Survival at extreme locations: Life strategies of halophytes - The long way from system ecology, whole plant physiology, cell biochemistry and molecular aspects back to sustainable utilization at field sites

  • Hans-Werner Koyro
  • Nicole Geißler
  • Sayed Hussin
  • Bernhard Huchzermeyer


High concentrations of sodium are toxic to most plant species. Drought and soil salinity are the major abiotic stresses in plant productivity worldwide. Many glycophytic crop species are negatively affected. Physiological and biochemical research - with an accelerating emphasis on molecular biological studies - has shown that salt tolerance in halophytes depends on a range of adaptations. The multifactorial response embraces many aspects such as gas exchange, water relations (osmotic adaptation), selective transport and uptake of ions, ion compartmentalization (homeostasis), osmolyte production, enzyme activities, ion excretion and genetic control. The ability of plant cells to maintain low cytosolic sodium concentrations is an essential process for the ability of plants to grow in salty habitats and depends on several plant-specific interactions. Unfortunately, there are few investigations that combine studies of growth with the individual partially intracellular plant characteristics. Such joint investigations are the basis for the discovery of traits that present the ability to produce cash crops in saline environments. One possible solution could be rapid advances in the genetic transfer of halophyte salt tolerance traits to crop plants. Another is the breeding of cash crop halophytes.


