Geometric Invariant Theory Relative to a Base Curve

  • Alexander H. W. Schmitt
Part of the Trends in Mathematics book series (TM)


These are the lecture notes to the author’s course “A relative version of Geometric Invariant Theory” taught during the mini-school “Moduli spaces” at the Banach Center in Warsaw which took place in April 2005.

We give an account of old and new results in Geometric Invariant Theory and present recent progress in the construction of moduli spaces of vector bundles and principal bundles with extra structure (called “augmented” or “decorated” vector/principal bundles).


Modulus Space Vector Bundle Line Bundle Algebraic Group Algebraic Variety 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    V. Balaji, Lectures on principal bundles, available at, 17 pp.Google Scholar
  2. [2]
    A. Białynicki-Birula, Finiteness of the number of maximal open subsets with good quotients, Transform. Groups 3 (1998), 301–19.CrossRefMathSciNetMATHGoogle Scholar
  3. [3]
    A. Białynicki-Birula, J.B. Carrell, W.M. McGovern, Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action, Encyclopaedia of Mathematical Sciences, vol. 131, Invariant Theory and Algebraic Transformation Groups, II, Springer-Verlag, Berlin, 2002, iv+242 pp.Google Scholar
  4. [4]
    A. Białynicki-Birula, A.J. Sommese, Quotients by ℂ* × ℂ* actions, Trans. Amer. Math. Soc. 289 (1985), 519–43.CrossRefMathSciNetMATHGoogle Scholar
  5. [5]
    D. Birkes, Orbits of linear algebraic groups, Annals of Math. 93 (1971), 459–75.CrossRefMathSciNetGoogle Scholar
  6. [6]
    A. Borel, Linear algebraic groups, Second edition, Graduate Texts in Mathematics, 126, Springer-Verlag, New York, 1991, xii+288 pp.Google Scholar
  7. [7]
    S.B. Bradlow, Special metrics and stability for holomorphic bundles with global sections, J. Differential Geom. 33 (1991), 169–213.MATHMathSciNetGoogle Scholar
  8. [8]
    S.B. Bradlow, G.D. Daskalopoulos, O. García-Prada, R. Wentworth, Stable augmented bundles over Riemann surfaces in Vector Bundles in Algebraic Geometry (Durham, 1993), 15–67, London Math. Soc. Lecture Note Ser., 208, Cambridge Univ. Press, Cambridge, 1995.Google Scholar
  9. [9]
    J.A. Dieudonné, J.B. Carrell, Invariant theory — Old and new, Academic Press, New York-London, 1971, viii+85 pp.MATHGoogle Scholar
  10. [10]
    I. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients, with an appendix by Nicolas Ressayre, Inst. Hautes Études Sci. Publ. Math. 87 (1998), 5–56.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    T.L. Gómez, Lectures on principal bundles over projective varieties, this volume.Google Scholar
  12. [12]
    T.L. Gómez, A. Langer, A. Schmitt, I. Sols, Moduli spaces for principal bundles in large characteristic, to appear in the proceedings of the Allahabad International Workshop on Teichmüller Theory and Moduli Problems 2006, 77 pp.Google Scholar
  13. [13]
    T.L. Gómez, I. Sols, Stability of conic bundles, with an appendix by I. Mundet i Riera, Internat. J. Math. 11 (2000), 1027–55.MATHCrossRefMathSciNetGoogle Scholar
  14. [14]
    J.A. Green, Polynomial representations of GLn, Lecture Notes in Mathematics, 830, Springer-Verlag, Berlin-New York, 1980, vi+118 pp.MATHGoogle Scholar
  15. [15]
    Ph. Griffiths, J. Harris, Principles of Algebraic Geometry, reprint of the 1978 original, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1994, xiv+813 pp.MATHGoogle Scholar
  16. [16]
    D. Gross, Compact quotients by ℂ*-actions, Pacific J. Math. 114 (1984), 149–64.MATHMathSciNetGoogle Scholar
  17. [17]
    G.B. Gurevich, Foundations of the theory of algebraic invariants, Translated by J.R.M. Radok and A.J.M. Spencer, P. Noordhoff Ltd., Groningen, 1964, viii+429 pp.Google Scholar
  18. [18]
    J. Hausen, Geometric invariant theory based on Weil divisors, Compos. Math. 140 (2004), 1518–36.MATHMathSciNetGoogle Scholar
  19. [19]
    D. Hilbert, Theory of algebraic invariants, translated from the German and with a preface by Reinhard C. Laubenbacher, edited and with an introduction by Bernd Sturmfels, Cambridge University Press, Cambridge, 1993, xiv+191 pp.Google Scholar
  20. [20]
    J.E. Humphreys, Linear algebraic groups, Graduate Texts in Mathematics, 21, Springer-Verlag, New York-Heidelberg, 1975, xiv+247 pp.Google Scholar
  21. [21]
    D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics, E31, Friedr. Vieweg & Sohn, Braunschweig, 1997, xiv+269 pp.MATHGoogle Scholar
  22. [22]
    J.C. Jantzen, Representations of algebraic groups, Second edition, Mathematical Surveys and Monographs, 107, American Mathematical Society, Providence, RI, 2003, xiv+576 pp.Google Scholar
  23. [23]
