Skip to main content

The Double Pulsar

  • Chapter
Gravitation and Experiment

Part of the book series: Progress in Mathematical Physics ((PMP,volume 52))

  • 571 Accesses

Abstract

A new eaa in fundamental physics began with the discovery of pulsars 1967, the discovery of the first binary pulsar in 1974 and the first millisecond pulsar in 1982. Ever since, pulsars have been used as precise cosmic clocks, taking us beyond the weak-field regime of the solar-system in the study of theories of gravity. Their contribution is crucial as no test can be considered to be complete without probing the strong-field realm of gravitational physics by finding and timing pulsars. This is particularly highlighted by the discovery of the first double pulsar system which was discovered by our team in 2003. The double pulsar is unique in that both neutron stars are detectable as radio pulsars. This, combined with significantly higher mean orbital velocities and accelerations when compared to other binary pulsars, suggested that the system would become the best available testbed for general relativity and alternative theories of gravity in the strong-field regime. Indeed, this has been achieved only three years after its discovery with four independent strong-field tests of GR, more than has been obtained for any other system. Use of the theory-independent mass ratio of the two stars makes these tests uniquely different from all preceding studies. Ourresults confirm the validity of GR at the 0.05% level, which is by far the best precision yet achieved for the strong-field regime. Remarkably, the transverse velocity of the systems center of mass is extremely small, a result which is important for future GR. tests and evolutinary studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Damour, G. Esposito-Farèse, Phys. Rev. D 58 (1998), 1.

    Google Scholar 

  2. S. E. Thorsett, D. Chakrabarty, ApJ 512 (1999), 288.

    Article  ADS  Google Scholar 

  3. J. R. Oppenheimer, G. Volkoff, Phys. Rev. 55 (1939), 374.

    Article  MATH  ADS  Google Scholar 

  4. V. E. Zavlin, G. G. Pavlov, A&A 329 (1998), 583.

    ADS  Google Scholar 

  5. G. F. Bignami, P. A. Caraveo, A. de Luca, S. Mereghetti, SFBA-2003: Semaine de l’Astrophysique Francaise, T. G. F. Combes, D. Barret, L. Pagani, eds. (2003), p. 381.