Salt Stress Salt Tolerance Extreme Location Salt Gland Life Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gleick P(1994)Water, war, andpeacein the Middle East.Environment36:7–41Google Scholar
  2. 2.
    Gleick PH(2000)The world’ swater2000–2001. The Biennial Report on Fresh water Resources,Island Press, Washington,D.C.,309Google Scholar
  3. 3.
    Wang XW, Vinocur B, Altman A(2003)Plant responses to drought, salinity and extremetemperatures: To wards genetic engineering forstresstolerance.Planta218:1–14PubMedCrossRefGoogle Scholar
  4. 4.
    Ericson J, Freudenberger M, Boege E(1999)Population dynamics, migration,and the future of the Calakmul Biosphere Reserve.Occasional Paper No.1,Program on Population and Sustainable Development(PSD).American Association for the Advancement of Science(AAAS), Washington,D.C.,1–40Google Scholar
  5. 5.
    Moench M(2002)Water and the potential for social instability: Liveli hoods, migrati on and the building of society.Nat Resour Forum26:195–204Google Scholar
  6. 6.
    Duda A, ElAshry MTE(2000)Addressing the global water and environment crisesthroughintegratedapproachestothemanagementofland,waterandecologicalresources.WaterInt25:115–126Google Scholar
  7. 7.
    WorldBank(1999)World Development Report.WashingtonGoogle Scholar
  8. 8.
    United Nations Development Program(UNDP)(1999)Human development Report.http://www.undp/hdro/population.htm
  9. 9.
    Lieth H(1999)Developmentofcropsandotherusefulplantsfromhalophytes.In:H Lieth, M Moschenko, M Lohmann, H-W Koyro, A Hamdy(eds):Halophyteusesindifferentclimates.I:Ecologicalandecophysiologicalstudies.Prog.Biometeorol.Vol.13,BackhuysPubl., Leiden,1–18Google Scholar
  10. 10.
    Lieth H, Moschenko M, Lohmann M, Koyro HW, Hamdy A (eds)(1999)Halophy teuses in different climates.I.Ecological and ecophysiological studies.Prog.Biometeorol.Vol.13,Backhuys Publ., LeidenGoogle Scholar
  11. 11.
    Ghassemi F, Jakeman AJ, Nix HA(1995)Salinisationoflandandwaterresources:Humancauses,extent,managementandcasestudies.USNWPress, SydneyGoogle Scholar
  12. 12.
    Szabolcs I(1994)Soils and salin is ation.In:M Pessarakli(ed):Handbook of Plant and Crop Stress.Marcel Dekker, NewYork.,3–11Google Scholar
  13. 13.
    Apse MP, Blumwald E(2002)Engineering salt tolerance in plants.Curro pin Biotech13:146–150CrossRefGoogle Scholar
  14. 14.
    Sosa L, Llanese A, Reinoso H, Reginato M, Luna V(2005)Osmoti can dspecifici on effects on the germination ofProsopisstrombulifera.Ann Bot96:261–267PubMedCrossRefGoogle Scholar
  15. 15.
    Yeo AR(1983)Salinity resistance: Physiologi esandprices.Physiol Plant58:1399–3054Google Scholar
  16. 16.
    Koyro H-W, Lieth L(1998)Salinity conversion table,2 nd en large de dn.,H Lieth(ed)Osnabrück. ISSN 09336-3114Google Scholar
  17. 17.
    Breckle S-W(2002)Salinity,halophytesandsaltaffectednaturalecosystems.In:A Läuchli, U Lüttge(eds):Salinity:Environment-Plants-Molecules.Kluwer, Dordrecht,53–77Google Scholar
  18. 18.
    Läuchli A, Epstein E(1990)Plantresponsestosalineandsodicconditions.In:Tanji KK(ed):Agriculturalsalinityassessmentandmanagement.ASCE manualno.71,NewYork,113–137Google Scholar
  19. 19.
    Maas EV(1990)Cropsalttolerance.In:Tanji KK(ed):Agricultural salinity assessment and management.ASCE manual no.71,New York,262–304Google Scholar
  20. 20.
    Flowers TJ(2004)Improving cropsalt tolerance.J Exp Bot55:307–319Google Scholar
  21. 21.
    Borsani O, Valpuesta V, Botella MA(2003)Developing salt-tolerant plants in a new century: Amole cular biology approach.Plant Cell Tissue Organ Culture73:101–115CrossRefGoogle Scholar
  22. 22.
    Glenn E, Brown JJ, Blumwald E(1999)Salt tolerance and croppotential of halophytes.Crit Rev Plant Sci18:277–255Google Scholar
  23. 23.
    Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pas-cual-Ahuir A, Proft M, Ros R, Montesinos C(1999)Aglimpse of the mechanisms of ionhomeostas is during salt stress.J Exp Bot50:1023–1036CrossRefGoogle Scholar
  24. 24.
    Koyro H-W, Geissler N, Hussin S, Huchzermeyer B(2006)Mechanisms of cash crophalophy test omaint ainyie ldandreclaim so ilsinaridareas.Task Veg Sci40:345–366Google Scholar
  25. 25.
    Marschner H(1995)Mineral nutrition of high er plants.Academic Press, London,889Google Scholar
