Bone morphogenetic protein antagonists and kidney

  • Motoko Yanagita
Part of the Progress in Inflammation Research book series (PIR)


Bone morphogenetic proteins (BMPs) are phylogenetically conserved signaling molecules that belong to the transforming growth factor (TGF)-β superfamily [1, 2, 3, 4]. Although these proteins were first identified by their capacity to promote endochondral bone formation [5, 6, 7], they are involved in the cascades of body patterning including nephrogenesis. Furthermore, BMPs play important roles after birth in pathophysiology of several diseases including osteoporosis [8], arthritis [5], pulmonary hypertension [9, 10], and kidney diseases [11, 12, 13]. Several BMPs are expressed in the kidney, and the expression level and pattern of each BMP varies dynamically during embryogenesis and kidney disease progression. BMP-7 is the most abundant BMP during kidney development [14], whereas the level of BMP-4, BMP-6 and BMP-7 are comparable in adult healthy kidneys (S. Yamada, unpublished data). BMP-2 is hardly detectable in developing and adult kidneys.


Growth Factor Bone Formation Kidney Disease Pulmonary Hypertension Transform Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Massague J, Chen YG (2000) Controlling TGF-beta signaling. Genes Dev 14: 627–644Google Scholar
  2. 2.
    Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24: 218–235CrossRefGoogle Scholar
  3. 3.
    Reddi AH (2001) Interplay between bone morphogenetic proteins and cognate binding proteins in bone and cartilage development: noggin, chordin and DAN. Arthritis Res 3: 1–5CrossRefGoogle Scholar
  4. 4.
    Attisano L, Wrana JL (1996) Signal transduction by members of the transforming growth factor-beta superfamily. Cytokine Growth Factor Rev 7: 327–339CrossRefGoogle Scholar
  5. 5.
    Reddi AH (2000) Bone morphogenetic proteins and skeletal development: The kidneybone connection. Pediatr Nephrol 14: 598–601CrossRefGoogle Scholar
  6. 6.
    Urist MR (1965) Bone: formation by autoinduction. Science 150: 893–899CrossRefGoogle Scholar
  7. 7.
    Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA (1988) Novel regulators of bone formation: Molecular clones and activities. Science 242: 1528–1534CrossRefGoogle Scholar
  8. 8.
    Wang EA (1993) Bone morphogenetic proteins (BMPs): Therapeutic potential in healing bony defects. Trends Biotechnol 11: 379–383CrossRefGoogle Scholar
  9. 9.
    Miyazono K, Kusanagi K, Inoue H (2001) Divergence and convergence of TGF-beta/ BMP signaling. J Cell Physiol 187: 265–276CrossRefGoogle Scholar
  10. 10.
    Morse JH, Deng Z, Knowles JA (2001) Genetic aspects of pulmonary arterial hypertension. Ann Med 33: 596–603CrossRefGoogle Scholar
  11. 11.
    Klahr S (2003) The bone morphogenetic proteins (BMPs). Their role in renal fibrosis and renal function. J Nephrol 16: 179–185Google Scholar
  12. 12.
    Hruska KA, Saab G, Chaudhary LR, Quinn CO, Lund RJ, Surendran K (2004) Kidneybone, bone-kidney, and cell-cell communications in renal osteodystrophy. Semin Nephrol 24: 25–38CrossRefGoogle Scholar
  13. 13.
    Zeisberg M, Muller GA, Kalluri R (2004) Are there endogenous molecules that protect kidneys from injury? The case for bone morphogenic protein-7 (BMP-7). Nephrol Dial Transplant 19: 759–761CrossRefGoogle Scholar
  14. 14.
    Helder MN, Ozkaynak E, Sampath KT, Luyten FP, Latin V, Oppermann H, Vukicevic S (1995) Expression pattern of osteogenic protein-1 (bone morphogenetic protein-7) in human and mouse development. J Histochem Cytochem 43: 1035–1044Google Scholar
  15. 15.
    Vukicevic S, Stavljenic A, Pecina M (1995) Discovery and clinical applications of bone morphogenetic proteins. Eur J Clin Chem Clin Biochem 33: 661–671Google Scholar
  16. 16.