    H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1, Friedr. Vieweg & Sohn, Braunschweig, 1984, x+308 pp.MATHGoogle Scholar
  24. [24]
    H. Kraft, C. Procesi, Classical Invariant Theory — a Primer, Lecture Notes, Version 2000, 128 pages. Available at Scholar
  25. [25]
    J. Le Potier, Lectures on vector bundles, Translated by A. Maciocia, Cambridge Studies in Advanced Mathematics, 54, Cambridge University Press, Cambridge, 1997, viii+251 pp.Google Scholar
  26. [26]
    M. Lübke, A. Teleman, The universal Kobayashi-Hitchin correspondence on Hermitian manifolds, Mem. Amer. Math. Soc. 183 (2006), 97 pp.Google Scholar
  27. [27]
    A.L. Mayer, Families of K-3 surfaces, Nagoya Math. J. 48 (1972), 1–17.MATHMathSciNetGoogle Scholar
  28. [28]
    D. Mumford et al., Geometric Invariant Theory, Third edition, Ergebnisse der Mathematik und ihrer Grenzgebiete (2), 34, Springer-Verlag, Berlin, 1994, xiv+292 pp.Google Scholar
  29. [29]
    M. Nagata, Lectures on Hilbert’s fourteenth problem, Tata Institute of Fundamental Research, Bombay 1965, ii+78+iii pp.Google Scholar
  30. [30]
    P.E. Newstead, Introduction to moduli problems and orbit spaces, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, 51, Tata Institute of Fundamental Research, Bombay, by the Narosa Publishing House, New Delhi, 1978, vi+183 pp.MATHGoogle Scholar
  31. [31]
    Ch. Okonek, A. Teleman, A. Schmitt, Master spaces for stable pairs, Topology 38 (1999), 117–39.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    C. Procesi, The invariant theory of n × n matrices, Advances in Math. 19 (1976), 306–81.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    N. Ressayre, The GIT-equivalence for G-line bundles, Geom. Dedicata 81 (2000), 295–324.MATHCrossRefMathSciNetGoogle Scholar
  34. [34]
    M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci. 35 (1963), 487–9.MathSciNetGoogle Scholar
  35. [35]
    A.H.W. Schmitt, Quaternary cubic forms and projective algebraic threefolds, Enseign. Math. (2) 43 (1997), 253–70.MATHMathSciNetGoogle Scholar
  36. [36]
    A.H.W. Schmitt, Singular principal bundles over higher-dimensional manifolds and their moduli spaces, Int. Math. Res. Not. 2002:23 (2002), 1183–209.CrossRefGoogle Scholar
  37. [37]
    A.H.W. Schmitt, A universal construction for moduli spaces of decorated vector bundles over curves, Transform. Groups 9 (2004), 167–209.MATHCrossRefMathSciNetGoogle Scholar
  38. [38]
    A.H.W. Schmitt, A closer look at semistability for singular principal bundles, Int. Math. Res. Not. 2004:62 (2004), 3327–66.CrossRefGoogle Scholar
  39. [39]
    A.H.W. Schmitt, Global boundedness for decorated sheaves, Internat. Math. Res. Not. 2004:68 (2004), 3637–71.CrossRefGoogle Scholar
  40. [40]
    A.H.W. Schmitt, Moduli for decorated tuples of sheaves and representation spaces for quivers, Proc. Indian Acad. Sci. Math. Sci. 115 (2005), 15–49.MATHMathSciNetCrossRefGoogle Scholar
  41. [41]
    A.H.W. Schmitt, A relative version of Geometric Invariant Theory, manuscript in preparation, approx. 300 pp.Google Scholar
  42. [42]
    J.-P. Serre, Espaces fibrés algébriques, Séminaire Chevalley, 1958, also Documents Mathématiques 1 (2001), 107–40.Google Scholar
  43. [43]
    C.S. Seshadri, Geometric reductivity (Mumford’s conjecture) — revisited, Commutative algebra and algebraic geometry, 137–45, Contemp. Math., 390, Amer. Math. Soc., Providence, RI, 2005.Google Scholar
  44. [44]
    K.S. Sibirskii, Unitary and orthogonal invariants of matrices, Russian, Dokl. Akad. Nauk SSSR 172 (1967), 40–43; English translation in Soviet Math. Dokl. 8 (1967), 36–40.MathSciNetGoogle Scholar
  45. [45]
    Ch. Sorger, Lectures on moduli of principal G-bundles over algebraic curves, School on Algebraic Geometry (Trieste, 1999), 1–57, ICTP Lect. Notes, 1, Abdus Salam Int. Cent. Theoret. Phys., Trieste, 2000.Google Scholar
  46. [46]
    T.A. Springer, Linear algebraic groups, Second edition, Progress in Mathematics, 9, Birkhäuser Boston, Inc., Boston, MA, 1998, xiv+334 pp.Google Scholar
  47. [47]
    B. Sturmfels, Algorithms in invariant theory, Texts and Monographs in Symbolic Computation, Springer-Verlag, Vienna, 1993, vi+197 pp.Google Scholar
  48. [48]
    M. Thaddeus, Stable pairs, linear systems and the Verlinde formula, Invent. Math. 117 (1994), 317–53.MATHCrossRefMathSciNetGoogle Scholar
  49. [49]
    M. Thaddeus, Geometric Invariant Theory and flips, J. Amer. Math. Soc. 9 (1996), 691–723.MATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    J. Winkelmann, Invariant rings and quasiaffine quotients, Math. Z. 244 (2003), 163–74.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Alexander H. W. Schmitt
    • 1
  1. 1.Institut für MathematikFreie Universität BerlinBerlinDeutschland

Personalised recommendations