Dissection of bone morphogenetic protein signaling using genome-engineering tools

  • Daniel Graf
  • Aris N. Economides
Part of the Progress in Inflammation Research book series (PIR)


Bone morphogenetic proteins (BMPs) encompass a large subgroup of evolutionary conserved, secreted signaling molecules belonging to the TGF-β superfamily. In contrast to that suggested by their name, BMP function is not restricted to the skeleton. Recent studies in several organisms have revealed multiple roles for BMPs during embryogenesis where they are involved in early embryonic pattering, gastrulation, tissue induction and differentiation [1]. BMP signaling activity is regulated at multiple levels (Fig. 1A). In the intracellular space multiple regulatory proteins control BMP signaling after initial BMP receptor activation. In the extracellular space BMP antagonists such as Noggin, Follistatin and related proteins, Gremlin and other members of the Dan family, Chordin and its relatives along with Twisted Gastrulation (Tsg), all regulate the ability of BMPs to engage the BMP receptors. Studies on flies and lower vertebrates have led to the concept that these extracellular interactions result in the formation of BMP activity gradients, which in turn provide positional cues to the cells that encounter them [2, 3, 4]. Although direct evidence for the operation of such activity gradients is missing in higher vertebrates, orthologs for all antagonists do exist. In addition, there are data pointing to neighboring or overlapping domains of expression between BMPs and their antagonists as well as evidence for BMP-dependent expression of the latter (for review see [5]). Therefore, when trying to understand BMP function in vivo, it is important to examine BMPs in the context of expression of their antagonists as well as other regulatory molecules.


Bone Morphogenetic Protein Signaling Selection Cassette LOX0 Site Thymic Stroma Cell Thymocyte Maturation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kishigami S, Mishina Y (2005) BMP signaling and early embryonic patterning. Cytokine Growth Factor Rev 16: 265–278CrossRefGoogle Scholar
  2. 2.
    Ashe HL, Mannervik M, Levine M (2000) Dpp signaling thresholds in the dorsal ectoderm of the Drosophila embryo. Development 127: 3305–3312Google Scholar
  3. 3.
    Mizutani CM, Nie Q, Wan FY, Zhang YT, Vilmos P, Sousa-Neves R, Bier E, Marsh JL, Lander AD (2005) Formation of the BMP activity gradient in the Drosophila embryo. Dev Cell 8: 915–924CrossRefGoogle Scholar
  4. 4.
    Podos SD, Ferguson EL (1999) Morphogen gradients: New insights from DPP. Trends Genet 15: 396–402CrossRefGoogle Scholar
  5. 5.
    Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24: 218–235CrossRefGoogle Scholar
  6. 6.
    Kornak U, Mundlos S (2003) Genetic disorders of the skeleton: A developmental approach. Am J Hum Genet 73: 447–474CrossRefGoogle Scholar
  7. 7.
    Hartung A, Sieber C, Knaus P (2006) Yin and Yang in BMP signaling: Impact on the pathology of diseases and potential for tissue regeneration. Signal Transduction 6: 314–328CrossRefGoogle Scholar
  8. 8.
    Lee SJ (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20: 61–86CrossRefGoogle Scholar
  9. 9.
    Storm EE, Huynh TV, Copeland NG, Jenkins NA, Kingsley DM, Lee SJ (1994) Limb alterations in brachypodism mice due to mutations in a new member of the TGF betasuperfamily. Nature 368: 639–643CrossRefGoogle Scholar
  10. 10.
    Shore EM, Xu M, Feldman GJ, Fenstermacher DA, Cho TJ, Choi IH, Connor JM, Delai P, Glaser DL, LeMerrer M et al (2006) A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet 38: 525–527CrossRefGoogle Scholar
  11. 11.
    Cao X, Eu KW, Kumarasinghe MP, Li HH, Loi C, Cheah PY (2006) Mapping of hereditary mixed polyposis syndrome (HMPS) to chromosome 10q23 by genome-wide highdensity single nucleotide polymorphism (SNP) scan and identification of BMPR1A loss of function. J Med Genet 43: e13CrossRefGoogle Scholar
  12. 12.
    Gong Y, Krakow D, Marcelino J, Wilkin D, Chitayat D, Babul-Hirji R, Hudgins L, Cremers CW, Cremers FP, Brunner HG et al (1999) Heterozygous mutations in the gene encoding noggin affect human joint morphogenesis. Nat Genet 21: 302–304CrossRefGoogle Scholar
  13. 13.
