Introduction to the Stacks of Shtukas

  • Ngo Dac Tuan
Part of the Trends in Mathematics book series (TM)


These notes are an attempt to provide an introduction to the stacks of shtukas and their compactifications. The notion of shtukas (or F-bundles) was first defined by Drinfeld [Dri87, Dri89] in his proof of the Langlands correspondence for the general linear group GL2 over function fields. It is recently used in the Lafforgue’s proof of the Langlands correspondence for the general linear group of higher rank GL r over function fields, cf. [Laf02].


Modulus Space Vector Bundle Line Bundle General Linear Group Discrete Valuation Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Dol-Hu98]
    I. Dolgachev, Y. Hu, Variation of geometric invariant theory quotients, Inst. Hautes Études Sci. Publ. Math., 87 (1998), 5–56.MATHCrossRefMathSciNetGoogle Scholar
  2. [Dri87]
    V. Drinfeld, Varieties of modules of F-sheaves, Functional Analysis and its Applications, 21 (1987), 107–122.CrossRefMathSciNetGoogle Scholar
  3. [Dri89]
    V. Drinfeld, Cohomology of compactified manifolds of modules of F-sheaves of rank 2, Journal of Soviet Mathematics, 46 (1989), 1789–1821.CrossRefMathSciNetGoogle Scholar
  4. [Gie77]
    D. Gieseker, On the moduli of vector bundles on an algebraic surface, Annals of Math., 106 (1977), 45–60.CrossRefMathSciNetGoogle Scholar
  5. [Har-Nar75]
    G. Harder, M.S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., 212 (1975), 215–248.MATHCrossRefMathSciNetGoogle Scholar
  6. [Har77]
    R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics, 52 (1977), Springer-Verlag, New York-Heidelberg.Google Scholar
  7. [Laf97]
    L. Lafforgue, Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson, Astérisque, 243 (1997).Google Scholar
  8. [Laf98]
    L. Lafforgue, Une compactification des champs classifiant les chtoucas de Drinfeld, J. Amer. Math. Soc., 11(4) (1998), 1001–1036.MATHCrossRefMathSciNetGoogle Scholar
  9. [Laf02a]
    L. Lafforgue, Cours à l’Institut Tata sur les chtoucas de Drinfeld et la correspondance de Langlands, prépublication de l’IHES, M/02/45.Google Scholar
  10. [Laf02]
    L. Lafforgue, Chtoucas de Drinfeld et correspondance de Langlands, Invent. Math., 147 (2002), 1–241.MATHCrossRefMathSciNetGoogle Scholar
  11. [Lan75]
    S.G. Langton, Valuative criteria for families of vector bundles on algebraic varieties, Annals of Math., 101 (1975), 88–110.CrossRefMathSciNetGoogle Scholar
  12. [Lau-MB99]
    G. Laumon, L. Moret-Bailly, Champs algébriques, Ergebnisse der Mathematik 39, Springer, 1999.Google Scholar
  13. [Mum-For-Kir94]
    D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3rd enlarged edition, Ergebnisse der Mathematik und ihrer Grenzgebiete 34, Springer, 1994.Google Scholar
  14. [Ngo03]
    Ngo Bao Chau, D-chtoucas de Drinfeld à modifications symétriques et identité de changement de base, Annales Scientifiques de l’ENS, 39 (2006), 197–243.MATHGoogle Scholar
  15. [NgoDac04]
    T. Ngo Dac, Compactification des champs de chtoucas et théorie géométrique des invariants, to appear in Astérisque.Google Scholar
  16. [NgoDac07]
    T. Ngo Dac, Compactification des champs de chtoucas: le cas des groupes reductifs, preprint.Google Scholar
  17. [Tha96]
    M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc., 9(3) (1996), 691–723.MATHCrossRefMathSciNetGoogle Scholar
  18. [Var04]
    Y. Varshavsky, Moduli spaces of principal F-bundles, Selecta Math., 10 (2004), 131–166.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Ngo Dac Tuan
    • 1
  1. 1.LAGA — Département de MathématiquesCNRS — Université de Paris NordVilletaneuseFrance

Personalised recommendations