  26. 26.
    Koyro H-W(2003)Study of potential cashcrophalophy tes in aquick check system.Task Veg Sci38:5–17Google Scholar
  27. 27.
    Epstein E(1980)Responses of plant stosal in eenvironments.In:DW Rains, RC Valentine, A Hollaender (eds):Genetic engineering of osmo regulation.Plenum Press, NewYork,7–21Google Scholar
  28. 28.
    Kinzel H(1982)Pflanzenöko logie und Mineralst of fwechsel.Eugen Ulmer, Stuttgart,534Google Scholar
  29. 29.
    Cramer RC, Läuchli A, Epstein E(1986)Effects of NaCl and CaCl on ion act ivitiesin complex nutrient so lutions and root growth of cotton.Plant Physiol81:792–797PubMedCrossRefGoogle Scholar
  30. 30.
    Maathuis FJM, Amtmann A(1999)K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios.AnnBot84:123–133Google Scholar
  31. 31.
    Koyro H-W(2006)Effect of salinity on growth, photosynthesis, water relation sand solute composition of the potential cashcrophalophytePlant ago coronopus(L.).Environ Exp Bot56:136–146Google Scholar
  32. 32.
    Koyro H-W, Huchzermeyer B(2004)Ecophysiological need soft he potential biomasscrop Spart in a townsendiiGROV.Trop Ecol45:123–139Google Scholar
  33. 33.
    Munns (2002)Comparative physiology of salt and water stress.Plant Cell Environ25:239–250Google Scholar
  34. 34.
    Flowers TJ, Troke PF, Yeo AR(1977)The mechanisms of salt tolerance in halophytes.Annu Rev Plant Physiol28:89–121CrossRefGoogle Scholar
  35. 35.
    Greenway H, Munns R(1980)Mechanisms of salt tolerance innonhalophytes.Annu Rev Plant Physiol31:149–190CrossRefGoogle Scholar
  36. 36.
    Munns R(2005)Tansleyre view: Genesand salt tolerance: Bringing the m together.New Phytol167:645–669Google Scholar
  37. 37.
    Mengel K, Kirkby EA(2001)Principles of plant nutrition.Kluwer, Dordrecht,849Google Scholar
  38. 38.
    Koyro H-W, Wegmann L, Lehmann H, Lieth H (1997) Physiological mechanisms an dmor phological adaptation ofLagunculariaracemosato high salinity.In: H Lieth, A Hamdy, H-W Koyro (eds):Water management,salinity and pollution controlto ward ssustain ableirrigati on in the Mediterraneanregion: Salinityproblem sandhalo phyte use.Tecnomack, Bari,51–78Google Scholar
  39. 39.
    Koyro H-W, Huchzermeyer B(1999)Influence of high NaCl-salinity on growth, waterando smoticre lations ofthehalophyteBetavulgarisssp.maritima.Development of aquick check.Prog Biometeorol13:87–101Google Scholar
  40. 40.
    Hong B, Barg R, Ho TH(1992)Developmental and organ specific expression of an ABA-andstress-induced proteininbarley.Plant Mol Biol18:663–674PubMedCrossRefGoogle Scholar
  41. 41.
    Hare PD, Cress WA, VanStaden J(1998)Dissectingtherolesofosmolyteaccumulationduringstress.PlantCellEnviron21:535–554Google Scholar
  42. 42.
    Tester M, Davenport R(2003)Na+toleranceandNa+transportinhigherplants.AnnBot91:503–527Google Scholar
  43. 43.
    WynJones RG, Gorham J (2002)Intra-andinter-cellularcompartmentationofions.In:A Läuchli, U Lüttge(eds):Salinity:Environment-Plants-Molecules.Kluwer, Dordrecht,159–180Google Scholar
  44. 44.
    Koyro H-W, Huchzermeyer B(2004)Eco physiological mechanisms leading to salinity tolerance-Screening of cashcrophalo phytes.Recent Res Dev Plant Sci1:187–207Google Scholar
  45. 45.
    Ohta H(2002)Introduction of a Na+/H+antiportergene from Atriplexgmeliniconfer salt tolerance to rice.FEBS Lett532:279–282Google Scholar
  46. 46.
    Gordon-Weeks R, Koren‘kov VD, Steele SH, Leigh RA(1997)Tris is a competitive inhibit or of K+activation of the vacuolar H+-pumping pyrophosphatase.Plant Physiol114:901–905PubMedGoogle Scholar
  47. 47.
    Koyro H.W, Huchzermeyer B(1997)ThephysiologicalresponseofBetavulgarisssp.maritimatoseawaterirrigation.In:H Lieth, A Hamdy and H-W Koyro(eds):Watermanagement,salinityandpollutioncontroltowardssustainableirrigationintheMediterraneanregion.Salinityproblemsandhalophyteuse.Tecnomack, Bari,29–50Google Scholar
  48. 48.
    Leigh RA(1997)Thesolutecompositionofthevacuoles.AdvBotRes25:253–295Google Scholar
  49. 49.
    Leigh RA, Sanders D(1997)Theplantvacuole.AdvBotRes25:463Google Scholar
  50. 50.
    Hasegawa PM, Bressan RA, Pardo JM(2000)Thedawnofplantsalttolerancegenetics.TrendsPlantSci5:31–319Google Scholar