    Brown DJ, Kim TB, Petty EM, Downs CA, Martin DM, Strouse PJ, Moroi SE, Gebarski SS, Lesperance MM (2003) Characterization of a stapes ankylosis family with a NOG mutation. Otol Neurotol 24: 210–215CrossRefGoogle Scholar
  14. 14.
    Warren SM, Brunet LJ, Harland RM, Economides AN, Longaker MT (2003) The BMP antagonist noggin regulates cranial suture fusion. Nature 422: 625–629CrossRefGoogle Scholar
  15. 15.
    Kaplan FS, Glaser DL, Shore EM, Pignolo RJ, Xu M, Zhang Y, Senitzer D, Forman SJ, Emerson SG (2007) Hematopoietic stem-cell contribution to ectopic skeletogenesis. J Bone Joint Surg Am 89: 347–357CrossRefGoogle Scholar
  16. 16.
    Kaplan FS, Shore EM, Gupta R, Billings PC, Glaser DL, Pirgnolo RJ, Graf D, Kamoun M (2005) Immunological features of fibrodysplasia ossificans progressiva and the dysregulated BMP-4 pathway. Clin Rev Bone Miner Metab 3: 189–193CrossRefGoogle Scholar
  17. 17.
    Gautschi OP, Frey SP, Zellweger R (2007) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77: 626–631CrossRefGoogle Scholar
  18. 18.
    Fuller K, Bayley KE, Chambers TJ (2000) Activin A is an essential cofactor for osteoclast induction. Biochem Biophys Res Commun 268: 2–7CrossRefGoogle Scholar
  19. 19.
    Lories RJ, Daans M, Derese I, Matthys P, Kasran A, Tylzanowski P, Ceuppens JL, Luyten FP (2006) Noggin haploinsufficiency differentially affects tissue responses in destructive and remodeling arthritis. Arthritis Rheum 54: 1736–1746CrossRefGoogle Scholar
  20. 20.
    Zhao GQ (2003) Consequences of knocking out BMP signaling in the mouse. Genesis 35: 43–56CrossRefGoogle Scholar
  21. 21.
    Graf D, Nethisinghe S, Palmer DB, Fisher AG, Merkenschlager M (2002) The developmentally regulated expression of Twisted gastrulation reveals a role for bone morphogenetic proteins in the control of T cell development. J Exp Med 196: 163–171CrossRefGoogle Scholar
  22. 22.
    Adams NC, Gale NW (2006) High Resolution Gene expression analysis in mice using genetically inserted reporter genes. In: S Pease, C Lois (eds): Mammalian and Avian Transgenesis — New Approaches. Springer, Berlin, 131–172CrossRefGoogle Scholar
  23. 23.
    Collins FS, Rossant J, Wurst W (2007) A mouse for all reasons. Cell 128: 9–13CrossRefGoogle Scholar
  24. 24.
    Monteiro RM, de Sousa Lopes SM, Korchynskyi O, ten Dijke P, Mummery CL (2004)Spatio-temporal activation of Smad1 and Smad5 in vivo: Monitoring transcriptional activity of Smad proteins. J Cell Sci 117: 4653–4663CrossRefGoogle Scholar
  25. 25.
    Nohe A, Keating E, Knaus P, Petersen NO (2004) Signal transduction of bone morphogenetic protein receptors. Cell Signal 16: 291–299CrossRefGoogle Scholar
  26. 26.
    Sugimori K, Matsui K, Motomura H, Tokoro T, Wang J, Higa S, Kimura T, Kitajima I (2005) BMP-2 prevents apoptosis of the N1511 chondrocytic cell line through PI3K/ Akt-mediated NF-kappaB activation. J Bone Miner Metab 23: 411–419CrossRefGoogle Scholar
  27. 27.
    Hager-Theodorides AL, Outram SV, Shah DK, Sacedon R, Shrimpton RE, Vicente A, Varas A, Crompton T (2002) Bone morphogenetic protein 2/4 signaling regulates early thymocyte differentiation. J Immunol 169: 5496–5504Google Scholar
  28. 28.
    Bachiller D, Klingensmith J, Shneyder N, Tran U, Anderson R, Rossant J, DeRobertis EM (2003) The role of chordin/Bmp signals in mammalian pharyngeal development and DiGeorge syndrome. Development 130: 3567–3578CrossRefGoogle Scholar
  29. 29.
    Ohnemus S, Kanzler B, Jerome-Majewska LA, Papaioannou VE, Boehm T, Mallo M (2002) Aortic arch and pharyngeal phenotype in the absence of BMP-dependent neural crest in the mouse. Mech Dev 119: 127–135CrossRefGoogle Scholar
  30. 30.
