Advertisement

Alterations of BMP signaling pathway(s) in skeletal diseases

  • Petra Seemann
  • Stefan Mundlos
  • Katarina Lehmann
Part of the Progress in Inflammation Research book series (PIR)

Abstract

The existence of bone morphogenetic proteins (BMPs) was postulated by Urist already in 1965 based on the observation that dematerialized bone matrix is able to induce bone formation when transplanted into the muscle of rabbits or rats [1]. Because heat-denatured samples did not show this effect, he concluded that the inducing substance had to be a protein and suggested the name ‚bone morphogenetic protein’. It took 20 more years after that pioneering observation to actually prove this theory. The first report on purification of a BMP was in 1988 by Elizabeth Wang and colleagues [2] and soon thereafter a series of ground-breaking discoveries followed. BMPs were either purified or cloned from cartilage and/or bone [3, 4, 5, 6, 7, 8, 9]. It turned out that the different BMPs are quite homologous to each other and structurally related to TGF-β proteins [6, 10, 11]. Due to their similarities they were classified as the TGF-β superfamily with a large subgroup of proteins named BMPs and growth and differentiation factors (GDFs). With a few exceptions, BMPs and GDFs are capable of inducing ectopic bone and or cartilage formation in vitro and in vivo.

Keywords

Bone Morphogenetic Protein Splice Site Mutation Skeletal Disease Induce Bone Formation Specific Protein Protein Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Urist MR (1965) Bone: Formation by autoinduction. Science 150: 893–899CrossRefGoogle Scholar
  2. 2.
    Wang EA, Rosen V, Cordes P, Hewick RM, Kriz MJ, Luxenberg DP, Sibley BS, Wozney JM (1988) Purification and characterization of other distinct bone-inducing factors. Proc Natl Acad Sci USA 85: 9484–9488CrossRefGoogle Scholar
  3. 3.
    Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: Molecular clones and activities. Science 242: 1528–1534CrossRefGoogle Scholar
  4. 4.
    Rosen V, Wozney JM, Wang EA, Cordes P, Celeste A, McQuaid D, Kurtzberg L (1989) Purification and molecular cloning of a novel group of BMPs and localization of BMP mRNA in developing bone. Connect Tissue Res 20: 313–319CrossRefGoogle Scholar
  5. 5.
    Wozney JM, Rosen V, Byrne M, Celeste AJ, Moutsatsos I, Wang EA (1990) Growth factors influencing bone development. J Cell Sci Suppl 13: 149–156Google Scholar
  6. 6.
    Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, Wang EA, Wozney JM (1990) Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone. Proc Natl Acad Sci USA 87: 9843–9847CrossRefGoogle Scholar
  7. 7.
    Chang SC, Hoang B, Thomas JT, Vukicevic S, Luyten FP, Ryba NJ, Kozak CA, Reddi AH, Moos M Jr (1994) Cartilage-derived morphogenetic proteins. New members of the transforming growth factor-beta superfamily predominantly expressed in long bones during human embryonic development. J Biol Chem 269: 28227–28234Google Scholar
  8. 8.
    Vukicevic S, Luyten FP, Reddi AH (1989) Stimulation of the expression of osteogenic and chondrogenic phenotypes in vitro by osteogenin. Proc Natl Acad Sci USA 86: 8793–8797CrossRefGoogle Scholar
  9. 9.
    Luyten FP, Cunningham NS, Ma S, Muthukumaran N, Hammonds RG, Nevins WB, Woods WI, Reddi AH (1989) Purification and partial amino acid sequence of osteogenin, a protein initiating bone differentiation. J Biol Chem 264: 13377–13380Google Scholar
  10. 10.
    Sampath TK, Coughlin JE, Whetstone RM, Banach D, Corbett C, Ridge RJ, Ozkaynak E, Oppermann H, Rueger DC (1990) Bovine osteogenic protein is composed of dimers of OP-1 and BMP-2A, two members of the transforming growth factor-beta superfamily. J Biol Chem 265: 13198–13205Google Scholar
  11. 11.
    Ozkaynak E, Rueger DC, Drier EA, Corbett C, Ridge RJ, Sampath TK, Oppermann H (1990) OP-1 cDNA encodes an osteogenic protein in the TGF-beta family. EMBO J 9: 2085–2093Google Scholar
  12. 12.
    Wall NA, Hogan BL (1994) TGF-beta related genes in development. Curr Opin Genet Dev 4: 517–522CrossRefGoogle Scholar
  13. 13.
