Systemic administration of bone morphogenetic proteins

  • Slobodan Vukicevic
  • Petra Simic
  • Lovorka Grgurevic
  • Fran Borovecki
  • Kuber Sampath
Part of the Progress in Inflammation Research book series (PIR)


Apart from the local application, bone morphogenetic proteins (BMPs) have been systemically applied in rats for the following indications: bone formation in a model of osteoporosis [1], kidney regeneration in models of acute and chronic renal failure [2, 3, 4, 5, 6, 7], liver regeneration [8], ischemic coronary infarction [6, 9] and stroke [10], and in a nude mouse model of human prostate, breast, brain and melanocyte cancer [11, 12, 13, 14]. BMPs induced organ regeneration recapitulating embryonic development without recorded systemic side effects, except transient bone formation at the site of injection around the tail vein. This was not unexpected, since around the blood vessels the existing progenitor cells can differentiate into cartilage and bone in the presence of a recombinant BMP. No ossification of other tissues has been recorded even after a long period of daily BMP injections. The idea of using BMPs systemically for promoting tissue regeneration and repair has existed for years. However, do we have enough information on their pharmacodynamic and pharmacokinetic properties and a reproducible production of pure preparations for clinical use, and on reproducible results of their efficacy? Do BMPs circulate under physiological conditions? These questions are discussed in this chapter in an attempt to support evidence for their systemic use.


Bone Formation Chronic Renal Failure Bone Morphogenetic Protein Chondroitin Sulfate Liver Regeneration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Simic P, Buljan Culej J, Orlic I, Grgurevic L, Draca N, Spaventi R, Vukicevic S (2006) Systemically administered bone morphogenetic protein-6 (BMP-6) restores bone in aged ovariectomized rats by increasing bone formation and suppressing bone resorption. J Biol Chem 281: 25509–25521CrossRefGoogle Scholar
  2. 2.
    Vukicevic S, Grgic M, Stavljenic A, Sampath TK (1996) Recombinant human OP-1 (BMP-7) prevents rapid loss of glomerular function and improves mortality associated with chronic renal failure. J Am Soc Nephrol 7: A3102Google Scholar
  3. 3.
    Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, Jin D, Dattatreyamurty B, Jones W, Dorai H et al (1998) Osteogenic protein-1 (bone morphogenetic protein-7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 102: 202–214CrossRefGoogle Scholar
  4. 4.
    Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, Loveday K, Klahr S, Sampath TK, Morrissey J (2000) Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol 279: F130–F143Google Scholar
  5. 5.
    González EA, Lund RJ, Martin KJ, McCartney JE, Tondravi MM, Sampath TK, Hruska KA (2002) Treatment of a murine model of high-turnover renal osteodystrophy by exogenous BMP-7. Kidney Int 61: 1322–1331CrossRefGoogle Scholar
  6. 6.
    Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9: 964–968CrossRefGoogle Scholar
  7. 7.
    Borovecki F, Simic P, Grgurevic L, Vukicevic S (2004) BMPs in regeneration of kidney. In: Vukicevic S, Sampath TK (eds): Bone morphogenetic proteins: Regeneration of bone and beyond. Birkhäuser, Basel, 213–244Google Scholar
  8. 8.
    Sugimoto H, Yang C, LeBleu VS, Soubasakos MA, Giraldo M, Zeisberg M, Kalluri R (2007) BMP-7 functions as a novel hormone to facilitate liver regeneration. FASEB J 21: 256–264CrossRefGoogle Scholar
  9. 9.
    Lefer AM, Tsao PS, Ma XL, Sampath TK (1992) Anti-ischaemic and endothelial protective actions of recombinant human osteogenic protein (hOP-1). J Mol Cell Cardiol 24: 585–593CrossRefGoogle Scholar
  10. 10.
    Ren J, Kaplan PL, Charette MF, Speller H, Finklestein SP (2000) Time window of intracisternal osteogenic protein-1 in enhancing functional recovery after stroke. Neuropharmacology 39: 860–865CrossRefGoogle Scholar
  11. 11.