    Bleul CC, Boehm T (2005) BMP signaling is required for normal thymus development. J Immunol 175: 5213–5221Google Scholar
  31. 31.
    Nosaka T, Morita S, Kitamura H, Nakajima H, Shibata F, Morikawa Y, Kataoka Y, Ebihara Y, Kawashima T, Itoh T et al (2003) Mammalian twisted gastrulation is essential for skeleto-lymphogenesis. Mol Cell Biol 23: 2969–2980CrossRefGoogle Scholar
  32. 32.
    de Boer J, Williams A, Skavdis G, Harker N, Coles M, Tolaini M, Norton T, Williams K, Roderick K, Potocnik AJ et al (2003) Transgenic mice with hematopoietic and lymphoid specific expression of Cre. Eur J Immunol 33: 314–325CrossRefGoogle Scholar
  33. 33.
    Liston A, Farr AG, Chen Z, Benoist C, Mathis D, Manley NR, Rudensky AY (2007) Lack of Foxp3 function and expression in the thymic epithelium. J Exp Med 204: 475–480CrossRefGoogle Scholar
  34. 34.
    Mass RL, Zeller R, Woychik RP, Vogt TF, Leder P (1990) Disruption of formin-encoding transcripts in two mutant limb deformity alleles. Nature 346: 853–855CrossRefGoogle Scholar
  35. 35.
    Zuniga A, Michos O, Spitz F, Haramis AP, Panman L, Galli A, Vintersten K, Klasen C, Mansfield W, Kuc S et al (2004) Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev 18: 1553–1564CrossRefGoogle Scholar
  36. 36.
    Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34: 303–307CrossRefGoogle Scholar
  37. 37.
    Long X, Miano JM (2007) Remote control of gene expression. J Biol Chem 282: 15941–15945CrossRefGoogle Scholar
  38. 38.
    Portnoy ME, McDermott KJ, Antonellis A, Margulies EH, Prasad AB, Kingsley DM, Green ED, Mortlock DP (2005) Detection of potential GDF6 regulatory elements by multispecies sequence comparisons and identification of a skeletal joint enhancer. Genomics 86: 295–305CrossRefGoogle Scholar
  39. 39.
    Chandler RL, Chandler KJ, McFarland KA, Mortlock DP (2007) BMP-2 transcription in osteoblast progenitors is regulated by a distant 3′ enhancer located 156.3 kilobases from the promoter. Mol Cell Biol 27: 2934–2951CrossRefGoogle Scholar
  40. 40.
    DiLeone RJ, Marcus GA, Johnson MD, Kingsley DM (2000) Efficient studies of longdistance BMP-5 gene regulation using bacterial artificial chromosomes. Proc Natl Acad Sci USA 97: 1612–1617CrossRefGoogle Scholar
  41. 41.
    DiLeone RJ, Russell LB, Kingsley DM (1998) An extensive 3′ regulatory region controls expression of BMP-5 in specific anatomical structures of the mouse embryo. Genetics 148: 401–408Google Scholar
  42. 42.
    Ovcharenko I, Nobrega MA, Loots GG, Stubbs L (2004) ECR browser: A tool for visualizing and accessing data from comparisons of multiple vertebrate genomes. Nucleic Acids Res 32: W280–286CrossRefGoogle Scholar
  43. 43.
    Winnier G, Blessing M, Labosky PA, Hogan BL (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9: 2105–2116CrossRefGoogle Scholar
  44. 44.
    Lawson KA, Dunn NR, Roelen BA, Zeinstra LM, Davis AM, Wright CV, Korving JP, Hogan BL (1999) BMP-4 is required for the generation of primordial germ cells in the mouse embryo. Genes Dev 13: 424–436CrossRefGoogle Scholar
  45. 45.
    Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL (1997) Haploinsufficient phenotypes in BMP-4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188: 235–247CrossRefGoogle Scholar
  46. 46.
    Chang B, Smith RS, Peters M, Savinova OV, Hawes NL, Zabaleta A, Nusinowitz S, Martin JE, Davisson ML, Cepko CL et al (2001) Haploinsufficient BMP-4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure. BMC Genet 2: 18CrossRefGoogle Scholar
  47. 47.
    Frank DB, Abtahi A, Yamaguchi DJ, Manning S, Shyr Y, Pozzi A, Baldwin HS, Johnson JE, de Caestecker MP (2005) Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res 97: 496–504CrossRefGoogle Scholar
  48. 48.