    Schwabe GC, Mundlos S (2004) Genetics of congenital hand anomalies. Handchir Mikrochir Plast Chir 36: 85–97CrossRefGoogle Scholar
  14. 14.
    Kornak U, Mundlos S (2003) Genetic disorders of the skeleton: A developmental approach. Am J Hum Genet 73: 447–474CrossRefGoogle Scholar
  15. 15.
    Bell J (1951) Treasury of Human Inheritance. Cambridge University Press, London, 1–31Google Scholar
  16. 16.
    Thomas JT, Lin K, Nandedkar M, Camargo M, Cervenka J, Luyten FP (1996) A human chondrodysplasia due to a mutation in a TGF-beta superfamily member. Nat Genet 12: 315–317CrossRefGoogle Scholar
  17. 17.
    Everman DB, Bartels CF, Yang Y, Yanamandra N, Goodman FR, Mendoza-Londono JR, Savarirayan R, White SM, Graham JM Jr, Gale RP et al (2002) The mutational spectrum of brachydactyly type C. Am J Med Genet 112: 291–296CrossRefGoogle Scholar
  18. 18.
    Schwabe GC, Turkmen S, Leschik G, Palanduz S, Stover B, Goecke TO, Mundlos S (2004) Brachydactyly type C caused by a homozygous missense mutation in the prodomain of CDMP1. Am J Med Genet 124A: 356–363CrossRefGoogle Scholar
  19. 19.
    Kjaer KW, Eiberg H, Hansen L, van der Hagen CB, Rosendahl K, Tommerup N, Mundlos S (2005) A mutation in the receptor binding site of GDF-5 causes Mohr-Wriedt brachydactyly type A2. J Med Genet 43: 225–231CrossRefGoogle Scholar
  20. 20.
    Lehmann K, Seemann P, Stricker S, Sammar M, Meyer B, Suring K, Majewski F, Tinschert S, Grzeschik KH, Muller D et al (2003) Mutations in bone morphogenetic protein receptor 1B cause brachydactyly type A2. Proc Natl Acad Sci USA 100: 12277–12282CrossRefGoogle Scholar
  21. 21.
    Seemann P, Schwappacher R, Kjaer KW, Krakow D, Lehmann K, Dawson K, Stricker S, Pohl J, Ploger F, Staub E et al (2005) Activating and deactivating mutations in the receptor interaction site of GDF-5 cause symphalangism or brachydactyly type A2. J Clin Invest 115: 2373–2381CrossRefGoogle Scholar
  22. 22.
    Dawson K, Seeman P, Sebald E, King L, Edwards M, Williams J 3rd, Mundlos S, Krakow D (2006) GDF-5 is a second locus for multiple-synostosis syndrome. Am J Hum Genet 78: 708–712CrossRefGoogle Scholar
  23. 23.
    Faiyaz-Ul-Haque M, Ahmad W, Zaidi SH, Haque S, Teebi AS, Ahmad M, Cohn DH, Tsui LC (2002) Mutation in the cartilage-derived morphogenetic protein-1 (CDMP1) gene in a kindred affected with fibular hypoplasia and complex brachydactyly (DuPan syndrome). Clin Genet 61: 454–458CrossRefGoogle Scholar
  24. 24.
    Szczaluba K, Hilbert K, Obersztyn E, Zabel B, Mazurczak T, Kozlowski K (2005) Du Pan syndrome phenotype caused by heterozygous pathogenic mutations in CDMP1 gene. Am J Med Genet A 138: 379–383Google Scholar
  25. 25.
    Thomas JT, Kilpatrick MW, Lin K, Erlacher L, Lembessis P, Costa T, Tsipouras P, Luyten FP (1997) Disruption of human limb morphogenesis by a dominant negative mutation in CDMP1. Nat Genet 17: 58–64CrossRefGoogle Scholar
  26. 26.
    Miyamoto Y, Mabuchi A, Shi D, Kubo T, Takatori Y, Saito S, Fujioka M, Sudo A, Uchida A, Yamamoto S et al (2007) A functional polymorphism in the 5′ UTR of GDF-5 is associated with susceptibility to osteoarthritis. Nat Genet 39: 529–533CrossRefGoogle Scholar
  27. 27.
    Tsezou A, Satra M, Oikonomou P, Bargiotas K, Malizos KN (2007) The growth differentiation factor 5 (GDF-5) core promoter polymorphism is not associated with knee osteoarthritis in the greek population. J Orthop Res 26: 136–140CrossRefGoogle Scholar
  28. 28.