    Vukicevic S, Kopp JB, Luyten FP, Sampath TK (1996) Induction of nephrogenic mesenchyme by osteogenic protein 1 (bone morphogenetic protein 7). Proc Natl Acad Sci USA 93: 9021–9026CrossRefGoogle Scholar
  17. 17.
    Ozkaynak E, Schnegelsberg PN, Oppermann H (1991) Murine osteogenic protein (OP-1): High levels of mRNA in kidney. Biochem Biophys Res Commun 179: 116–123CrossRefGoogle Scholar
  18. 18.
    Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9: 2795–2807CrossRefGoogle Scholar
  19. 19.
    Luo G, Hofmann C, Bronckers AL, Sohocki M, Bradley A, Karsenty G (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9: 2808–2820CrossRefGoogle Scholar
  20. 20.
    Borovecki F, Jelic M, Grgurevic L, Sampath KT, Bosukonda D, Vukicevic S (2004) Bone morphogenetic protein-7 from serum of pregnant mice is available to the fetus through placental transfer during early stages of development. Nephron 97: e26–32CrossRefGoogle Scholar
  21. 21.
    Dudley AT, Robertson EJ (1997) Overlapping expression domains of bone morphogenetic protein family members potentially account for limited tissue defects in BMP7 deficient embryos. Dev Dyn 208: 349–362CrossRefGoogle Scholar
  22. 22.
    Oxburgh L, Dudley AT, Godin RE, Koonce CH, Islam A, Anderson DC, Bikoff EK, Robertson EJ (2005) BMP4 substitutes for loss of BMP7 during kidney development. Dev Biol 286: 637–646CrossRefGoogle Scholar
  23. 23.
    Gould SE, Day M, Jones SS, Dorai H (2002) BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int 61: 51–60CrossRefGoogle Scholar
  24. 24.
    Wang SN, Lapage J, Hirschberg R (2001) Loss of tubular bone morphogenetic protein-7 in diabetic nephropathy. J Am Soc Nephrol 12: 2392–2399Google Scholar
  25. 25.
    Hruska KA (2002) Treatment of chronic tubulointerstitial disease: A new concept. Kidney Int 61: 1911–1922CrossRefGoogle Scholar
  26. 26.
    Morrissey J, Hruska K, Guo G, Wang S, Chen Q, Klahr S (2002) Bone morphogenetic protein-7 improves renal fibrosis and accelerates the return of renal function. J Am Soc Nephrol 13Suppl 1: S14–21Google Scholar
  27. 27.
    Dube PH, Almanzar MM, Frazier KS, Jones WK, Charette MF, Paredes A (2004) Osteogenic Protein-1: Gene expression and treatment in rat remnant kidney model. Toxicol Pathol 32: 384–392CrossRefGoogle Scholar
  28. 28.
    Almanzar MM, Frazier KS, Dube PH, Piqueras AI, Jones WK, Charette MF, Paredes AL (1998) Osteogenic protein-1 mRNA expression is selectively modulated after acute ischemic renal injury. J Am Soc Nephrol 9: 1456–1463Google Scholar
  29. 29.
    Vukicevic S, Basic V, Rogic D, Basic N, Shih MS, Shepard A, Jin D, Dattatreyamurty B, Jones W, Dorai H et al (1998) Osteogenic protein-1 (bone morphogenetic protein 7) reduces severity of injury after ischemic acute renal failure in rat. J Clin Invest 102: 202–214CrossRefGoogle Scholar
  30. 30.
    Hruska KA, Guo G, Wozniak M, Martin D, Miller S, Liapis H, Loveday K, Klahr S, Sampath TK, Morrissey J (2000) Osteogenic protein-1 prevents renal fibrogenesis associated with ureteral obstruction. Am J Physiol Renal Physiol 279: F130–143Google Scholar
  31. 31.
    Wang S, Chen Q, Simon TC, Strebeck F, Chaudhary L, Morrissey J, Liapis H, Klahr S, Hruska KA (2003) Bone morphogenic protein-7 (BMP-7), a novel therapy for diabetic nephropathy. Kidney Int 63: 2037–2049CrossRefGoogle Scholar
  32. 32.