  51. 51.
    Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ(2000)Plantcellularandmolecularresponsestohighsalinity.AnnuRevPlantPhysiol51:493–499Google Scholar
  52. 52.
    Zhu JK(2003)Regulationofionhomeostasisundersaltstress.CurrOpinPlantBiol6:441–445Google Scholar
  53. 53.
    Gaxiola RA, Li J, Undurraga S, Dang V, Allen GJ, Alper SL, Fink GR(2001)ProcNatlAcadSciUSA98:11444–11449Google Scholar
  54. 54.
    Uozumi, N Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI(2000)TheArabidopsisHKT1genehomologmediatesinwardNa+currentsinXenopuslaevisoocytesandNa+uptakeinSaccharomycescerevisiae.PlantPhysiol122:1249–1260Google Scholar
  55. 55.
    Rubio F, Gassmann W, Schroeder JI(1995)SodiumdrivenpotassiumuptakebytheplantpotassiumtransporterHKT1andmutationsconferringsalttolerance.Science270:1660–1663PubMedCrossRefGoogle Scholar
  56. 56.
    Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA(2002)AroleforHKT1insodiumuptakebywheatroots.PlantJ32:139–149CrossRefGoogle Scholar
  57. 57.
    Katiyar-Agarwal S, Verslues P, Zhu J-K(2005)Mechanismsofsalttoleranceinplants.In:CJ Li, FS Zhang, A Dobermann, P Hinsinger, H Lambers, XL Li, P Marschner, L Maene, S McGrath, O Oenemaetal(eds):Plantnutritionforfoodsecurity,humanhealthandenvironmentalprotection.TsinghuaUniversityPress, Bejing,44–45Google Scholar
  58. 58.
    Mitchell P(1974)Achemiosmoticmolecularmechanismforproton-translocatingadenosinetriphosphatases.FEBSLett78:189–194Google Scholar
  59. 59.
    Debez A, Saadaoui D, Balasubramian R, Ouerghi Z, Koyro H-W, Huchzermeyer B Abdelly C(2006)LeafATPaseactivityandphotosyntheticcapacityofCakilemaritimainresponsetoincreasingsalinity.EnvironExpBot57:285–295Google Scholar
  60. 60.
    Süss KH, Arkona, C, Manteuffel R, Adler K(1993)Calvincyclemultienzymecomplexesareboundtochloroplastthylakoidmembranesofhigherplantsinsitu.ProcNatlAcadSciUSA90:5514–5518Google Scholar
  61. 61.
    Strasser RJ(1988)Aconceptforstressanditsapplicationinremotesensing.In:HK Lich-tenthaler(ed):Applicationsofchlorophyllfluorescence.Kluwer, Dordrecht,333–337Google Scholar
  62. 62.
    Mehler AH(1951)Studiesonreactionsofilluminatedchloroplasts.ArchBiochemBiophys33:65–77Google Scholar
  63. 63.
    Garg AK, Kim J-K, Owens TG, Ranwala AP, Choi YD, Kochian LV, Wu RJ(2002)Trehaloseaccumulationinriceplantsconfershightolerancelevelstodifferentabioticstresses.ProcNatlAcadSciUSA99:15898–15903Google Scholar
  64. 64.
    Waisel Y(1972)Biologyofhalophytes.AcademicPress, NewYorkGoogle Scholar
  65. 65.
    Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ(2001)Geneexpressionprofilesduringtheinitialphaseofsaltstressinrice.PlantCell13:889–905Google Scholar
  66. 66.
    Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J(2002)Aproteomicapproachtoanalyzingdrought-andsaltresponsivenessinrice.FieldCropsRes76:199–219Google Scholar
  67. 67.
    BIOS(2005)BiologicalInnovationforanOpenSociety.Canberra,ACT, Australia:CAM-BIA(CenterfortheApplicationofMolecularBiologytoAgriculture).
  68. 68.
    Rus AM, Estan MT, Gisbert C, Garcia-Sogo B, Serrano R, Caro M, Moreno V, Bolarin MC(2001)ExpressingtheyeastHAL1geneintomatoincreasesfruityieldandenhancesK+/Na+selectivityundersaltstress.PlantCellEnviron24:875–880Google Scholar
  69. 69.
    Zhang HX, Blumwald E(2001)Transgenicsalt-toleranttomatoplantsaccumulatesaltinfoliagebutnotinfruit.NatBiotechnol19:765–768CrossRefGoogle Scholar
  70. 70.
    Munns R, Husain S, Rivelli AR, James RA, Condon AG, Lindsay MP, Lagudah ES, Schacht-man DP, Hare RA(2002)Avenuesforincreasingsalttoleranceofcrops,andtheroleofphysiologicallybasedselectiontraits.PlantSoil247:93–105Google Scholar
  71. 71.
    Zhang JZ, Creelman RA, Zhu JK(2004)Fromlaboratorytofield.UsinginformationfromArabidopsistoengineersalt,cold,anddroughttoleranceincrops.PlantPhysiol135:615–621Google Scholar

Copyright information

© BirkhäuserVerlag/Switzerland 2008

Authors and Affiliations

  • Hans-Werner Koyro
    • 1
  • Nicole Geißler
    • 1
  • Sayed Hussin
    • 1
  • Bernhard Huchzermeyer
    • 2
  1. 1.Institute of PlantEcologyJust us Liebig University GiessenGiessenGermany
  2. 2.Institute for BotanyLeibniz University HannoverHannoverGermany

Personalised recommendations