Control of bone mass by sclerostin: Inhibiting BMP- and WNT-induced bone formation

  • David J. J. de Gorter
  • Carola Krause
  • Peter ten Dijke
  • Clemens W. G. M. Löwik
  • Rutger L. van Bezooijen
Part of the Progress in Inflammation Research book series (PIR)


Bone is continuously replacing itself by the actions of bone-resorbing osteoclasts and bone-forming osteoblasts, a process called bone remodeling. Because both cell types control each other’s activity, there is a tight balance between bone resorption and bone formation. However, when this delicate balance is disturbed by increased osteoclast or decreased osteoblast activity, it can lead to diseases characterized by low bone mass such as osteoporosis. Osteoporosis is a common disorder characterized by decreasing bone-mineral density (BMD), degenerative microarchitectural changes in bone tissue, and an increased fracture risk, and has become an important public health problem. In recent years, sclerostin was postulated to be an attractive target for treatment of osteoporotic patients to restore lost bone. In this chapter, our current knowledge on the function of sclerostin in bone formation and its potential as a target for anabolic treatment is discussed.


Bone Formation Bone Mass Fracture Risk Serine Threonine Important Public Health 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1: 673–683CrossRefGoogle Scholar
  2. 2.
    Pearce, JJ, Penny G, Rossant J (1999) A mouse cerberus/Dan-related gene family. Dev Biol 209: 98–110CrossRefGoogle Scholar
  3. 3.
    Laurikkala J, Kassai Y, Pakkasjarvi L, Thesleff I, Itoh N (2003) Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol 264: 91–105CrossRefGoogle Scholar
  4. 4.
    Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, Krumlauf R (2003) Wise, a context-dependent activator and inhibitor of Wnt signalling. Development 130: 4295–4305CrossRefGoogle Scholar
  5. 5.
    Avsian-Kretchmer O, Hsueh AJ (2004) Comparative genomic analysis of the eightmembered ring cystine knot-containing bone morphogenetic protein antagonists. Mol Endocrinol 18: 1–12CrossRefGoogle Scholar
  6. 6.
    Yanagita M, Oka M, Watabe T, Iguchi H, Niida A, Takahashi S, Akiyama T, Miyazono K, Yanagisawa M, Sakurai T (2004) USAG-1: A bone morphogenetic protein antagonist abundantly expressed in the kidney. Biochem Biophys Res Commun 316: 490–500CrossRefGoogle Scholar
  7. 7.
    Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R (2006) Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 21: 1738–1749CrossRefGoogle Scholar
  8. 8.
    Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 6267–6276CrossRefGoogle Scholar
  9. 9.
    van Bezooijen RL, Roelen BA, Visser A, Wee-Pals L, de Wilt E, Karperien M, Hamersman H, Papapoulos SE, ten Dijke P, Lowik CW (2004) Sclerostin is an osteocyteexpressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med 199: 805–814CrossRefGoogle Scholar
  10. 10.
    Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, Latham JA (2004) Sclerostin promotes the apoptosis of human osteoblastic cells: A novel regulation of bone formation. Bone 35: 828–835CrossRefGoogle Scholar
  11. 11.
    Poole KE, van Bezooijen RL, Loveridge N, Hamersma H, Papapoulos SE, Lowik C W, Reeve J (2005) Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J 19: 1842–1844Google Scholar
  12. 12.
    Robling AG, Bellido T, Turner CH (2006) Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interact 6: 354Google Scholar
  13. 13.
    Pockwinse SM, Wilming LG, Conlon DM, Stein GS, Lian JB (1992) Expression of cell growth and bone specific genes at single cell resolution during development of bone tissue-like organization in primary osteoblast cultures. J Cell Biochem 49: 310–323CrossRefGoogle Scholar
  14. 14.
    Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, Lacza C, Wuyts W, Van Den EJ, Willems P et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10: 537–543CrossRefGoogle Scholar
  15. 15.
    Sutherland MK, Geoghegan JC, Yu C, Winkler DG, Latham JA (2004) Unique regulation of SOST, the sclerosteosis gene, by BMPs and steroid hormones in human osteoblasts. Bone 35: 448–454CrossRefGoogle Scholar
  16. 16.
    Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: A transcriptional activator of osteoblast differentiation. Cell 89: 747–754CrossRefGoogle Scholar
  17. 17.
    Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V, Amling M, Karsenty G (1999) A Cbfa1-dependent genetic pathway controls bone formation beyond embryonic development. Genes Dev 13: 1025–1036CrossRefGoogle Scholar
  18. 18.
    Sevetson B, Taylor S, Pan Y (2004) Cbfa1/RUNX2 directs specific expression of the sclerosteosis gene (SOST). J Biol Chem 279: 13849–13858CrossRefGoogle Scholar
  19. 19.
    Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108: 17–29CrossRefGoogle Scholar
  20. 20.
    Ohyama Y, Nifuji A, Maeda Y, Amagasa T, Noda M (2004) Spaciotemporal association and bone morphogenetic protein regulation of sclerostin and osterix expression during embryonic osteogenesis. Endocrinology 145: 4685–4692CrossRefGoogle Scholar
  21. 21.
    Brunkow ME, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, Skonier JE, Zhao L, Sabo PJ, Fu Y et al (2001) Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet 68: 577–589CrossRefGoogle Scholar
  22. 22.
    Balemans W, Van Hul W (2002) Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250: 231–250Google Scholar
  23. 23.
    van Bezooijen RL, ten Dijke P, Papapoulos SE, and Lowik CW (2005) SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev 16: 319–327CrossRefGoogle Scholar
  24. 24.
    van Bezooijen RL, Deruiter MC, Vilain N, Monteiro RM, Visser A, Wee-Pals L, van Munsteren CJ, Hogendoorn PC, Aguet M, Mummery CL et al (2007) SOST expression is restricted to the great arteries during embryonic and neonatal cardiovascular development. Dev Dyn 236: 606–612CrossRefGoogle Scholar
  25. 25.
    van Bezooijen RL, Bronkers AL, Dikkers FG, Gortzak RA, Balemans W, van der Wee-Pals L, Visser A, Van Hul W, Hamersma H, ten Dijke P et al (2007) Sclerostin expression is absent in cementocytes in teeth and in osteocytes in bone biopsies of patients with Van Buchem disease. 17th Scientific Meeting of the International Bone and Mineral Society, June 24-29 2007 in Montréal Google Scholar
  26. 26.
    Hamersm H, Gardner J, Beighton P (2003) The natural history of sclerosteosis. Clin Genet 63:192–197CrossRefGoogle Scholar
  27. 27.
    Stein SA, Witkop C, Hill S, Fallon MD, Viernstein L, Gucer G, McKeever P, Long D, Altman J, Miller R et al (1983) Sclerosteosis: Neurogenetic and pathophysiologic analysis of an American kinship. Neurology 33: 267–277Google Scholar
  28. 28.
    Hill SC, Stein SA, Dwyer A, Altman J, Dorwart R, Doppman J (1986) Cranial CT findings in sclerosteosis. AJNR Am J Neuroradiol 7: 505–511Google Scholar
  29. 29.
    Beighton P (1988) Sclerosteosis. J Med Genet 25: 200–203CrossRefGoogle Scholar
  30. 30.
    Beighton P, Davidson J, Durr L, Hamersma H (1977) Sclerosteosis — An autosomal recessive disorder. Clin Genet 11: 1–7CrossRefGoogle Scholar
  31. 31.
    Wergedal JE, Veskovic K, Hellan M, Nyght C, Balemans W, Libanati C, Vanhoenacker FM, Tan J, Baylink DJ, Van Hul W (2003) Patients with Van Buchem disease, an osteosclerotic genetic disease, have elevated bone formation markers, higher bone density, and greater derived polar moment of inertia than normal. J Clin Endocrinol Metab 88: 5778–5783CrossRefGoogle Scholar
  32. 32.
    Balemans W, Van Den EJ, Freire Paes-Alvesl A, Dikkers FG, Willems PJ, Vanhoenacker F, Almeida-Melo N, Alves CF, Stratakis CA, Hill SC et al (1999) Localization of the gene for sclerosteosis to the van Buchem disease-gene region on chromosome 17q12-q21. Am J Hum Genet 64: 1661–1669CrossRefGoogle Scholar
  33. 33.
    Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, Dioszegi M, Dikkers FG, Hildering P, Willems PJ et al (2002) Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet 39: 91–97CrossRefGoogle Scholar
  34. 34.
    Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A, Gardner J C, Galas D, Schatzman RC, Beighton P et al (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110: 144–152CrossRefGoogle Scholar
  35. 35.
    Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM, Ovcharenko D, Plajzer-Frick I, Rubin EM (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15: 928–935CrossRefGoogle Scholar
  36. 36.
    Urist MR (1965) Bone: Formation by autoinduction. Science 150: 893–899CrossRefGoogle Scholar
  37. 37.
    Chen D, Zhao M, Mundy GR (2004) Bone morphogenetic proteins. Growth Factors 22: 233–241CrossRefGoogle Scholar
  38. 38.
    Gazzerro E, Canalis E (2006) Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord 7: 51–65CrossRefGoogle Scholar
  39. 39.
    ten Dijke P (2006) Bone morphogenetic protein signal transduction in bone. Curr Med Res Opin 22Suppl 1: S7–11CrossRefGoogle Scholar
  40. 40.
    Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage. J Cell Biol 127: 1755–1766CrossRefGoogle Scholar
  41. 41.
    Cheng H, Jiang W, Phillips FM, Haydon RC, Peng Y, Zhou L, Luu HH, An N, Breyer B, Vanichakarn P et al (2003) Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg Am 85-A: 1544–1552Google Scholar
  42. 42.
    Luu HH, Song WX, Luo X, Manning D, Luo J, Deng ZL, Sharff KA, Montag AG, Haydon RC, He TC (2007) Distinct roles of bone morphogenetic proteins in osteogenic differentiation of mesenchymal stem cells. J Orthop Res 25: 665–677CrossRefGoogle Scholar
  43. 43.
    Massague J, Seoane J, Wotton D (2005) Smad transcription factors. Genes Dev 19: 2783–2810CrossRefGoogle Scholar
  44. 44.
    Feng XH, Derynck R (2005) Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol 21: 659–693CrossRefGoogle Scholar
  45. 45.
    Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24: 218–235CrossRefGoogle Scholar
  46. 46.
    Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127: 469–480CrossRefGoogle Scholar
  47. 47.
    Mao B, Wu W, Li Y, Hoppe D, Stannek P, Glinka A, Niehrs C (2001) LDL-receptorrelated protein 6 is a receptor for Dickkopf proteins. Nature 411: 321–325CrossRefGoogle Scholar
  48. 48.
    Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA (2001) Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 3: 683–686CrossRefGoogle Scholar
  49. 49.
    Glinka A, Wu W, Delius H, Monaghan AP, Blumenstock C, Niehrs C (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391: 357–362CrossRefGoogle Scholar
  50. 50.
    Mao B, Wu W, Davidson G, Marhold J, Li M, Mechler BM, Delius H, Hoppe D, Stannek P, Walter C et al (2002) Kremen proteins are Dickkopf receptors that regulate Wnt/ beta-catenin signalling. Nature 417: 664–667CrossRefGoogle Scholar
  51. 51.
    Hu H, Hilton M J, Tu X, Yu K, Ornitz DM, Long F (2005) Sequential roles of Hedgehog and Wnt signaling in osteoblast development. Development 132: 49–60CrossRefGoogle Scholar
  52. 52.
    Day TF, Guo X, Garrett-Beal L, Yang Y (2005) Wnt/β-catenin signaling in mesenchymal progenitors controls osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. Dev Cell 8: 739–750CrossRefGoogle Scholar
  53. 53.
    Hill TP, Spater D, Taketo MM, Birchmeier W, Hartmann C (2005) Canonical Wnt/β-catenin signaling prevents osteoblasts from differentiating into chondrocytes. Dev Cell 8: 727–738CrossRefGoogle Scholar
  54. 54.
    Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M, Morony S, Adamu S, Geng Z, Qiu W et al (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39: 754–766CrossRefGoogle Scholar
  55. 55.
    Morvan F, Boulukos K, Clement-Lacroix P, Roman RS, Suc-Royer I, Vayssiere B, Ammann P, Martin P, Pinho S, Pognonec P et al (2006) Deletion of a single allele of the Dkk1 gene leads to an increase in bone formation and bone mass. J Bone Miner Res 21: 934–945CrossRefGoogle Scholar
  56. 56.
    van der Horst G, van der Werf SM, Farih-Sips H, van Bezooijen RL, Lowik CW, Karperien M (2005) Downregulation of Wnt signaling by increased expression of Dickkopf-1 and-2 is a prerequisite for late-stage osteoblast differentiation of KS483 cells. J Bone Miner Res 20: 1867–1877CrossRefGoogle Scholar
  57. 57.