    Zeisberg M, Hanai J, Sugimoto H, Mammoto T, Charytan D, Strutz F, Kalluri R (2003) BMP-7 counteracts TGF-beta1-induced epithelial-to-mesenchymal transition and reverses chronic renal injury. Nat Med 9: 964–968CrossRefGoogle Scholar
  33. 33.
    Zeisberg M, Bottiglio C, Kumar N, Maeshima Y, Strutz F, Müller GA, Kalluri R (2003) Bone morphogenic protein-7 inhibits progression of chronic renal fibrosis associated with two genetic mouse models. Am J Physiol Renal Physiol 285: F1060–1067Google Scholar
  34. 34.
    Li T, Surendran K, Zawaideh MA, Mathew S, Hruska KA (2004) Bone morphogenetic protein 7: A novel treatment for chronic renal and bone disease. Curr Opin Nephrol Hypertens 13: 417–422CrossRefGoogle Scholar
  35. 35.
    Bosukonda D, Shih MS, Sampath KT, Vukicevic S (2000) Characterization of receptors for osteogenic protein-1/bone morphogenetic protein-7 (OP-1/BMP-7) in rat kidneys. Kidney Int 58: 1902–1911Google Scholar
  36. 36.
    Miyazaki Y, Oshima K, Fogo A, Hogan BL, Ichikawa I (2000) Bone morphogenetic protein 4 regulates the budding site and elongation of the mouse ureter. J Clin Invest 105: 863–873CrossRefGoogle Scholar
  37. 37.
    Miyazaki Y, Oshima K, Fogo A, Ichikawa I (2003) Evidence that bone morphogenetic protein 4 has multiple biological functions during kidney and urinary tract development. Kidney Int 63: 835–844CrossRefGoogle Scholar
  38. 38.
    Dunn NR, Winnier GE, Hargett LK, Schrick JJ, Fogo AB, Hogan BL (1997) Haploinsufficient phenotypes in Bmp4 heterozygous null mice and modification by mutations in Gli3 and Alx4. Dev Biol 188: 235–247CrossRefGoogle Scholar
  39. 39.
    Onichtchouk D, Chen YG, Dosch R, Gawantka V, Delius H, Massagué J, Niehrs C (1999) Silencing of TGF-beta signalling by the pseudoreceptor BAMBI. Nature 401: 480–485CrossRefGoogle Scholar
  40. 40.
    Grotewold L, Plum M, Dildrop R, Peters T, Ruther U (2001) Bambi is coexpressed with Bmp-4 during mouse embryogenesis. Mech Dev 100: 327–330CrossRefGoogle Scholar
  41. 41.
    Babitt JL, Zhang Y, Samad TA, Xia Y, Tang J, Campagna JA, Schneyer AL, Woolf CJ, Lin HY (2005) Repulsive guidance molecule (RGMa), a DRAGON homologue, is a bone morphogenetic protein co-receptor. J Biol Chem 280: 29820–29827CrossRefGoogle Scholar
  42. 42.
    Samad TA, Rebbapragada A, Bell E, Zhang Y, Sidis Y, Jeong SJ, Campagna JA, Perusini S, Fabrizio DA, Schneyer AL et al (2005) DRAGON, a bone morphogenetic protein coreceptor. J Biol Chem 280: 14122–14129CrossRefGoogle Scholar
  43. 43.
    Samad TA, Srinivasan A, Karchewski LA, Jeong SJ, Campagna JA, Ji RR, Ji RR, Fabrizio DA, Zhang Y, Lin HY, Bell E, Woolf CJ (2004) DRAGON: A member of the repulsive guidance molecule-related family of neuronal-and muscle-expressed membrane proteins is regulated by DRG11 and has neuronal adhesive properties. J Neurosci 24: 2027–2036CrossRefGoogle Scholar
  44. 44.