    Simic P, Vukicevic S (2007) Bone morphogenetic proteins: From developmental signals to tissue regeneration. Conference on bone morphogenetic proteins. EMBO Rep 8: 327–331CrossRefGoogle Scholar
  12. 12.
    Buijs JT, Rentsch CA, van der Horst G, van Overveld PG, Wetterwald A, Schwaninger R, Henriquez NV, Ten Dijke P, Borovecki F, Markwalder R et al (2007) BMP7, a putative regulator of epithelial homeostasis in the human prostate, is a potent inhibitor of prostate cancer bone metastasis in vivo. Am J Pathol 171: 1047–1057CrossRefGoogle Scholar
  13. 13.
    Buijs JT, Henriquez NV, van Overveld PG, van der Horst G, Que I, Schwaninger R, Rentsch C, Ten Dijke P, Cleton-Jansen AM, Driouch K et al (2007) Bone morphogenetic protein 7 in the development and treatment of bone metastases from breast cancer. Cancer Res 67: 8742–8751CrossRefGoogle Scholar
  14. 14.
    Notting I, Buijs J, Mintardjo R, van der Horst G, Vukicevic S, Lowik C, Schalij-Delfos N, Keunen J, van der Pluijm G (2007) Bone morphogenetic protein 7 inhibits tumor growth of human uveal melanoma in vivo. Invest Ophthalmol Vis Sci 48: 4882–4889CrossRefGoogle Scholar
  15. 15.
    Irie A, Habuchi H, Kimata K, Sanai Y (2003) Heparan sulfate is required for bone morphogenetic protein-7 signaling. Biochem Biophys Res Commun 308: 858–865CrossRefGoogle Scholar
  16. 16.
    Dattatreyamurty B, Roux E, Horbinski C, Kaplan PL, Robak LA, Beck HN, Lein P, Higgins D, Chandrasekaran V (2001) Cerebrospinal fluid contains biologically active bone morphogenetic protein-7. Exp Neurol 172: 273–281CrossRefGoogle Scholar
  17. 17.
    Cook SD, Rueger DC (2002) Preclinical models of recombinant BMP induced healing of orthopedic defects. In: S Vukicevic, TK Sampath (eds): Bone morphogenetic proteins: From laboratory to clinical practice. Birkhäuser, Basel, 121–144Google Scholar
  18. 18.
    Friedlaender GE (2004) Clinical experience of osteogenic protein 1 (OP-1) in the repair of bone defects and fractures of long bones. In: S Vukicevic, TK Sampath (eds): Bone morphogenetic proteins: Regeneration of bone and beyond. Birkhäuser, Basel, 157–162Google Scholar
  19. 19.
    Martinovic S, Basic N, Vukicevic S (1999) BMP-4 expression decreases during differentiation of osteoblastic MC3T3-E1 cells. Bone 24: 4aGoogle Scholar
  20. 20.
    Plant A, Tobias JH (2002) Increased bone morphogenetic protein-6 expression in mouse long bones after estrogen administration. J Bone Miner Res 17: 782–790CrossRefGoogle Scholar
  21. 21.
    Rickard DJ, Hofbauer LC, Bonde SK, Gori F, Spelsberg TC, Riggs BL (1998) Bone morphogenetic protein-6 production in human osteoblastic cell lines Selective regulation by estrogen. J Clin Invest 101: 413–442CrossRefGoogle Scholar
  22. 22.
    Fournier PG, Guise TA (2007) BMP7: A new bone metastases prevention? Am J Pathol 171: 739–743CrossRefGoogle Scholar
  23. 23.
    Raida M, Clement JH, Leek RD, Ameri K, Bicknell R, Niederwieser D, Harris AL (2005) Bone morphogenetic protein 2 (BMP-2) and induction of tumor angiogenesis. J Cancer Res Clin Oncol 131: 741–750CrossRefGoogle Scholar
  24. 24.
    Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK (2005) Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res 65: 448–456Google Scholar
  25. 25.
    Klose A, Waerzeggers Y, Klein M, Monfared P, Vukicevic S, Kaijzel EL, Winkeler A, Löwik CWGM, Jacobs AH (2007) Imaging BMP-7-induced cell cycle arrest in experimental gliomas. Cancer Research 67: 8742–8751CrossRefGoogle Scholar
  26. 26.
    Vukicevic S, Luyten FP, Reddi AH (1990) Osteogenin inhibits proliferation and stimulates differentiation in mouse osteoblast-like cells (MC3T3-E1). Biochem Biophys Res Commun 166: 750–756CrossRefGoogle Scholar
  27. 27.
    Luo O, Hofmann A, Bronckers JJ, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis and is also required for eye development and skeletal patterning. Genes Dev 9: 2808–2820CrossRefGoogle Scholar
  28. 28.
    Adeghate E, Schattner P, Dunn E (2006) An update on the etiology and epidemiology of diabetes mellitus. Ann NY Acad Sci 1084: 1–29CrossRefGoogle Scholar
  29. 29.
    Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H, Wang Q, Singh M, Pukac L, Bell AC, Duan R et al (2003) An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol 21: 294–301CrossRefGoogle Scholar
  30. 30.
    Goulley J, Dahl U, Baeza N, Mishina Y, Edlund H (2007) BMP4-BMPR1A signaling in beta cells is required for and augments glucose-stimulated insulin secretion. Cell Metab 5: 207–219CrossRefGoogle Scholar
  31. 31.
    Dichmann DS, Miller CP, Jensen J, Scott Heller R, Serup P (2003) Expression and misexpression of members of the FGF and TGFbeta families of growth factors in the developing mouse pancreas. Dev Dyn 226: 663–674CrossRefGoogle Scholar
  32. 32.
    Yew KH, Hembree M, Prasadan K, Preuett B, McFall C, Benjes C, Crowley A, Sharp S, Tulachan S, Mehta S et al (2005) Cross-talk between bone morphogenetic protein and transforming growth factor-beta signaling is essential for exendin-4-induced insulinpositive differentiation of AR42J cells. J Biol Chem 280: 32209–32217CrossRefGoogle Scholar
  33. 33.
    Simic P, Zuvic M, Rogic D, Dodig D, Stavljenic-Rukavina A, Vukicevic S (2004) BMP-6 regulates blood glucose level via an insulin independent pathway. In: Abstracts of the 6th International Conference on Bone Morphogenetic Proteins, 12–16 September, Nagoya, Japan, 70Google Scholar
  34. 34.
    Watkins BA, Lippman HE, Le Bouteiller L, Li Y, Seifert MF (2001) Bioactive fatty acids: Role in bone biology and bone cell function. Prog Lipid Res 40: 125–148CrossRefGoogle Scholar
  35. 35.
    Clemmons DR (2004) Role of insulin-like growth factor in maintaining normal glucose homeostasis. Horm Res 62 (Suppl 1): 77–82CrossRefGoogle Scholar
  36. 36.
    Saukkonen T, Shojaee-Moradie F, Williams RM, Amin R, Yuen KC, Watts A, Acerini L, Umpleby AM, Dunger DB (2006) Effects of recombinant human IGF-I/IGF-binding protein-3 complex on glucose and glycerol metabolism in type 1 diabetes. Diabetes 55: 2365–2370CrossRefGoogle Scholar
  37. 37.
    Xu CP, Ji WM, van den Brink GR, Peppelenbosch MP (2006) Bone morphogenetic protein-2 is a negative regulator of hepatocyte proliferation downregulated in the regenerating liver. World J Gastroenterol 12: 7621–7625Google Scholar
  38. 38.
    Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ et al (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38: 531–539CrossRefGoogle Scholar
  39. 39.