    Li, X, Liu P, Liu W, Maye P, Zhang J, Zhang Y, Hurley M, Guo C, Boskey A, Sun L et al (2005) Dkk2 has a role in terminal osteoblast differentiation and mineralized matrix formation. Nat Genet 37: 945–952CrossRefGoogle Scholar
  58. 58.
    Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ (2005) TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J Bone Miner Res 20: 1103–1113CrossRefGoogle Scholar
  59. 59.
    Chen Y, Whetstone H C, Youn A, Nadesan P, Chow EC, Lin AC, Alman BA (2007) β-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J Biol Chem 282: 526–533CrossRefGoogle Scholar
  60. 60.
    Baron R, Rawadi G (2007) Targeting the Wnt/β-Catenin pathway to regulate bone formation in the adult skeleton. Endocrinology 148: 2635–2643CrossRefGoogle Scholar
  61. 61.
    Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, Wang H, Cundy T, Glorieux FH, Lev D et al (2001) LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 107: 513–523CrossRefGoogle Scholar
  62. 62.
    Little RD, Carulli JP, DelMastro RG, Dupuis J, Osborne M, Folz C, Manning SP, Swain PM, Zhao SC, Eustace B et al (2002) A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet 70: 11–19CrossRefGoogle Scholar
  63. 63.
    Boyden LM, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, Wu D, Insogna K, Lifton RP (2002) High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med 346: 1513–1521CrossRefGoogle Scholar
  64. 64.
    Van Wesenbeeck L, Cleiren E, Gram J, Beals RK, Benichou O, Scopelliti D, Key L, Renton T, Bartels C, Gong Y et al (2003) Six novel missense mutations in the LDL receptor-related protein 5 (LRP5) gene in different conditions with an increased bone density. Am J Hum Genet 72: 763–771CrossRefGoogle Scholar
  65. 65.
    Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280: 26770–26775CrossRefGoogle Scholar
  66. 66.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280: 19883–19887CrossRefGoogle Scholar
  67. 67.
    van Bezooijen RL, Svensson JP, Eefting D, Visser A, van der Horst G, Karperien M, Quax PH, Vrieling H, Papapoulos SE, ten Dijke P et al (2007) Wnt but not BMP signaling is involved in the inhibitory action of sclerostin on BMP-stimulated bone formation. J Bone Miner Res 22: 19–28CrossRefGoogle Scholar
  68. 68.
    Semenov MV, He X (2006) LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem 281: 38276–38284CrossRefGoogle Scholar
  69. 69.
    Zhang Y, Wang Y, Li X, Zhang J, Mao J, Li Z, Zheng J, Li L, Harris S, Wu D (2004) The LRP5 high-bone-mass G171V mutation disrupts LRP5 interaction with Mesd. Mol Cell Biol 24: 4677–4684CrossRefGoogle Scholar
  70. 70.
    Hsieh JC, Lee L, Zhang L, Wefer S, Brown K, DeRossi C, Wines ME, Rosenquist T, Holdener BC (2003) Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 112: 355–367CrossRefGoogle Scholar
  71. 71.
    Piccolo S, Agius E, Leyns L, Bhattacharyya S, Grunz H, Bouwmeester T, De Robertis EM (1999) The head inducer Cerberus is a multifunctional antagonist of Nodal, BMP and Wnt signals. Nature 397: 707–710CrossRefGoogle Scholar
  72. 72.
    Bell E, Munoz-Sanjuan I, Altmann CR, Vonica A, Brivanlou AH (2003) Cell fate specification and competence by Coco, a maternal BMP, TGFβ and Wnt inhibitor. Development 130: 1381–1389CrossRefGoogle Scholar
  73. 73.
    Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, Thesleff I, Itoh N (2003) Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem 278: 24113–24117CrossRefGoogle Scholar
  74. 74.
    Zimmerman LB, Jesus-Escobar JM, Harland RM (1996) The Spemann organizer signal noggin binds and inactivates bone morphogenetic protein 4. Cell 86: 599–606CrossRefGoogle Scholar
  75. 75.