    Babitt JL, Huang FW, Wrighting DM, Xia Y, Sidis Y, Samad TA, Campagna JA, Chung RT, Schneyer AL, Woolf CJ et al (2006) Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat Genet 38: 531–539CrossRefGoogle Scholar
  45. 45.
    Balemans W, Van Hul W (2002) Extracellular regulation of BMP signaling in vertebrates: A cocktail of modulators. Dev Biol 250: 231–250Google Scholar
  46. 46.
    Gazzerro E, Canalis E (2006) Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Dis 7: 51–65CrossRefGoogle Scholar
  47. 47.
    Wagner DS, Mullins MC (2002) Modulation of BMP activity in dorsal-ventral pattern formation by the chordin and ogon antagonists. Dev Biol 245:109–123CrossRefGoogle Scholar
  48. 48.
    Wessely O, Agius E, Oelgeschlager M, Pera EM, De Robertis EM (2001) Neural induction in the absence of mesoderm: Beta-catenin-dependent expression of secreted BMP antagonists at the blastula stage in Xenopus. Dev Biol 234: 161–173CrossRefGoogle Scholar
  49. 49.
    Lim DA, Tramontin AD, Trevejo JM, Herrera DG, Garcia-Verdugo JM, Alvarez-Buylla A (2000) Noggin antagonizes BMP signaling to create a niche for adult neurogenesis. Neuron 28: 713–726CrossRefGoogle Scholar
  50. 50.
    Vukicevic S, Latin V, Chen P, Batorsky R, Reddi AH, Sampath TK (1994) Localization of osteogenic protein-1 (bone morphogenetic protein-7) during human embryonic development: High affinity binding to basement membranes. Biochem Biophys Res Commun 198: 693–700CrossRefGoogle Scholar
  51. 51.
    Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bächinger HP, Sakai LY (2005) The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem 280: 27970–27980CrossRefGoogle Scholar
  52. 52.
    Jiao X, Billings PC, O’Connell MP, Kaplan FS, Shore EM, Glaser DL (2007) Heparan sulfate proteoglycans (HSPGs) modulate BMP2 osteogenic bioactivity in C2C12 cells. J Biol Chem 282: 1080–1086CrossRefGoogle Scholar
  53. 53.
    Paine-Saunders S, Viviano BL, Economides AN, Saunders S (2002) Heparan sulfate proteoglycans retain Noggin at the cell surface: A potential mechanism for shaping bone morphogenetic protein gradients. J Biol Chem 277:2089–2096CrossRefGoogle Scholar
  54. 54.
    Vitt UA, Hsu SY, Hsueh AJ (2001) Evolution and classification of cystine knot-containing hormones and related extracellular signaling molecules. Mol Endocrinol 15: 681–694CrossRefGoogle Scholar
  55. 55.
    Avsian-Kretchmer O, Hsueh AJ (2004) Comparative genomic analysis of the eightmembered ring cystine knot-containing bone morphogenetic protein antagonists. Mol Endocrinol 18: 1–12CrossRefGoogle Scholar
  56. 56.
    Yanagita M, Oka M, Watabe T, Iguchi H, Niida A, Takahashi S, Akiyama T, Miyazono K, Yanagisawa M, Sakurai T (2004) USAG-1: A bone morphogenetic protein antagonist abundantly expressed in the kidney. Biochem Biophys Res Commun 316: 490–500CrossRefGoogle Scholar
  57. 57.
    Simmons DG, Kennedy TG (2002) Uterine sensitization-associated gene-1: A novel gene induced within the rat endometrium at the time of uterine receptivity/sensitization for the decidual cell reaction. Biol Reprod 67: 1638–1645CrossRefGoogle Scholar
  58. 58.
    Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, Thesleff I, Itoh N (2003) Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem 278: 24113–24117CrossRefGoogle Scholar
  59. 59.
    Winkler DG, Sutherland MS, Ojala E, Turcott E, Geoghegan JC, Shpektor D, Skonier JE, Yu C, Latham JA (2005) Sclerostin inhibition of Wnt-3a-induced C3H10T1/2 cell differentiation is indirect and mediated by BMP proteins. J Biol Chem 280: 2498–2502CrossRefGoogle Scholar
  60. 60.
    Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, Shpektor D, Jonas M, Kovacevich BR, Staehling-Hampton K et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22: 6267–6276CrossRefGoogle Scholar
  61. 61.
    Winkler DG, Yu C, Geoghegan JC, Ojala EW, Skonier JE, Shpektor D, Sutherland MK, Latham JA (2004) Noggin and sclerostin bone morphogenetic protein antagonists form a mutually inhibitory complex. J Biol Chem 279: 36293–36298CrossRefGoogle Scholar
  62. 62.
    Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, Krumlauf R (2006) Bone density ligand, Sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Miner Res 21: 1738–1749CrossRefGoogle Scholar
  63. 63.
    Semenov M, Tamai K, He X (2005) SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor. J Biol Chem 280: 26770–26775CrossRefGoogle Scholar
  64. 64.
    Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D (2005) Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280:19883–19887CrossRefGoogle Scholar
  65. 65.
    Laurikkala J, Kassai Y, Pakkasjarvi L, Thesleff I, Itoh N (2003) Identification of a secreted BMP antagonist, ectodin, integrating BMP, FGF, and SHH signals from the tooth enamel knot. Dev Biol 264: 91–105CrossRefGoogle Scholar
  66. 66.
    Yanagita M (2005) BMP antagonists: Their roles in development and involvement in pathophysiology. Cytokine Growth Factor Rev 16: 309–317CrossRefGoogle Scholar
  67. 67.
    Yanagita M (2006) Modulator of bone morphogenetic protein activity in the progression of kidney diseases. Kidney Int 70: 989–993CrossRefGoogle Scholar
  68. 68.
    Yanagita M, Okuda T, Endo S, Tanaka M, Takahashi K, Sugiyama F, Kunita S, Takahashi S, Fukatsu A, Yanagisawa M et al (2006) Uterine sensitization-associated gene-1 (USAG-1), a novel BMP antagonist expressed in the kidney, accelerates tubular injury. J Clin Invest 116:70–79CrossRefGoogle Scholar
  69. 69.
    Tanaka M, Endo S, Okuda T, Economides AN, Valenzuela DM, Murphy AJ, Robertson E, Sakurai T, Fukatsu A, Yancopoulos GD, Kita T, Yanagita M (2008) Expression of BMP-7 and USAG-1 (a BMP antagonist) in kidney development and injury. Kidney Int 73: 181–191CrossRefGoogle Scholar
  70. 70.
    Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, Krumlauf R (2003) Wise, a context-dependent activator and inhibitor of Wnt signalling. Development 130: 4295–4305CrossRefGoogle Scholar
  71. 71.
    Guidato S, Itasaki N (2007) Wise retained in the endoplasmic reticulum inhibits Wnt signaling by reducing cell surface LRP6. Dev Biol 310: 250–263CrossRefGoogle Scholar
  72. 72.
    Hsu DR, Economides AN, Wang X, Eimon PM, Harland RM (1998) The Xenopus dorsalizing factor Gremlin identifies a novel family of secreted proteins that antagonize BMP activities. Mol Cell 1: 673–683CrossRefGoogle Scholar
  73. 73.
    Michos O, Panman L, Vintersten K, Beier K, Zeller R, Zuniga A (2004) Gremlin-mediated BMP antagonism induces the epithelial-mesenchymal feedback signaling controlling metanephric kidney and limb organogenesis. Development 131: 3401–3410CrossRefGoogle Scholar
  74. 74.
    Khokha MK, Hsu D, Brunet LJ, Dionne MS, Harland RM (2003) Gremlin is the BMP antagonist required for maintenance of Shh and Fgf signals during limb patterning. Nat Genet 34: 303–307CrossRefGoogle Scholar
  75. 75.
    Michos O, Goncalves A, Lopez-Rios J, Tiecke E, Naillat F, Beier K, Galli A, Vainio S, Zeller R (2007) Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis. Development 134: 2397–2405CrossRefGoogle Scholar
  76. 76.