    Babitt JL, Huang FW, Xia Y, Sidis Y, Andrews NC, Lin HY (2007) Modulation of bone morphogenetic protein signaling in vivo regulates systemic iron balance. J Clin Invest 117: 1933–1939CrossRefGoogle Scholar
  40. 40.
    Izumi M, Fujio Y, Kunisada K, Negoro S, Tone E, Funamoto M, Osugi T, Oshima Y, Nakaoka Y, Kishimoto T et al (2001) Bone morphogenetic protein-2 inhibits serum deprivation-induced apoptosis of neonatal cardiac myocytes through activation of the Smad 1 pathway. J Biol Chem 276: 31133–31141CrossRefGoogle Scholar
  41. 41.
    Behfar A, Zingman LV, Hodgson DM, Rauzier JM, Kane GC, Terzic A, Pucéat M (2002) Stem cell differentiation requires a paracrine pathway in the heart. FASEB J 16: 1558–1566CrossRefGoogle Scholar
  42. 42.
    Zeisberg EM, Tarnavski O, Zeisberg M, Dorfman AL, McMullen JR, Gustafsson E, Chandraker A, Yuan X, Pu WT, Roberts AB et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13: 952–961CrossRefGoogle Scholar
  43. 43.
    Kawamata T, Ren J, Chan TC, Charette M, Finklestein SP (1998) Intracisternal osteo genic protein-1 enhances functional recovery following focal stroke. Neuroreport 9: 1441–1445CrossRefGoogle Scholar
  44. 44.
    Liu Y, Belayev L, Zhao W, Busto R, Saul I, Alonso O, Ginsberg MD (2001) The effect of bone morphogenetic protein-7 (BMP-7) on functional recovery, local cerebral glucose utilization and blood flow after transient focal cerebral ischemia in rats. Brain Res 905: 81–90CrossRefGoogle Scholar
  45. 45.
    Chang CF, Lin SZ, Chiang YH, Morales M, Chou J, Lein P, Chen HL, Hoffer BJ, Wang Y (2003) Intravenous administration of bone morphogenetic protein-7 after ischemia improves motor function in stroke rats. Stroke 34: 558–564CrossRefGoogle Scholar
  46. 46.
    Helder MN, Ozkaynak E, Sampath TK, Luyten FP, Latin V, Oppermann H, Vukicevic S (1995) Expression pattern of osteogenic protein-1 (bone morphogenetic protein-7) in human and mouse development. J Histochem Cytochem 43: 1035–1044Google Scholar
  47. 47.
    Vukicevic S, Stavljenic A, Pecina M (1995) Discovery and clinical applications of bone morphogenetic proteins. Eur J Clin Chem Clin Biochem 33: 661–671Google Scholar
  48. 48.
    Ozkaynak E, Schnegelsberg PN, Opperman H. (1991) Murine osteogenic protein-1 (OP-1): High levels of mRNA in kidney. Biochem Biophys Res Commun 179: 116–123CrossRefGoogle Scholar
  49. 49.
    Vukicevic S, Kopp JB, Luyten FB, Sampath TK (1996) Induction of nephrogenic mesenchyme by osteogenic protein-1 (bone morphogenetic protein 7). Proc Natl Acad Sci USA 93: 9021–9026CrossRefGoogle Scholar
  50. 50.
    Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9: 2795–2807CrossRefGoogle Scholar
  51. 51.
    Simon M, Maresh JG, Harris SE, Hernandez JD, Arar M, Olson MS, Abboud HE (1999) Expression of bone morphogenetic protein-7 mRNA in normal and ischemic adult rat kidney. Am J Physiol 276: 382–389Google Scholar
  52. 52.
    Michos O, Gonçalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134: 2397–2405CrossRefGoogle Scholar
  53. 53.
    Thadhani R, Pascual M, Bonventre JV (1996) Acute renal failure. N Engl J Med 334: 1448–1460CrossRefGoogle Scholar
  54. 54.
    Humes HD, MacKay SM, Funke AJ, Buffington DA (1997) Acute renal failure: Growth factors, cell therapy and gene therapy. Proc Assoc Am Physicians 109: 547–557Google Scholar
  55. 55.