    Kulessa H, Hogan BL (2002) Generation of a loxP flanked BMP-4loxP-lacZ allele marked by conditional lacZ expression. Genesis 32: 66–68CrossRefGoogle Scholar
  49. 49.
    Muyrers JP, Zhang Y, Testa G, Stewart AF (1999) Rapid modification of bacterial artificial chromosomes by ET-recombination. Nucleic Acids Res 27: 1555–1557CrossRefGoogle Scholar
  50. 50.
    Copeland NG, Jenkins NA, Court DL (2001) Recombineering: A powerful new tool for mouse functional genomics. Nat Rev Genet 2: 769–779CrossRefGoogle Scholar
  51. 51.
    Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J et al (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21: 652–659CrossRefGoogle Scholar
  52. 52.
    Gazzerro E, Smerdel-Ramoya A, Zanotti S, Stadmeyer L, Durant D, Economides AN, Canalis E (2007) Conditional deletion of gremlin causes a transient increase in bone formation and bone mass. J Biol Chem 282: 31549–31557CrossRefGoogle Scholar
  53. 53.
    Zhang H, Bradley A (1996) Mice deficient for BMP-2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122: 2977–2986Google Scholar
  54. 54.
    Correia AC, Costa M, Moraes F, Bom J, Novoa A, Mallo M (2007) BMP-2 is required for migration but not for induction of neural crest cells in the mouse. Dev Dyn 236: 2493–2501CrossRefGoogle Scholar
  55. 55.
    Ma L, Martin JF (2005) Generation of a BMP-2 conditional null allele. Genesis 42: 203–206CrossRefGoogle Scholar
  56. 56.
    Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, Gerstenfeld L, Einhorn T, Tabin CJ, Rosen V (2006) BMP-2 activity, although dispensable for bone formation, is required for the initiation of fracture healing. Nat Genet 38: 1424–1429CrossRefGoogle Scholar
  57. 57.
    King JA, Marker PC, Seung KJ, Kingsley DM (1994) BMP-5 and the molecular, skeletal, and soft-tissue alterations in short ear mice. Dev Biol 166: 112–122CrossRefGoogle Scholar
  58. 58.
    Solloway MJ, Dudley AT, Bikoff EK, Lyons KM, Hogan BL, Robertson EJ (1998) Mice lacking BMP-6 function. Dev Genet 22: 321–339CrossRefGoogle Scholar
  59. 59.
    Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9: 2795–2807CrossRefGoogle Scholar
  60. 60.
    Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9: 2808–2820CrossRefGoogle Scholar
  61. 61.
    Kim RY, Robertson EJ, Solloway MJ (2001) BMP-6 and BMP-7 are required for cushion formation and septation in the developing mouse heart. Dev Biol 235: 449–466CrossRefGoogle Scholar
  62. 62.
    Solloway MJ, Robertson EJ (1999) Early embryonic lethality in BMP-5; BMP-7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126: 1753–1768Google Scholar
  63. 63.
    Patel SR, Dressler GR (2005) BMP-7 signaling in renal development and disease. Trends Mol Med 11: 512–518CrossRefGoogle Scholar
  64. 64.
    Godin RE, Takaesu NT, Robertson EJ, Dudley AT (1998) Regulation of BMP-7 expression during kidney development. Development 125: 3473–3482Google Scholar
  65. 65.
    Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280: 1455–1457CrossRefGoogle Scholar
  66. 66.
    McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12: 1438–1452CrossRefGoogle Scholar
  67. 67.
    Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131: 3401–3410CrossRefGoogle Scholar
  68. 68.
    Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J et al (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403: 658–661CrossRefGoogle Scholar
  69. 69.
    Petryk A, Anderson RM, Jarcho MP, Leaf I, Carlson CS, Klingensmith J, Shawlot W, O’Connor MB (2004) The mammalian twisted gastrulation gene functions in foregut and craniofacial development. Dev Biol 267: 374–386CrossRefGoogle Scholar
  70. 70.
    Gazzerro E, Deregowski V, Stadmeyer L, Gale NW, Economides AN, Canalis E (2006) Twisted gastrulation, a bone morphogenetic protein agonist/antagonist, is not required for post-natal skeletal function. Bone 39: 1252–1260CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Daniel Graf
    • 1
  • Aris N. Economides
    • 2
  1. 1.Institute of ImmunologyBiomedical Sciences Center ‘Al. Fleming’VariGreece
  2. 2.Genome Engineering TechnologiesRegeneron Pharmaceuticals, Inc.TarrytownUSA

Personalised recommendations