    Piccolo S, Sasai Y, Lu B, De Robertis EM (1996) Dorsoventral patterning in Xenopus: Inhibition of ventral signals by direct binding of chordin to BMP-4. Cell 86: 589–598CrossRefGoogle Scholar
  76. 76.
    Koenig BB, Cook JS, Wolsing DH, Ting J, Tiesman JP, Correa PE, Olson CA, Pecquet AL, Ventura F, Grant RA et al (1994) Characterization and cloning of a receptor for BMP-2 and BMP-4 from NIH 3T3 cells. Mol Cell Biol 14: 5961–5974Google Scholar
  77. 77.
    Iwasaki S, Tsuruoka N, Hattori A, Sato M, Tsujimoto M, Kohno M (1995) Distribution and characterization of specific cellular binding proteins for bone morphogenetic protein-2. J Biol Chem 270: 5476–5482CrossRefGoogle Scholar
  78. 78.
    Larrain J, Oelgeschlager M, Ketpura NI, Reversade B, Zakin L, De Robertis EM (2001) Proteolytic cleavage of Chordin as a switch for the dual activities of Twisted gastrulation in BMP signaling. Development 128: 4439–4447Google Scholar
  79. 79.
    Monteiro RM, Sousa Lopes SM, Korchynskyi O, ten Dijke P, Mummery CL (2004) Spatiotemporal activation of Smad1 and Smad5 in vivo: monitoring transcriptional activity of Smad proteins. J Cell Sci 117: 4653–4663CrossRefGoogle Scholar
  80. 80.
    Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H, Beighton P, Papapoulos SE (2005) Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 90: 6392–6395CrossRefGoogle Scholar
  81. 81.
    Ominsky MS, Warmington KS, Asuncion FJ, Tan HL, Grisanti MS, Geng Z, Stephens P, Henry A, Lawson A, Lightwood D et al (2006) Sclerostin monoclonal antibody treatment increases bone strength in aged osteopenic ovariectomized rats. 28th Annual Meeting of the American Society for Bone and Mineral Research, Sept 15-19, 2006, Philadelphia, PA, USAGoogle Scholar
  82. 82.
    Ominsky M, Stouch B, Doellgast G, Gong J, Cao J, Gao Y, Tipton B, Haldankar R, Winters A, Chen Q et al (2006) Administration of sclerostin monoclonal antibodies to female cynomolgus monkeys result in increased bone formation, bone mineral density and bone strength. 28th Annual Meeting of the American Society for Bone and Mineral Research, Sept 15-19, 2006, Philadelphia, PA, USAGoogle Scholar
  83. 83.
    Thomas T (2006) Intermittent parathyroid hormone therapy to increase bone formation. Joint Bone Spine 73: 262–269CrossRefGoogle Scholar
  84. 84.
    Girotra M, Rubin MR, Bilezikian JP (2006) The use of parathyroid hormone in the treatment of osteoporosis. Rev Endocr Metab Disord 7: 113–121CrossRefGoogle Scholar
  85. 85.
    Keller H, Kneissel M (2005) SOST is a target gene for PTH in bone. Bone 37: 148–158CrossRefGoogle Scholar
  86. 86.
    Bellido T, Ali AA, Gubrij I, Plotkin L I, Fu Q, O’Brien CA, Manolagas SC, Jilka RL (2005) Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology 146: 4577–4583CrossRefGoogle Scholar
  87. 87.
    ten Dijke P, Krause C, de Gorter DJJ, Lowik CWGM, van Bezooijen RL (2008) Osteocyte-derived Sclerostin inhibits bone formation: Its role in BMP and Wnt signaling. J Bone Joint Surg 90: 31–35CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • David J. J. de Gorter
    • 1
  • Carola Krause
    • 1
  • Peter ten Dijke
    • 1
  • Clemens W. G. M. Löwik
    • 2
  • Rutger L. van Bezooijen
    • 2
  1. 1.Department of Molecular Cell BiologyLeiden University Medical CenterRC LeidenThe Netherlands
  2. 2.Department of Endocrinology and Metabolic DiseasesLeiden University Medical CenterRC LeidenThe Netherlands

Personalised recommendations