    Hirschberg R, Ding H (1998) Growth factors and acute renal failure. Semin Nephrol 18: 191–207Google Scholar
  56. 56.
    Humes DH, Liu S (1994) Cellular and molecular basis of renal repair in acute renal failure. J Am Soc Nephrol 5: 1–11CrossRefGoogle Scholar
  57. 57.
    Witzgall R, Brown D, Schwarz C, Bonventre JV (1994) Localization of proliferating cell number antigen, vimentin, c-Fos and clusterin in the post-ischemic kidney: Evidence for a heterogenous genetic response among nephron segments and a large pool of mitotically active and differentiated cells. J Clin Invest 93: 2175–2188CrossRefGoogle Scholar
  58. 58.
    Hirschberg R, Kopple JD (1989) Evidence that insulin-like growth factor I increases renal plasma flow and glomerular filtration rate in fasted rats. J Clin Invest 83: 326–330CrossRefGoogle Scholar
  59. 59.
    Andersson G, Jennische E (1988) IGF-I immunoreactivity is expressed by regenerating renal tubule cells after ischaemic injury in the rat. Acta Physiol Scand 132: 453–457Google Scholar
  60. 60.
    Sugimura K, Goto T, Kasai S, Tsuchida K, Takemoto Y, Yamagami S (1998) The activation of serum hepatocyte growth factor in acute renal failure. Nephron 76: 364–365CrossRefGoogle Scholar
  61. 61.
    Coimbra TM, Cieslinski DA, Humes HD (1990) Epidermal growth factor accelerates renal repair in mercuric chloride nephrotoxicity. Am J Physiol 259: 438–443Google Scholar
  62. 62.
    Paralkar VM, Grasser WA, Mansolf AL, Baumann AP, Owen TA, Smock SL, Martinovic S, Borovecki F, Vukicevic S, Ke HZ et al (2002) Regulation of BMP-7 expression by retinoic acid and prostaglandin E(2). J Cell Physiol 190: 207–217CrossRefGoogle Scholar
  63. 63.
    Vukicevic S, Simic P, Borovecki F, Grgurevic L, Orlic I, Grasser W, Thompson DD, Paralkar V (2006) Role of EP2 and EP4 receptor-selective agonists of prostaglandin E-2 in acute and chronic kidney failure. Kidney Int 70: 1099–1106CrossRefGoogle Scholar
  64. 64.
    Dolan V, Hensey C, Brady HR (2003) Diabetic nephropathy: Renal development gone awry? Pediatr Nephrol 18: 75–84Google Scholar
  65. 65.
    Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, Liapis H, Klahr S, Hruska KA (2003) Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 63: 2037–2049CrossRefGoogle Scholar
  66. 66.
    Wang S, de Caestecker M, Kopp J, Mitu G, Lapage J, Hirschberg R (2006) Renal bone morphogenetic protein-7 protects against diabetic nephropathy. J Am Soc Nephrol 17: 2504–2512CrossRefGoogle Scholar
  67. 67.
    Sugimoto H, Grahovac G, Zeisberg M, Kalluri R (2007) Renal fibrosis and glomerulosclerosis in a new mouse model of diabetic nephropathy and its regression by bone morphogenic protein-7 and advanced glycation end product inhibitors. Diabetes 56: 1825–1833CrossRefGoogle Scholar
  68. 68.
    Lund RJ, Davies MR, Brown AJ, Hruska KA (2004) Successful treatment of an adynamic bone disorder with bone morphogenetic protein-7 in a renal ablation model. J Am Soc Nephrol 15: 359–369CrossRefGoogle Scholar
  69. 69.
    Davies MR, Lund RJ, Mathew S, Hruska KA (2005) Low turnover osteodystrophy and vascular calcification are amenable to skeletal anabolism in an animal model of chronic kidney disease and the metabolic syndrome. J Am Soc Nephrol 16: 917–928CrossRefGoogle Scholar
  70. 70.
