Skip to main content

A Fast QR Algorithm for Companion Matrices

  • Conference paper
Book cover Recent Advances in Matrix and Operator Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 179))

Abstract

It has been shown in [4, 5, 6, 31] that the Hessenberg iterates of a companion matrix under the QR iterations have low off-diagonal rank structures. Such invariant rank structures were exploited therein to design fast QR iteration algorithms for finding eigenvalues of companion matrices. These algorithms require only O(n) storage and run in O(n2) time where n is the dimensiosn of the matrix. In this paper, we propose a new O(n2) complexity QR algorithm for real companion matrices by representing the matrices in the iterations in their sequentially semi-separable (SSS) forms [9, 10]. The bulge chasing is done on the SSS form QR factors of the Hessenberg iterates. Both double shift and single shift versions are provided. Deflation and balancing are also discussed. Numerical results are presented to illustrate both high efficiency and numerical robustness of the new QR algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mario Ahues and Francoise Tisseur, A new deflation criterion for the QR algorithm, Technical Report CRPC-TR97713-S, Center for Research on Parallel Computation, January 1997.

    Google Scholar 

  2. E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, D. Sorensen, LAPACK Users’ Guide, Release 2.0, SIAM, Philadelphia, PA, USA, second edition, 1995.

    Google Scholar 

  3. D. Bailey, Software: MPFUN90 (Fortran-90 arbitrary precision package), available online at http://crd.lbl.gov/~dhbailey/mpdist/index.html

    Google Scholar 

  4. D. Bindel, S. Chandresekaran, J. Demmel, D. Garmire, and M. Gu, A fast and stable nonsymmetric eigensolver for certain structured matrices, Technical report, University of California, Berkeley, CA, 2005.

    Google Scholar 

  5. D. A. Bini, F. Daddi, and L. Gemignani, On the shifted QR iteration applied to companion matrices, Electronic Transactions on Numerical Analysis 18 (2004), 137–152.

    MATH  MathSciNet  Google Scholar 

  6. D. A. Bini, Y. Eidelman, L. Gemignani and I. Gohberg, Fast QR eigenvalue algorithms for Hessenberg matrices which are rank-one perturbations of unitary matrices, Technical Report no.1587, Department of Mathematics, University of Pisa, 2005.

    Google Scholar 

  7. S. Chandrasekaran and M. Gu, Fast and stable algorithms for banded plus semiseparable matrices, SIAM J. Matrix Anal. Appl. 25 no. 2 (2003), 373–384.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Chandrasekaran, M. Gu, and W. Lyons, A fast and stable adaptive solver for hierarchically semi-separable representations, Technical Report UCSB Math 2004–20, U.C. Santa Barbara, 2004.

    Google Scholar 

  9. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and D. White, Fast stable solvers for sequentially semi-separable linear systems of equations and least squares problems, Technical report, University of California, Berkeley, CA, 2003.

    Google Scholar 

  10. S. Chandrasekaran, P. Dewilde, M. Gu, T. Pals, X. Sun, A.-J. van der Veen, and D. White, Some fast algorithms for sequentially semiseparable representations, SIAM J. Matrix Anal. Appl 27 (2005), 341–364.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Chandrasekaran, M. Gu, X. Sun, J. Xia, J. Zhu, A superfast algorithm for Toeplitz systems of linear equations, SIAM J. Mat. Anal. Appl., to appear.

    Google Scholar 

  12. T.-Y. Chen and J.W. Demmel, Balancing sparse matrices for computing eigenvalues, Lin. Alg. and Appl. 309 (2000), 261–287.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. Van Dooren and P. Dewilde, The eigenstructure of an aribtrary polynomial matrix: Computational aspects, Lin. Alg. and Appl. 50 (1983), 545–579.

    Article  MATH  Google Scholar 

  14. Y. Eidelman and I. Gohberg, On a new class of structured matrices, Integral Equations Operator Theory 34 (1999), 293–324.

    Article  MATH  MathSciNet  Google Scholar 

  15. Y. Eidelman, I. Gohberg and V. Olshevsky, The QR iteration method for Hermitian quasiseparable matrices of an arbitrary order, Lin. Alg. and Appl. 404 (2005), 305–324.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Edelman and H. Murakami, Polynomial roots from companion matrix eigenvalues, Mathematics of Computation 64 (1995), 763–776.

    Article  MATH  MathSciNet  Google Scholar 

  17. G. Golub and C. V. Loan, Matrix Computations, The John Hopkins University Press, 1989.

    Google Scholar 

  18. J. G. F. Francis, The QR transformation. II, Comput. J. 4 (1961/1962), 332–345.

    Article  MathSciNet  Google Scholar 

  19. V. N. Kublanovskaya, On some algorithms for the solution of the complete eigenvalue problem, U.S.S.R. Comput. Math. and Math. Phys. 3 (1961), 637–657.

    Google Scholar 

  20. C. Moler, Roots — of polynomials, that is, The Mathworks Newsletter 5 (1991), 8–9.

    Google Scholar 

  21. V. Pan, On computations with dense structured matrices, Math. Comp. 55 (1990), 179–190.

    Article  MATH  MathSciNet  Google Scholar 

  22. B. Parlett, The symmetric eigenvalue problems, SIAM, 1997.

    Google Scholar 

  23. B. Parlett, The QR algorithm, Computing in Science and Engineering 2 (2000), 38–42. Special Issue: Top 10 Algorithms of the Century.

    Google Scholar 

  24. G. Sitton, C. Burrus, J. Fox, and S. Treitel, Factoring very-high-degree polynomials. IEEE Signal Processing Mag. 20 no. 6 (2003), 27–42.

    Article  Google Scholar 

  25. M. Stewart, An error analysis of a unitary Hessenberg QR algorithm, Tech. Rep. TR-CS-98-11, Department of Computer Science, Australian National University, Canberra 0200 ACT, Australia, 1998.

    Google Scholar 

  26. F. Tisseur, Backward stability of the QR algorithm, TR 239, UMR 5585 Lyon Saint-Etienne, October 1996.

    Google Scholar 

  27. K.-C. Toh and L. N. Trefethen. Pseudozeros of polynomials and pseudospectra of companion matrices. Numer. Math. 68 (1994), 403–425.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Van Barel and A. Bultheel, Discrete Linearized Least Squares Rational Approximation on the Unit Circle, J. Comput. Appl. Math. 50 (1994), 545–563.

    Article  MATH  MathSciNet  Google Scholar 

  29. J. H. Wilkinson, The algebraic eigenvalue problem, Oxford University Press, London, 1965.

    MATH  Google Scholar 

  30. J. Xia, Fast Direct Solvers for Structured Linear Systems of Equations, Ph.D. Thesis, University of California, Berkeley, 2006.

    Google Scholar 

  31. J. Zhu, Structured Eigenvalue Problems and Quadratic Eigenvalue Problems, Ph.D. Thesis, University of California, Berkeley, 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel/Switzerland

About this paper

Cite this paper

Chandrasekaran, S., Gu, M., Xia, J., Zhu, J. (2007). A Fast QR Algorithm for Companion Matrices. In: Ball, J.A., Eidelman, Y., Helton, J.W., Olshevsky, V., Rovnyak, J. (eds) Recent Advances in Matrix and Operator Theory. Operator Theory: Advances and Applications, vol 179. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8539-2_7

Download citation

Publish with us

Policies and ethics