    Google Scholar 

  6. T. H. Hankins, J. S. Kern, J. C. Weatherall, J. A. Eilek, Nature 422 (2003), 141.

    Article  ADS  Google Scholar 

  7. M. Blaskiewicz, Ph.D. thesis, Cornell University (1991).

    Google Scholar 

  8. S. Johnston, D. Galloway, MNRAS 306 (1999), L50.

    Article  ADS  Google Scholar 

  9. G. Hobbs, A. G. Lyne, M. Kramer, C. E. Martin, C. Jordan, MNRAS 353 (2004), 1311.

    Article  ADS  Google Scholar 

  10. W. Zhang, F. E. Marshall, E. V. Gotthelf, J. Middleditch, Q. D. Wang, ApJ 554 (2001), LI77.

    Article  Google Scholar 

  11. A. G. Lyne, R. S. Pritchard, F. G. Smith, MNRAS 265 (1993), 1003.

    ADS  Google Scholar 

  12. M. Kramer, et al., ApJ 593 (2003), L31.

    Article  ADS  Google Scholar 

  13. M. D. Young, R. N. Manchester, S. Johnston, Nature 400 (1999), 848.

    Article  ADS  Google Scholar 

  14. D. C. Backer, S. R. Kulkarni, C. Heiles, M. M. Davis, W. M. Goss, Nature 300 (1982), 615.

    Article  ADS  Google Scholar 

  15. J. W. T. Hessels, et al., Science 311 (2006), 1901.

    Article  ADS  Google Scholar 

  16. M. A. Alpar, A. F. Cheng, M. A. Ruderman, J. Shaham, Nature 300 (1982), 728.

    Article  ADS  Google Scholar 

  17. M. Kramer, et al., Science in press (2006).

    Google Scholar 

  18. T. Damour, J. H. Taylor, Phys. Rev. D 45 (1992), 1840.

    Article  ADS  Google Scholar 

  19. T. Damour, N. Deruelle, Ann. Inst. H. Poincaré (Physique Théorique) 43 (1985), 107.

    MATH  MathSciNet  Google Scholar 

  20. T. Damour, N. Deruelle, Ann. Inst. H. Poincaré (Physique Théorique) 44 (1986), 263.

    MATH  MathSciNet  Google Scholar 

  21. M. Burgay, et al., Nature 426 (2003), 531.

    Article  ADS  Google Scholar 

  22. R. N. Manchester, et al., MNRAS 328 (2001), 17.

    Article  ADS  Google Scholar 

  23. V. Kalogera, et al., ApJ 601 (2004), L179.

    Article  ADS  Google Scholar 

  24. A. G. Lyne, et al., Science 303 (2004), 1153.

    Article  ADS  Google Scholar 

  25. M. A. McLaughlin, et al., ApJ 616 (2004a), L131.

    Article  ADS  Google Scholar 

  26. M. A. McLaughlin, et al., ApJ 613 (2004b), L57.

    Article  ADS  Google Scholar 

  27. E. M. Standish, A&A 336 (1998), 381.

    ADS  Google Scholar 

  28. J. M. Cordes, T. J. W. Lazio (2002). astro-ph/0207156.

    Google Scholar 

  29. J. M. Weisberg, J. H. Taylor, Binary Radio Pulsars, F. Rasio, I. H. Stairs, eds. (Astronomical Society of the Pacific, San Francisco, 2005), pp. 25–31.

    Google Scholar 

  30. I. H. Stairs, S. E. Thorsett, J. H. Taylor, A. Wolszczan, ApJ 581 (2002), 501.

    Article  ADS  Google Scholar 

  31. J. H. Taylor, A. Wolszczan, T. Damour, J. M. Weisberg, Nature 355 (1992), 132.

    Article  ADS  Google Scholar 

  32. W. A. Coles, M. A. McLaughlin, B. J. Rickett, A. G. Lyne, N. D. R. Bhat, ApJ 623 (2005), 392.

    Article  ADS  Google Scholar 

  33. Lorimer, D. R. and Kramer, M., Handbook of Pulsar Astronomy (Cambridge University Press, 2005).

    Google Scholar 

  34. M. Kramer, et al., Annalen der Physik 15 (2006), 34.

    Article  ADS  MathSciNet  Google Scholar 

  35. C. Lange, et al., MNRAS 326 (2001), 274.

    Article  ADS  Google Scholar 

  36. S. M. Ransom, et al., ApJ 609 (2004), L71.

    Article  ADS  Google Scholar 

  37. J. H. Taylor, Philos. Trans. Roy. Soc. London A 341 (1992), 117.

    Article  ADS  Google Scholar 

  38. T. Damour, R. Ruffini, Academie des Sciences Paris Comptes Rendus Ser. Scie. Math. 279 (1974), 971.

    ADS  Google Scholar 

  39. B. M. Barker, R. F. O’Connell, ApJ 199 (1975), L25.

    Article  ADS  Google Scholar 

  40. M. Burgay, et al., ApJ 624 (2005), L113.

    Article  ADS  Google Scholar 

  41. R. N. Manchester, et al., ApJ 621 (2005), L49.

    Article  ADS  Google Scholar 

  42. M. Kramer, ApJ 509 (1998), 856.

    Article  ADS  Google Scholar 

  43. F. A. Jenet, S. M. Ransom, Nature 428 (2004), 919.

    Article  ADS  Google Scholar 

  44. I. H. Stairs, S. E. Thorsett, R. J. Dewey, M. Kramer, C. McPhee, MNRAS p. in press (2006).

    Google Scholar 

  45. T. Damour, J. H. Taylor, ApJ 366 (1991), 501.

    Article  ADS  Google Scholar 

  46. K. Kuijken, G. Gilmore, MNRAS 239 (1989), 571.

    ADS  Google Scholar 

  47. T. Damour, G. Esposito-Far’ese p. Submitted. (2006).

    Google Scholar 

  48. M. Lyutikov, MNRAS 362 (2005), 1078.

    Article  ADS  Google Scholar 

  49. N. Wex, Class. Quantum Grav. 12 (1995), 983.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  50. T. Damour, G. Schäfer, Nuovo Cim. 101 (1988), 127.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Verlag Basel

About this chapter

Cite this chapter

Kramer, M. (2007). The Double Pulsar. In: Gravitation and Experiment. Progress in Mathematical Physics, vol 52. Birkhäuser Basel. https://doi.org/10.1007/978-3-7643-8524-8_3

Download citation

Publish with us

Policies and ethics