Athar HR, Ashraf M(2006)Influenceofexogenouslyappliedglycinebetaineonthephotosyntheticcapacityoftwodifferentlyadaptedwheatcultivarsundersaltstress.PakJBot38:341–251Google Scholar
  16. 16.
    Demiral T, Türkan I(2004)DoesexogenousglycinebetaineaffectantioxidantsystemofriceseedlingsunderNaCltreatment?JPlantPhysiol161:1089–1100Google Scholar
  17. 17.
    Raza SH, Athar HR, Ashraf M, Hameed A(2007)Glycinebetaine-inducedmodulationofantioxidantenzymesactivitiesandionaccumulationintwowheatcultivarsdifferinginsalttolerance.EnvironExpBot60:368–378Google Scholar
  18. 18.
    Bergmann H, Eckert H(1984)EinflussvonGlycinbetainaufdieWasserausnutzungvonWinter-WeizenTriticumaestivumL.BiolPlant26:384–387Google Scholar
  19. 19.
    Diaz-Zorita M, Fernández-Canigia MV, Grosso GA(2001)Applicationsoffoliarfertilizerscontainingglycinebetaineimprovewheatyields.JAgronCropSci186:209–215Google Scholar
  20. 20.
    Mäkela P, Jokinen K, Kontturi M, Peltonen-Sainio P, Pehu E, Somersalo S(1998)Foliarapplicationofglycinebetaine-anovelproductfromsugarbeet-asanapproachtoincreasetomatoyield.IndCropsProd7:139–148Google Scholar
  21. 21.
    Yang X, Lu C(2005)Photosynthesisisimprovedbyexogenousglycinebetaineinsaltstressedmaizeplants.PhysiolPlant124:343–352Google Scholar
  22. 22.
    Baker NR, Harbinson J, Kramer DM(2007)Determiningthelimitationsandregulationofphotosyntheticenergytransductioninleaves.PlantCellEnviron30:1107–1125Google Scholar
  23. 23.
    Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL(2007)FittingphotosyntheticcarbondioxideresponsecurvesforC3leaves.PlantCellEnviron30:1035–1040Google Scholar
  24. 24.
    Kocheva K, Lambrev P, Georgiev G, Goltsev V, Karabaliev M(2004)Evaluationofchlorophyllfluorescenceandmembraneinjuryintheleavesofbarleycultivarsunderosmoticstress.Bioelectrochemistry63:121–124PubMedCrossRefGoogle Scholar
  25. 25.
    Gossett DR, Millhollon EP, Lucas MC(1994)AntioxidantresponsetoNaClstresssalt-tolerantandsalt-sensitivecultivarsofcotton.CropSci34:706–714Google Scholar
  26. 26.
    Gossett DR, Banks SW, Millhollon EP, Lucas MC(1996)AntioxidantresponsetoNaClstressinacontrolandaNaCl-tolerantcottonlinegrowninthepresenceofparaquat,buthio-ninesulfoximeandexogenousglutathione.PlantPhysiol112:803–809Google Scholar
  27. 27.
    Bor M, Özdemir F, Türkan I(2003)Theeffectofsaltstressonlipidperoxidationandanti-oxidantsinleavesofsugarbeetBetavulgarisL.)andwildbeetBetamaritimeL.).PlantSci164:77–84Google Scholar
  28. 28.
    Shalata A, Tal M(1998)Theeffectofsaltstressonlipidperoxidationandantioxidantsintheleafofthecultivatedtomatoanditswildsalt-tolerantrelativeLycopersiconpenellii.PhysiolPlant104:169–174Google Scholar
  29. 29.
    Smirnoff N, Cumbes OJ(1989)Hydroxylradicalscavengingactivityofcompatiblesolutes.Phytochemistry28:1057–1060CrossRefGoogle Scholar
  30. 30.
    Yang X, Lu C(2006)Effectsofexogenousglycinebetaineongrowth,CO2assimilation,andphotosystemIIphotochemistryofmaizeplants.PhysiolPlant127:593–602Google Scholar
  31. 31.
    Harinasut P, Tsutsui K, Takabe T, Nomura M, Kishitani S(1996)Exogenousglycinebetaineaccumulationandincreasedsalttoleranceinriceseedlings.BiosciBiotechnolBiochem60:366–368Google Scholar
