Lectures on Torsion-free Sheaves and Their Moduli

  • Adrian Langer
Part of the Trends in Mathematics book series (TM)


These notes come from the lectures delivered by the author at 25th Autumn School of Algebraic Geometry in Lukęcin in 2002 and the lectures delivered by the author at the IMPANGA seminar in 2004–5. The School lectures were largely based on the book [HL], whereas the IMPANGA lectures were very close to the author’s papers [La1], [La2] and [La3].


Modulus Space Vector Bundle Line Bundle Chern Class Coherent Sheave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BP]
    C. Băanică, M. Putinar, On the classification of complex vector bundles of stable rank, Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 271–291.MathSciNetGoogle Scholar
  2. [BNR]
    A. Beauville, M.S. Narasimhan, S. Ramanan, Spectral curves and the generalised theta divisor, J. reine angew. Math. 398 (1989), 169–179.MATHMathSciNetGoogle Scholar
  3. [Be]
    P. Belkale, The strange duality conjecture for generic curves, to appear in J. Amer. Math. Soc. Google Scholar
  4. [BH]
    W. Bruns, J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge, 1993.Google Scholar
  5. [Da]
    G. Danila, Sections du fibré déterminant sur l’espace de modules des faisceaux semi-stables de rang 2 sur le plan projectif, Ann. Inst. Fourier (Grenoble) 50 (2000), 1323–1374.MATHMathSciNetGoogle Scholar
  6. [Ha]
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, 1977.Google Scholar
  7. [HL]
    D. Huybrechts, M. Lehn, The geometry of moduli spaces of sheaves, Aspects of Mathematics 31, 1997.Google Scholar
  8. [Kim]
    H. Kim, Moduli spaces of stable vector bundles on Enriques surfaces, Nagoya Math. J. 150 (1998), 85–94.MATHMathSciNetGoogle Scholar
  9. [La1]
    A. Langer, Semistable sheaves in positive characteristic, Ann. of Math. 159 (2004), 251–276.MATHMathSciNetCrossRefGoogle Scholar
  10. [La2]
    A. Langer, Moduli spaces of sheaves in mixed characteristic, Duke Math. J. 124 (2004), 571–586.MATHCrossRefMathSciNetGoogle Scholar
  11. [La3]
    A. Langer, Moduli spaces and Castelnuovo-Mumford regularity of sheaves on surfaces, Amer. J. Math. 128 (2006), 373–417.MATHCrossRefMathSciNetGoogle Scholar
  12. [LP1]
    J. Le Potier, Lectures on vector bundles, Cambridge Studies in Mathematics 54, 1997.Google Scholar
  13. [LP2]
    J. Le Potier, Dualité étrange sur les surfaces, unpublished manuscript, 2001.Google Scholar
  14. [MO]
    A. Marian, D. Oprea, The level-rank duality for non-abelian theta functions, Invent. Math. 168 (2007), 225–247.MATHCrossRefMathSciNetGoogle Scholar
  15. [Mi]
    Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, Algebraic Geometry, Sendai, 1985, Adv. Stud. Pure Math. 10, 1987, 449–476.MathSciNetGoogle Scholar
  16. [O]
    K. G. O’Grady, Involutions and linear systems on holomorphic symplectic manifolds, Geom. Funct. Anal. 15 (2005), 1223–1274.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Adrian Langer
    • 1
    • 2
  1. 1.Institute of MathematicsWarsaw UniversityWarszawaPoland
  2. 2.Institute of MathematicsPolish Academy of SciencesWarszawaPoland

Personalised recommendations