    Lehmann K, Seemann P, Boergermann J, Morin G, Reif S, Knaus P, Mundlos S (2006) A novel R486Q mutation in BMPR1B resulting in either a brachydactyly type C/symphalangism-like phenotype or brachydactyly type A2. Eur J Hum Genet 14: 1248–1254CrossRefGoogle Scholar
  29. 29.
    Demirhan O, Turkmen S, Schwabe GC, Soyupak S, Akgul E, Tastemir D, Karahan D, Mundlos S, Lehmann K (2005) A homozygous BMPR1B mutation causes a new subtype of acromesomelic chondrodysplasia with genital anomalies. J Med Genet 42: 314–317CrossRefGoogle Scholar
  30. 30.
    Baur ST, Mai JJ, Dymecki SM (2000) Combinatorial signaling through BMP receptor IB and GDF-5: Shaping of the distal mouse limb and the genetics of distal limb diversity. Development 127: 605–619Google Scholar
  31. 31.
    Wilson T, Wu XY, Juengel JL, Ross IK, Lumsden JM, Lord EA, Dodds KG, Walling GA, McEwan JC, O’Connell AR et al (2001) Highly prolific Booroola sheep have a mutation in the intracellular kinase domain of bone morphogenetic protein IB receptor (ALK-6) that is expressed in both oocytes and granulosa cells. Biol Reprod 64: 1225–1235CrossRefGoogle Scholar
  32. 32.
    Galloway SM, McNatty KP, Cambridge LM, Laitinen MP, Juengel JL, Jokiranta TS, McLaren RJ, Luiro K, Dodds KG, Montgomery GW et al (2000) Mutations in an oocyte-derived growth factor gene (BMP15) cause increased ovulation rate and infertility in a dosage-sensitive manner. Nat Genet 25: 279–283CrossRefGoogle Scholar
  33. 33.
    Zhou XP, Woodford-Richens K, Lehtonen R, Kurose K, Aldred M, Hampel H, Launonen V, Virta S, Pilarski R, Salovaara R et al (2001) Germline mutations in BMPR1A/ ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am J Hum Genet 69: 704–711CrossRefGoogle Scholar
  34. 34.
    Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M et al (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38: 525–527CrossRefGoogle Scholar
  35. 34a.
    Kaplan FS (2005) Fibrodysplasia ossificans progressiva — An historical perspective. Clin Rev Bone Miner Metab 3: 179–181CrossRefGoogle Scholar
  36. 35.
    Mahboubi S, Glaser DL, Shore EM, Kaplan FS (2001) Fibrodysplasia ossificans progressiva. Pediatr Radiol 31: 307–314CrossRefGoogle Scholar
  37. 36.
    Kitterman JA, Kantanie S, Rocke DM, Kaplan FS (2005) Iatrogenic harm caused by diagnostic errors in fibrodysplasia ossificans progressiva. Pediatrics 116: e654–661CrossRefGoogle Scholar
  38. 37.
    Fiori JL, Billings PC, de la Pena LS, Kaplan FS, Shore EM (2006) Dysregulation of the BMP-p38 MAPK signaling pathway in cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res 21: 902–909CrossRefGoogle Scholar
  39. 38.
    Xu MQ, Feldman G, Le Merrer M, Shugart YY, Glaser DL, Urtizberea JA, Fardeau M, Connor JM, Triffitt J, Smith R et al (2000) Linkage exclusion and mutational analysis of the noggin gene in patients with fibrodysplasia ossificans progressiva (FOP). Clin Genet 58: 291–298CrossRefGoogle Scholar
  40. 39.
    Semonin O, Fontaine K, Daviaud C, Ayuso C, Lucotte G (2001) Identification of three novel mutations of the noggin gene in patients with fibrodysplasia ossificans progressiva. Am J Med Genet 102: 314–317CrossRefGoogle Scholar
  41. 40.
    Groppe JC, Shore EM, Kaplan FS (2007) Functional modeling of the ACVR1 (R206H) mutation in FOP. Clin Orthop Relat Res 462: 87–92CrossRefGoogle Scholar
  42. 41.
    Kaplan FS, Glaser DL, Pignolo RJ, Shore EM (2007) A new era for fibrodysplasia ossificans progressiva: a druggable target for the second skeleton. Expert Opin Biol Ther 7: 705–712CrossRefGoogle Scholar
  43. 42.
    Lane KB, Machado RD, Pauciulo MW, Thomson JR, Phillips JA 3rd, Loyd JE, Nichols WC, Trembath RC (2000) Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat Genet 26: 81–84CrossRefGoogle Scholar
  44. 43.