    Zeisberg M, Muller GA, Kalluri R (2004) Are there endogenous molecules that protect kidneys from injury? The case for bone morphogenic protein-7 (BMP-7). Nephrol Dial Transplant 19: 759–761CrossRefGoogle Scholar
  71. 71.
    Remuzzi G, Bertani T (1998) Pathophysiology of progressive nephropathies. N Engl J Med 339: 1448–1456CrossRefGoogle Scholar
  72. 72.
    Brenner BM (2002) Remission of renal disease: Recounting the challenge, acquiring the goal. J Clin Invest 110: 1753–1758Google Scholar
  73. 73.
    Tomooka S, Border WA, Marshall BC, Noble NA (1992) Glomerular matrix accumulation is linked to inhibition of the plasmin protease system. Kidney Int 42: 1462–1469CrossRefGoogle Scholar
  74. 74.
    Wilson HM, Reid FJ, Brown PA, Power DA, Haites NE, Booth NA (1993) Effect of transforming growth factor-beta 1 on plasminogen activators and plasminogen activator inhibitor-1 in renal glomerular cells. Exp Nephrol 1: 343–350Google Scholar
  75. 75.
    Wang S, Hirschberg R (2003) BMP7 antagonizes TGF-beta-dependent fibrogenesis in mesangial cells. Am J Physiol Renal Physiol 284: F1006–1013Google Scholar
  76. 76.
    Lin J, Pate SR, Cheng X, Cho EA, Levitan I, Ullenbruch M, Phan SH, Park JM, Dressler GR (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11: 387–393CrossRefGoogle Scholar
  77. 77.
    Yoshikawa M, Hishikawa K, Marumo T, Fujita T (2007) Inhibition of histone deacetylase activity suppresses epithelial-to-mesenchymal transition induced by TGF-beta1 in human renal epithelial cells. J Am Soc Nephrol 18: 58–65CrossRefGoogle Scholar
  78. 78.
    Imai N, Hishikawa K, Marumo T, Hirahashi J, Inowa T, Matsuzaki Y, Okano H, Kitamura T, Salant D, Fujita T (2007) Inhibition of histone deacetylase activates side population cells in kidney and partially reverses chronic renal injury. Stem Cells 25: 2469–2475CrossRefGoogle Scholar
  79. 79.
    Li T, Surendran K, Zawaideh MA, Mathew S, Hruska KA (2004) Bone morphogenetic protein 7: A novel treatment for chronic renal and bone disease. Curr Opin Nephrol Hypertens 13: 417–422CrossRefGoogle Scholar
  80. 80.
    Grgurevic L, Macek B, Erjavec I, Mann M, Vukicevic S (2007) Urine release of systemically administered bone morphogenetic protein hybrid molecule. J Nephrol 20: 311–319CrossRefGoogle Scholar
  81. 81.
    Hruska KA, Saab G, Chaudhary LR, Quinn CO, Lund RJ, Surendran K (2004) Kidney-bone, bone-kidney, and cell-cell communications in renal osteodystrophy. Semin Nephrol 24: 25–38CrossRefGoogle Scholar
  82. 82.
    Maric I, Poljak L, Zoricic S, Bobinac D, Bosukonda D, Sampath KT, Vukicevic S (2003) Bone morphogenetic protein-7 reduces the severity of colon tissue damage and accelerates the healing of inflammatory bowel disease in rats. J Cell Physiol 196: 258–264CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Slobodan Vukicevic
    • 1
  • Petra Simic
    • 1
  • Lovorka Grgurevic
    • 1
  • Fran Borovecki
    • 2
  • Kuber Sampath
    • 3
  1. 1.Laboratory for Mineralized Tissues, School of MedicineUniversity of ZagrebZagrebCroatia
  2. 2.Center for Functional Genomics, School of MedicineUniversity of ZagrebZagrebCroatia
  3. 3.Genzyme CorporationFraminghamUSA

Personalised recommendations