Advertisement

Notes on the Life and Work of Józef Maria Hoene-Wroński

  • Piotr Pragacz
Part of the Trends in Mathematics book series (TM)

Abstract

This article is about Hoene-Wroński (1776–1853), one of the most original figures in the history of science. It was written on the basis of two talks delivered by the author during the session of Impanga “A tribute to Józef Hoene-Wroński”1, which took place on January 12 and 13, 2007 in the Institute of Mathematics of the Polish Academy of Sciences in Warsaw.

Keywords

Weierstrass Point Elementary Symmetric Function Liberal Party Celestial Object Religious Party 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    W.I. Arnold, Ordinary differential equations, Nauka, Moscow 1971 (in Russian).Google Scholar
  2. [2]
    S. Banach, Über das “Loi suprême” von J. Hoene-Wroński, Bulletin International de l—Académie Polonaise des sciences et de lettres, Série A (1939), 450–457.Google Scholar
  3. [3]
    T. Banachiewicz, Rachunek krakowianowy z zastosowaniami, PAN, Komitet Astronomiczny, PWN, Warszawa 1959.Google Scholar
  4. [4]
    C. Brezinski, History of continued fractions and Padé approximants, Springer, Berlin 1991.MATHGoogle Scholar
  5. [5]
    A. Cayley, On Wroński’s theorem, Quart. J. Math. 12 (1873), 221–228.Google Scholar
  6. [6]
    J. Dianni, A. Wachułka, Tysiąc lat polskiej myśli matematycznej, PZWS, Warszawa 1963.Google Scholar
  7. [7]
    S. Dickstein, Własności i niektóre zastosowania wrońskianów, Prace Matematyczno-Fizyczne 1 (1888), 5–25.Google Scholar
  8. [8]
    S. Dickstein, Katalog dziełi rȩkopisów Hoene-Wrońskiego, nakładem Akademii Umiejȩtności, Kraków 1896; also in [9], pp. 239–351.Google Scholar
  9. [9]
    S. Dickstein, Hoene-Wroński. Jego życie i prace, nakładem Akademii Umiejȩtności, Kraków 1896.Google Scholar
  10. [10]
    J.-C. Drouin, Les grands thèmes de la pensée messianique en France de Wroński à Esquiros: christianisme ou laïcisme?, in: Messianisme et slavophilie, Wyd. Uniw. Jagiell., Kraków 1987, 55–66.Google Scholar
  11. [11]
    W. Fulton, Intersection theory, Springer, Berlin 1984.MATHGoogle Scholar
  12. [12]
    G. Galbura, Il wronskiano di un sistema di sezioni di un fibrato vettoriale di rango i sopra una curva algebrica ed il relativo divisore di Brill-Severi, Ann. Mat. Pura Appl. 98 (1974), 349–355.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    J.H. Grace, A. Young, The algebra of invariants, Cambridge University Press, Cambridge 1903; there exists a reprint: Stechert & Co., New York 1941.MATHGoogle Scholar
  14. [14]
    J.M. Hoene-Wroński, Introduction à la Philosophie des Mathématiques et Technie de l’Algorithmique, Courcier, Paris 1811.Google Scholar
  15. [15]
    J.M. Hoene-Wroński, Résolution générale des équations de tous les degrés, Klostermann, Paris 1812.Google Scholar
  16. [16]
    J.M. Hoene-Wroński, Réfutation de la théorie des fonctions analytiques de Lagrange, Blankenstein, Paris 1812.Google Scholar
  17. [17]
    J.M. Hoene-Wroński, Philosophie de la technie algorithmique: Loi Suprême et universelle; Réforme des Mathématiques, Paris 1815–1817.Google Scholar
  18. [18]
    J.M. Hoene-Wroński, A course of mathematics, Introduction determining the general state of mathematics, London 1821.Google Scholar
  19. [19]
    J.M. Hoene-Wroński, Canons de logarithms, Didot, Paris 1824.Google Scholar
  20. [20]
    J.M. Hoene-Wroński, Réforme absolue et par conséquent finale du Savoir Humain. Tome I: Réforme des Mathématiques; Tome III: Résolution générale et définitive des équations algébriques de tous les degrés, Didot, Paris 1847–1848.Google Scholar
  21. [21]
    J.M. Hoene-Wroéski, Epitre Secrète à son Altesse le Prince Louis-Napoléon, Dépôt des Ouvrages Messianiques, Metz 1851.Google Scholar
  22. [22]
    J.M. Hoene-Wroński, Wstȩp do wykładu Matematyki, transl. from French by L. Nied-źwiecki, Biblioteka Polska, Quais d’Orléans 6, Paris 1880.Google Scholar
  23. [23]