    Sammar M, Stricker S, Schwabe GC, Sieber C, Hartung A, Hanke M, Oishi I, Pohl J, Minami Y, Sebald W et al (2004) Modulation of GDF-5/BRI-b signaling through interaction with the tyrosine kinase receptor Ror2. Genes Cells 9: 1227–1238CrossRefGoogle Scholar
  45. 44.
    Schwabe GC, Tinschert S, Buschow C, Meinecke P, Wolff G, Gillessen-Kaesbach G, Oldridge M, Wilkie AO, Komec R, Mundlos S (2000) Distinct mutations in the receptor tyrosine kinase gene ROR2 cause brachydactyly type B. Am J Hum Genet 67: 822–831CrossRefGoogle Scholar
  46. 45.
    Oldridge M, Fortuna AM, Maringa M, Propping P, Mansour S, Pollit C, DeChiara TM, Kimble RB, Valenzuela DM, Yancopoulos GD et al (2000) Dominant mutations in ROR2, encoding an orphan receptor tyrosine kinase, cause brachydactyly type B. Nat Genet 24: 275–278CrossRefGoogle Scholar
  47. 46.
    van Bokhoven H, Celli J, Kayserili H, van Beusekom E, Balci S, Brussel W, Skovby F, Kerr B, Percin EF, Akarsu N et al (2000) Mutation of the gene encoding the ROR2 tyrosine kinase causes autosomal recessive Robinow syndrome. Nat Genet 25: 423–426CrossRefGoogle Scholar
  48. 47.
    Groppe J, Greenwald J, Wiater E, Rodriguez-Leon J, Economides AN, Kwiatkowski W, Affolter M, Vale WW, Belmonte JC, Choe S (2002) Structural basis of BMP signaling inhibition by the cystine knot protein Noggin. Nature 420: 636–642CrossRefGoogle Scholar
  49. 48.
    Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R, Hudgins L, Cremers CW, Cremers FP, Brunner HG et al (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet 21: 302–304CrossRefGoogle Scholar
  50. 49.
    Dixon ME, Armstrong P, Stevens DB, Bamshad M (2001) Identical mutations in NOG can cause either tarsal/carpal coalition syndrome or proximal symphalangism. Genet Med 3: 349–353CrossRefGoogle Scholar
  51. 50.
    Brown DJ, Kim TB, Petty EM, Downs CA, Martin DM, Strouse PJ, Moroi SE, Milunsky JM, Lesperance MM (2002) Autosomal dominant stapes ankylosis with broad thumbs and toes, hyperopia, and skeletal anomalies is caused by heterozygous nonsense and frameshift mutations in NOG, the gene encoding noggin. Am J Hum Genet 71: 618–624CrossRefGoogle Scholar
  52. 51.
    Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455–1457CrossRefGoogle Scholar
  53. 52.
    Lehmann K, Seemann P, Silan F, Goecke TO, Irgang S, Kjaer KW, Kjaergaard S, Mahoney MJ, Morlot S, Reissner C et al (2007) A new subtype of brachydactyly type B caused by point mutations in the bone morphogenetic protein antagonist NOGGIN. Am J Hum Genet 81: 388–396CrossRefGoogle Scholar
  54. 53.
    Hansen H (1967) Sklerosteose. In: H Opitz, F Schmid (eds): Handbuch der Kinderheilkunde. Springer, Berlin, 351–355Google Scholar
  55. 54.
    Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68: 577–589CrossRefGoogle Scholar
  56. 55.
    Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer-Frick I, Rubin EM (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15: 928–935CrossRefGoogle Scholar
  57. 56.
    Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 6267–6276CrossRefGoogle Scholar
  58. 57.
    Winkler DG, Yu C, Geoghegan JC, Ojala EW, Skonier JE, Shpektor D, Sutherland MK, Latham JA(2004) Noggin and sclerostin bone morphogenetic protein antagonists form a mutually inhibitory complex. J Biol Chem 279: 36293–36298CrossRefGoogle Scholar
  59. 58.
    van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, Hamersma H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyteexpressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199: 805–814CrossRefGoogle Scholar
  60. 59.
    van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, Quax PH, Vrieling H, Papapoulos SE, ten Dijke P et al (2007) Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res 22: 19–28CrossRefGoogle Scholar
  61. 60.
    Kingsley DM, Bland AE, Grubber JM, Marker PC, Russell LB, Copeland NG, Jenkins NA (1992) The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 71: 399–410CrossRefGoogle Scholar
  62. 61.
    King JA, Marker PC, Seung KJ, Kingsley DM (1994) BMP5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166: 112–122CrossRefGoogle Scholar
  63. 62.
    Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF betasuperfamily. Nature 368: 639–643CrossRefGoogle Scholar
  64. 63.
    Chhabra A, Zijerdi D, Zhang J, Kline A, Balian G, Hurwitz S (2005) BMP-14 deficiency inhibits long bone fracture healing: a biochemical, histologic, and radiographic assessment. J Orthop Trauma 19: 629–634CrossRefGoogle Scholar
  65. 64.
    Mikic B, Schalet BJ, Clark RT, Gaschen V, Hunziker EB (2001) GDF—5 deficiency in mice alters the ultrastructure, mechanical properties and composition of the Achilles tendon. J Orthop Res 19: 365–371CrossRefGoogle Scholar
  66. 65.
    Zhao GQ (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35: 43–56CrossRefGoogle Scholar
  67. 66.
    Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122: 2977–2986Google Scholar
  68. 67.
    Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) Bmp4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13: 424–436CrossRefGoogle Scholar
  69. 68.
    Gu Z, Reynolds EM, Song J, Lei H, Feijen A, Yu L, He W, MacLaughlin DT, van den Eijnden-van Raaij J, Donahoe PK et al (1999) The type I serine/threonine kinase receptor ActRIA (ALK2) is required for gastrulation of the mouse embryo. Development 126: 2551–2561Google Scholar
  70. 69.
    Ahn K, Mishina Y, Hanks MC, Behringer RR, Crenshaw EB 3rd (2001) BMPR-IA signaling is required for the formation of the apical ectodermal ridge and dorsal-ventral patterning of the limb. Development 128: 4449–4461Google Scholar
  71. 70.
    Beppu H, Kawabata M, Hamamoto T, Chytil A, Minowa O, Noda T, Miyazono K (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221: 249–258CrossRefGoogle Scholar
  72. 71.
    Jena N, Martin-Seisdedos C, McCue P, Croce CM (1997) BMP7 null mutation in mice: Developmental defects in skeleton, kidney, and eye. Exp Cell Res 230: 28–37CrossRefGoogle Scholar
  73. 72.
    Daluiski A, Engstrand T, Bahamonde ME, Gamer LW, Agius E, Stevenson SL, Cox K, Rosen V, Lyons KM (2001) Bone morphogenetic protein-3 is a negative regulator of bone density. Nat Genet 27: 84–88Google Scholar
  74. 73.
    Yoon BS, Ovchinnikov DA, Yoshii I, Mishina Y, Behringer RR, Lyons KM (2005) Bmpr1a and Bmpr1b have overlapping functions and are essential for chondrogenesis in vivo. Proc Natl Acad Sci USA 102: 5062–5067CrossRefGoogle Scholar
  75. 74.
    Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38: 1424–1429CrossRefGoogle Scholar
  76. 75.
    Bandyopadhyay A, Tsuji K, Cox K, Harfe BD, Rosen V, Tabin CJ (2006) Genetic analysis of the roles of BMP2, BMP4, and BMP7 in limb patterning and skeletogenesis. PLoS Genet 2: e216CrossRefGoogle Scholar
  77. 76.
    Wang X, Xiao F, Yang Q, Liang B, Tang Z, Jiang L, Zhu Q, Chang W, Jiang J, Jiang C et al (2006) A novel mutation in GDF-5 causes autosomal dominant symphalangism in two Chinese families. Am J Med Genet A 140: 1846–1853Google Scholar
  78. 77.
    Faiyaz-Ul-Haque M, Ahmad W, Wahab A, Haque S, Azim AC, Zaidi SH, Teebi AS, Ahmad M, Cohn DH, Siddique T et al (2002) Frameshift mutation in the cartilagederived morphogenetic protein 1 (CDMP1) gene and severe acromesomelic chondrodysplasia resembling Grebe-type chondrodysplasia. Am J Med Genet 111: 31–37CrossRefGoogle Scholar
  79. 78.
    Stelzer C, Winterpacht A, Spranger J, Zabel B (2003) Grebe dysplasia and the spectrum of CDMP1 mutations. Pediatr Pathol Mol Med 22: 77–85CrossRefGoogle Scholar
  80. 79.
    Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ et al (2002) Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39: 91–97CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Petra Seemann
    • 1
  • Stefan Mundlos
    • 1
    • 2
  • Katarina Lehmann
    • 2
  1. 1.Max-Planck-Institut für Molekulare Genetik, Research Group Development & DiseaseBerlinGermany
  2. 2.Institut für Medizinische GenetikUniversitätsmedizin Berlin, CharitéBerlinGermany

Personalised recommendations