    Topol LZ, Modi WS, Koochekpour S, Blair DG (2000) DRM/GREMLIN (CKTSF1B1) maps to human chromosome 15 and is highly expressed in adult and fetal brain. Cytogenet Cell Genet 89: 79–84CrossRefGoogle Scholar
  77. 77.
    Topol LZ, Bardot B, Zhang Q, Resau J, Huillard E, Marx M, Calothy G, Blair DG (2000) Biosynthesis, post-translation modification, and functional characterization of Drm/Gremlin. J Biol Chem 275: 8785–8793CrossRefGoogle Scholar
  78. 78.
    McMahon R, Murphy M, Clarkson M, Taal M, Mackenzie HS, Godson C, Martin F, Brady HR (2000) IHG-2, a mesangial cell gene induced by high glucose, is human gremlin. Regulation by extracellular glucose concentration, cyclic mechanical strain, and transforming growth factor-beta1. J Biol Chem 275: 9901–9904CrossRefGoogle Scholar
  79. 79.
    Dolan V, Murphy M, Sadlier D, Lappin D, Doran P, Godson C, Martin F, O’Meara Y, Schmid H, Henger A et al (2005) Expression of gremlin, a bone morphogenetic protein antagonist, in human diabetic nephropathy. Am J Kidney Dis 45: 1034–1039CrossRefGoogle Scholar
  80. 80.
    Koli K, Myllärniemi M, Vuorinen K, Salmenkivi K, Ryynänen MJ, Kinnula VL, KeskiOja J (2006) Bone morphogenetic protein-4 inhibitor gremlin is overexpressed in idiopathic pulmonary fibrosis. Am J Pathol 169: 61–71CrossRefGoogle Scholar
  81. 81.
    Boers W, Aarrass S, Linthorst C, Pinzani M, Elferink RO, Bosma P (2006) Transcriptional profiling reveals novel markers of liver fibrogenesis: gremlin and insulin-like growth factor-binding proteins. J Biol Chem 281: 16289–16295CrossRefGoogle Scholar
  82. 82.
    Sun J, Zhuang FF, Mullersman JE, Chen H, Robertson EJ, Warburton D, Liu YH, Shi W (2006) BMP4 activation and secretion are negatively regulated by an intracellular gremlin-BMP4 interaction. J Biol Chem 281:29349–29356CrossRefGoogle Scholar
  83. 83.
    Smith WC, Harland RM (1992) Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70: 829–840CrossRefGoogle Scholar
  84. 84.
    Lamb TM, Knecht AK, Smith WC, Stachel SE, Economides AN, Stahl N, Yancopolous GD, Harland RM (1993) Neural induction by the secreted polypeptide noggin. Science 262: 713–718CrossRefGoogle Scholar
  85. 85.
    Groppe J, Greenwald J, Wiater E, Rodriguez-Leon J, Economides AN, Kwiatkowski W, Affolter M, Vale WW, Belmonte JC, Choe S (2002) Structural basis of BMP signalling inhibition by the cystine knot protein Noggin. Nature 420: 636–642CrossRefGoogle Scholar
  86. 86.
    Brunet LJ, McMahon JA, McMahon AP, Harland RM (1998) Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science 280:1455–1457CrossRefGoogle Scholar
  87. 87.
    McMahon JA, Takada S, Zimmerman LB, Fan CM, Harland RM, McMahon AP (1998) Noggin-mediated antagonism of BMP signaling is required for growth and patterning of the neural tube and somite. Genes Dev 12: 1438–1452CrossRefGoogle Scholar
  88. 88.
    Wijgerde M, Karp S, McMahon J, McMahon AP (2005) Noggin antagonism of BMP4 signaling controls development of the axial skeleton in the mouse. Dev Biol 286: 149–157CrossRefGoogle Scholar
  89. 89.
    Miyazaki Y, Ueda H, Yokoo T, Utsunomiya Y, Kawamura T, Matsusaka T, Ichikawa I, Hosoya T (2006) Inhibition of endogenous BMP in the glomerulus leads to mesangial matrix expansion. Biochem Biophys Res Commun 340: 681–688CrossRefGoogle Scholar
  90. 90.