    J.M. Hoene-Wroński, Kanony logarytmów, transl. from French by S. Dickstein, Warszawa 1890.Google Scholar
  24. [24]
    J.M. Hoene-Wroński, Wstȩp do Filozofii Matematyki oraz Technia Algorytmii, transl. from French by P. Chomicz, Prace Towarzystwa Hoene-Wrońskiego, Inst.Wyd. “Biblioteka Polska”, Warszawa 1937.Google Scholar
  25. [25]
    J.M. Hoene-Wroński, The legacy of Hoene-Wroński in the Kórnik Library — see: www.bkpan.poznan.pl/biblioteka/index.htmlGoogle Scholar
  26. [26]
    S. Kaczmarz, H. Steinhaus, Theorie der Orthogonalreihen, Warszawa-Lwów 1936.Google Scholar
  27. [27]
    D. Laksov, Wronskians and Plücker formulas for linear systems on curves, Ann. Sci. École Norm. Sup. (4) 17 (1984), 45–66.MATHMathSciNetGoogle Scholar
  28. [28]
    A. Lascoux, Diviser!, in: M. Lothaire, Mots, Mélanges offerts àM.-P. Schützenberger, Hermès, Paris 1990.Google Scholar
  29. [29]
    A. Lascoux, Wroński’s factorization of polynomials, in: Topics in Algebra, Banach Center Publ. 26, Part 2, PWN, Warszawa 1990, 379–386.Google Scholar
  30. [30]
    A. Lascoux, Symmetric functions and combinatorial operators on polynomials, CBMS Regional Conf. Ser. in Math. 99, Amer. Math. Soc., Providence 2003.Google Scholar
  31. [31]
    A. Lascoux, P. Pragacz, Double Sylvester sums for subresultants and multi-Schur functions, J. Symbolic Comp. 35 (2003), 689–710.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    A.S. de Montferrier, Dictionnaire des sciences mathématiques pures et appliquées, Paris 1834–1840.Google Scholar
  33. [33]
    T. Muir, A treatise on the theory of determinants, London 1882; there exists a reprint: Dover, New York 1960.Google Scholar
  34. [34]
    T. Muir, The theory of determinants in the historical order development, 4 volumes, Macmillan & Co., London 1906, 1911, 1920, 1923; there exists a reprint: Dover, New York 1960.MATHGoogle Scholar
  35. [35]
    T. Muir, Contributions to the history of determinants, 1900–1920, Blackie and Son, London, Glasgow 1930.Google Scholar
  36. [36]
    R. Murawski, Józef Maria Hoene-Wroński-filozof i matematyk, Materiały konferencyjne Uniwersytetu Szczecińskiego, 30 (1998), 29–46.Google Scholar
  37. [37]
    R. Murawski, Genius or madman? On the life and work of J.M. Hoene-Wroński, in: European mathematics in the last centuries (ed. W. Wiȩsław), Wrocław 2005, 77–86.Google Scholar
  38. [38]
    C.K. Norwid, O Szopenie, Fundacja Narodowego Wydania Dzieł Fryderyka Chopina, Łódź 1999.Google Scholar
  39. [39]
    H. Ohsugi, T. Wada, Gröbner bases of Hilbert ideals of alternating groups, J. Symb. Comp. 41 (2006), 905–908.MATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    L.S. Pontrjagin, Ordinary differential equations, Mir, Moscow 1974 (in Russian).Google Scholar
  41. [41]
    F. Schweins, Theorie der Differenzen und Differentiale, Heidelberg 1825.Google Scholar
  42. [42]
    T.J. Stieltjes, Recherches sur les fractions continues, Ann. Fac. Sc. Toulouse 8 (1894), 1–122.MathSciNetGoogle Scholar
  43. [43]
    J.J. Sylvester, A theory of the syzygetic relations of two rational integral functions, Phil. Trans. Royal Soc. London CXLIII, Part III (1853), 407–548.CrossRefGoogle Scholar
  44. [44]
    T.N. Thiele, Interpolationrechnung, Teubner, Leipzig 1909.Google Scholar
  45. [45]
    A. Transon, Réflexions sur l’événement scientifique d’une formule publiée par Wroński en 1812 et démontrée par Cayley en 1873, Nouvelles Annales de mathématiques 13 (1874), 161–174.Google Scholar
  46. [46]
    A. Transon, Lois des séries de Wroński. Sa phoronomie, Nouvelles Annales de mathématiques 13 (1874), 305–318.Google Scholar
  47. [47]
    F. Warrain, L’oeuvre philosophique d’Hoene-Wroński. Textes, commentaires et critique, 3 volumes, Les Editions Vega, Paris 1933, 1936, 1938.Google Scholar

Copyright information

© Birkhäuser Verlag Basel/Switzerland 2007

Authors and Affiliations

  • Piotr Pragacz
    • 1
  1. 1.Instytut Matematyczny PANWarszawa

Personalised recommendations