Some Applications of Algebraic Cycles to Affine Algebraic Geometry

  • Vasudevan Srinivas
Part of the Trends in Mathematics book series (TM)


In this series of talks, I will discuss some applications of the theory of algebraic cycles to affine algebraic geometry (i.e., to commutative algebra).


Vector Bundle Local Ring Complete Intersection Chern Class Projective Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Amalendu Krishna, V. Srinivas, Zero cycles and K-theory on normal surfaces, Annals of Math. 156 (2002) 155–195.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Amalendu Krishna, V. Srinivas, Zero cycles on singular varieties, to appear in Proceedings of the EAGER ConferenceWorkshop: Algebraic Cycles and Motives, Leiden, 2004.Google Scholar
  3. [3]
    Bloch, S., Lectures on Algebraic Cycles, Duke Univ. Math. Ser. IV, Durham, 1979.Google Scholar
  4. [4]
    Bloch, S., Murthy, M.P., Szpiro, L., Zero cycles and the number of generators of an ideal, Mémoire No. 38 (nouvelle série), Supplément au Bulletin de la Soc. Math. de France, Tome 117 (1989) 51–74.MathSciNetGoogle Scholar
  5. [5]
    Bloch, S. Srinivas, V., Remarks on correspondences and algebraic cycles, Amer. J. Math. 105 (1983), no. 5, 1235–1253.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Boratynski, M., On a conormal module of smooth set-theoretic complete intersections, Trans. Amer. Math. Soc. 296 (1986).Google Scholar
  7. [7]
    Deligne, P., Théorie de Hodge II, Publ. Math. I.H.E.S. 40 (1972) 5–57.Google Scholar
  8. [8]
    Eisenbud, D., Commutative Algebra with a view toward Algebraic Geometry, Grad. Texts in Math. 150, Springer-Verlag (1995).Google Scholar
  9. [9]
    Fulton, W., Intersection Theory, Ergeb. Math. Folge 3, Band 2, Springer-Verlag (1984).Google Scholar
  10. [10]
    Grothendieck, A., Berthellot, P. Illusie, L., SGA6, Théorie des Intersections et Théorème de Riemann-Roch, Lect. Notes in Math. 225, Springer-Verlag (1971).Google Scholar
  11. [11]
    Levine, M., Weibel, C., Zero cycles and complete intersections on singular varieties, J. Reine Angew. Math. 359 (1985), 106–120.MATHMathSciNetGoogle Scholar
  12. [12]
    Hartshorne, R., Algebraic Geometry, Grad texts in Math. 52, Springer-Verlag (1977).Google Scholar
  13. [13]
    Lindel, H., On the Bass-Quillen conjecture concerning projective modules over polynomial rings, Inventiones Math. 65 (1981/82) 319-323.Google Scholar
  14. [14]
    Lindel, H., On projective modules over polynomial rings over regular rings, in Algebraic K-Theory, Part I (Oberwolfach, 1980), Lecture Notes in Math. 966, Springer-Verlag (1982) 169–179Google Scholar
  15. [15]
    Milnor, J.W., Stasheff, J.D., Characteristic Classes, Ann. Math. Studies 76, Princeton (1974).Google Scholar
  16. [16]
    Mohan Kumar, N., On two conjectures about polynomial rings, Invent. Math. 46 (1978) 225–236.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Mumford, D., Rational equivalence of 0-cycles on surfaces, J. Math. Kyoto Univ. 9 (1968) 195–204.MathSciNetGoogle Scholar
  18. [18]
    Mumford, D., Lectures on Curves on an Algebraic Surface, Ann. Math. Studies 59, Princeton (1966).Google Scholar
  19. [19]
    Murthy, M.P., Zero cycles and projective modules, Annals of Math. 140 (1994) 405–434.MATHCrossRefMathSciNetGoogle Scholar
  20. [20]
    Murthy, M.P., Mohan Kumar, N., Roy, A., in Algebraic Geometry and Commutative Algebra, Vol. I (in honour of Masayoshi Nagata), Kinokuniya, Tokyo (1988), 281–287.Google Scholar
  21. [21]
    Pedrini, C., Weibel, C.A., Divisibility in the Chow group of 0-cycles on a singular surface, Astérisque 226 (1994) 371–409.Google Scholar
  22. [22]
    Roitman, A.A., Rational equivalence of 0-cycles, Math. USSR Sbornik, 18 (1972) 571–588.CrossRefGoogle Scholar
  23. [23]
    Roitman, A.A., The torsion of the group of 0-cycles modulo rational equivalence, Ann. Math. 111 (1980) 553–569.CrossRefMathSciNetGoogle Scholar
  24. [24]
    V. Srinivas, Zero cycles on a singular surface II, J. Reine Ang. Math. 362 (1985) 3–27.MathSciNetGoogle Scholar
  25. [25]
    Srinivas, V., Grothendieck groups of polynomial and Laurent polynomial rings, Duke Math. J. 53 (1986) 595–633.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Srinivas, V., The embedding dimension of an affine variety, Math. Ann. 289 (1991) 125–132.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Srinivas, V., Gysin maps and cycle classes for Hodge cohomology, Proc. Indian Acad. Sci. (Math. Sci.) 103 (1993) 209–247.MATHMathSciNetCrossRefGoogle Scholar
  28. [28]
    Srinivas, V., Zero cycles on singular varieties, in Arithmetic and Geometry of Algebraic Cycles, NATO Science Series C, Vol. 548, Kluwer (2000) 347–382.MathSciNetGoogle Scholar
  29. [29]
    Srinivas, V., Some Geometric Methods in Commutative Algebra, in Computational Commutative Algebra and Combinatorics (Osaka, 1999), Advanced Studies in Pure Math. 33 (2002) 231–276.MathSciNetGoogle Scholar
  30. [30]
    Srinivas, V., Algebraic K-theory. Second edition. Progress in Math., 90, Birkhäuser, Boston, MA, 1996.Google Scholar
  31. [31]
    Suslin, A.A., Stably free modules. (Russian) Mat. Sb. (N.S.) 102(144) (1977), no. 4, 537–550, 632.MathSciNetGoogle Scholar
  32. [32]
    Szpiro, L., Lectures on Equations defining Space Curves, Tata Institute of Fundamental Research Lecture Notes, No. 62, Springer-Verlag (1979).Google Scholar
  33. [33]
    Thomason, R., Trobaugh, T, Higher algebraic K-theory of schemes and of derived categories, in The Grothendieck Festschrift III, Progress in Math. 88, Birkhäuser (1990).Google Scholar
  34. [34]
    Weibel, C.A., The negative K-theory of normal surfaces, Duke Math. J. 108 (2001) 1–35.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Vasudevan Srinivas
    • 1
  1. 1.School of MathematicsTata Institute of Fundamental ResearchMumbaiIndia

Personalised recommendations