  32. 32.
    Lutts S(2000)Exogenousglycinebetainereducessodiumaccumulationinsalt-stressedriceplants.IntRiceResNotes25:39–40Google Scholar
  33. 33.
    Monteith JL(1977)ClimateandtheefficiencyofcropproductioninBritain.PhilosTransRSocLond281:277–294Google Scholar
  34. 34.
    Hirose T, Ackerly DD, Traw MB, Ramseier D, Bazzaz FA(1997)CO2elevation,canopyphotosynthesis,andoptimalleafareaindex.Ecology78:2339–2350Google Scholar
  35. 35.
    Mansour MMF(1998)ProtectionofplasmamembraneofonionepidermalcellsbyglycinebetaineandprolineagainstNaClstress.PlantPhysiolBiochem36:767–772Google Scholar
  36. 36.
    Mäkela P, Kärkkäinen J, Somersalo S(2000)Effectofglycinebetaineonchloroplastultra-structure,chlorophyllandproteincontent,andRubiscoactivitiesintomatogrownunderdroughtorsalinity.BiolPlant43:471–475Google Scholar
  37. 37.
    Lopez CML, Takahashi H, Yamazaki S(2002)PlantwaterrelationsofkidneybeanplantstreatedwithNaClandfoliarlyappliedglycinebetaine.JAgronCropSci188:73–80Google Scholar
  38. 38.
    Ashraf M Bashir A(2003)Saltstressinducedchangesinsomeorganicmetabolitesandionicrelationsinnodulesandotherplantpartsoftwolegumesdifferinginsalttolerance.Flora198:486–498Google Scholar
  39. 39.
    Ashraf M, Sultana R.(2000)CombineeffectofNaClsalinityandN-formonmineralcompositionofsunflowerplants.BiolPlant43:615–619Google Scholar
  40. 40.
    Hernandez JA, Ferrer MA, Jimenez A, RosBarcelo A, Sevilla F(2001)AntioxidantsystemsandO2 •-/H2O2productionintheapoplastofpealeaves.Itsrelationwithsalt-inducednecroticlesionsinminorveins.PlantPhysiol127:817–831Google Scholar
  41. 41.
    McCord JM(2000)Theevolutionoffreeradicalsandoxidativestress.AmJMed108:652–659Google Scholar
  42. 42.
    Mittler R(2002)Oxidativestress,antioxidantsandstresstolerance.TrendsPlantSci7:405–410Google Scholar
  43. 43.
    Elstner EF(1991)Mechanismofoxygenactivationindifferentcompartmentsofplantcell.AmericanSocietyofPlantPhysiology, Rockville,13–25Google Scholar
  44. 44.
    Alscher RG, Erturk N, Heath LS(2002)Roleofsuperoxidedismutases(SODs)incontrollingoxidativestressinplants.JExpBot53:1331–1341Google Scholar
  45. 45.
    Ma QQ, Wang W, Li YH, Li DQ, Zou Q(2006)Alleviationofphotoinhibitionindrought-stressedwheat(Triticumaestivum)byfoliar-appliedglycinebetaine.JPlantPhysiol163:165–175Google Scholar
  46. 46.
    Cuin TA, Shabala S(2007) CompatiblesolutesreduceROS-inducedpotassiumeffluxinArabidopsisroots.PlantCellEnviron30:875–885Google Scholar
  47. 47.
    Naidu BP, Cameron DF, Konduri SV(1998) Improvingstresstoleranceandproductivityofplantsbyabiochemicalapproachinagronomyandplantbreeding.In:ProceedingsoftheIXAustralianAgronomyConference,WaggaWagga, Australia,355–358Google Scholar

Copyright information

© BirkhäuserVerlag/Switzerland 2008

Authors and Affiliations

  • Muhammad Ashraf
    • 1
  • Khalid Nawaz
    • 1
  • Habib-ur-Rehman Athar
    • 2
  • SyedHammad Raza
    • 3
  1. 1.DepartmentofBotanyUniversityofAgricultureFaisalabadPakistan
  2. 2.InstituteofPureandAppliedBiologyBahauddinZakariyaUniversityMultanPakistan
  3. 3.DepartmentofBotanyGCUniversityFaisalabadPakistan

Personalised recommendations