    Wilkinson L, Kolle G, Wen D, Piper M, Scott J, Little M (2003) CRIM1 regulates the rate of processing and delivery of bone morphogenetic proteins to the cell surface. J Biol Chem 278: 34181–34188CrossRefGoogle Scholar
  91. 91.
    Georgas K, Bowles J, Yamada T, Koopman P, Little MH (2000) Characterisation of Crim1 expression in the developing mouse urogenital tract reveals a sexually dimorphic gonadal expression pattern. Dev Dyn 219: 582–587CrossRefGoogle Scholar
  92. 92.
    Kolle G, Georgas K, Holmes GP, Little MH, Yamada T (2000) CRIM1, a novel gene encoding a cysteine-rich repeat protein, is developmentally regulated and implicated in vertebrate CNS development and organogenesis. Mech Dev 90: 181–193CrossRefGoogle Scholar
  93. 93.
    Lovicu FJ, Kolle G, Yamada T, Little MH, McAvoy JW (2000) Expression of Crim1 during murine ocular development. Mech Dev 94(1-2): 261–265CrossRefGoogle Scholar
  94. 94.
    Wilkinson L, Gilbert T, Kinna G, Ruta LA, Pennisi D, Kett M, Little MH (2007) Crim1KST264/KST264 mice implicate Crim1 in the regulation of vascular endothelial growth factor-A activity during glomerular vascular development. J Am Soc Nephrol 18: 1697–1708CrossRefGoogle Scholar
  95. 95.
    Pennisi DJ, Wilkinson L, Kolle G, Sohaskey ML, Gillinder K, Piper MJ, McAvoy JW, Lovicu FJ, Little MH (2007) Crim1KST264/KST264 mice display a disruption of the Crim1 gene resulting in perinatal lethality with defects in multiple organ systems. Dev Dyn 236: 502–511CrossRefGoogle Scholar
  96. 96.
    Fung WY, Fat KF, Eng CK, Lau C (2007) crm-1 facilitates BMP signaling to control body size in Caenorhabditis elegans. Dev Biol 311: 95–105CrossRefGoogle Scholar
  97. 97.
    Lin J, Patel SR, Cheng X, Cho EA, Levitan I, Ullenbruch M, Phan SH, Park JM, Dressler GR (2005) Kielin/chordin-like protein, a novel enhancer of BMP signaling, attenuates renal fibrotic disease. Nat Med 11: 387–393CrossRefGoogle Scholar
  98. 98.
    Lin J, Patel SR, Wang M, Dressler GR (2006) The cysteine-rich domain protein KCP is a suppressor of transforming growth factor beta/activin signaling in renal epithelia. Mol Cell Biol 26: 4577–4585CrossRefGoogle Scholar
  99. 99.
    Conley CA, Silburn R, Singer MA, Ralston A, Rohwer-Nutter D, Olson DJ, Gelbart W, Blair SS (2000) Crossveinless 2 contains cysteine-rich domains and is required for high levels of BMP-like activity during the formation of the cross veins in Drosophila. Development 127: 3947–3959Google Scholar
  100. 100.
    Binnerts ME, Wen X, Cante-Barrett K, Bright J, Chen HT, Asundi V, Sattari P, Tang T, Boyle B, Funk W, Rupp F (2004) Human Crossveinless-2 is a novel inhibitor of bone morphogenetic proteins. Biochem Biophys Res Commun 315: 272–280CrossRefGoogle Scholar
  101. 101.
    Rentzsch F, Zhang J, Kramer C, Sebald W, Hammerschmidt M (2006) Crossveinless 2 is an essential positive feedback regulator of Bmp signaling during zebrafish gastrulation. Development 133: 801–811CrossRefGoogle Scholar
  102. 102.
    Ikeya M, Kawada M, Kiyonari H, Sasai N, Nakao K, Furuta Y, Sasai Y (2006) Essential pro-Bmp roles of crossveinless 2 in mouse organogenesis. Development 133: 4463–4473CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2008

Authors and Affiliations

  • Motoko Yanagita
    • 1
  1. 1.Kyoto University Graduate School of MedicineKyotoJapan

Personalised recommendations