The Double Pulsar

  • Michael Kramer
Part of the Progress in Mathematical Physics book series (PMP, volume 52)


A new eaa in fundamental physics began with the discovery of pulsars 1967, the discovery of the first binary pulsar in 1974 and the first millisecond pulsar in 1982. Ever since, pulsars have been used as precise cosmic clocks, taking us beyond the weak-field regime of the solar-system in the study of theories of gravity. Their contribution is crucial as no test can be considered to be complete without probing the strong-field realm of gravitational physics by finding and timing pulsars. This is particularly highlighted by the discovery of the first double pulsar system which was discovered by our team in 2003. The double pulsar is unique in that both neutron stars are detectable as radio pulsars. This, combined with significantly higher mean orbital velocities and accelerations when compared to other binary pulsars, suggested that the system would become the best available testbed for general relativity and alternative theories of gravity in the strong-field regime. Indeed, this has been achieved only three years after its discovery with four independent strong-field tests of GR, more than has been obtained for any other system. Use of the theory-independent mass ratio of the two stars makes these tests uniquely different from all preceding studies. Ourresults confirm the validity of GR at the 0.05% level, which is by far the best precision yet achieved for the strong-field regime. Remarkably, the transverse velocity of the systems center of mass is extremely small, a result which is important for future GR. tests and evolutinary studies.


Neutron Star Radio Pulsar Double Pulsar Millisecond Pulsar Orbital Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Damour, G. Esposito-Farèse, Phys. Rev. D 58 (1998), 1.Google Scholar
  2. [2]
    S. E. Thorsett, D. Chakrabarty, ApJ 512 (1999), 288.CrossRefADSGoogle Scholar
  3. [3]
    J. R. Oppenheimer, G. Volkoff, Phys. Rev. 55 (1939), 374.MATHCrossRefADSGoogle Scholar
  4. [4]
    V. E. Zavlin, G. G. Pavlov, A&A 329 (1998), 583.ADSGoogle Scholar
  5. [5]
    G. F. Bignami, P. A. Caraveo, A. de Luca, S. Mereghetti, SFBA-2003: Semaine de l’Astrophysique Francaise, T. G. F. Combes, D. Barret, L. Pagani, eds. (2003), p. 381.Google Scholar
  6. [6]
    T. H. Hankins, J. S. Kern, J. C. Weatherall, J. A. Eilek, Nature 422 (2003), 141.CrossRefADSGoogle Scholar
  7. [7]
    M. Blaskiewicz, Ph.D. thesis, Cornell University (1991).Google Scholar
  8. [8]
    S. Johnston, D. Galloway, MNRAS 306 (1999), L50.CrossRefADSGoogle Scholar
  9. [9]
    G. Hobbs, A. G. Lyne, M. Kramer, C. E. Martin, C. Jordan, MNRAS 353 (2004), 1311.CrossRefADSGoogle Scholar
  10. [10]
    W. Zhang, F. E. Marshall, E. V. Gotthelf, J. Middleditch, Q. D. Wang, ApJ 554 (2001), LI77.CrossRefGoogle Scholar
  11. [11]
    A. G. Lyne, R. S. Pritchard, F. G. Smith, MNRAS 265 (1993), 1003.ADSGoogle Scholar
  12. [12]
    M. Kramer, et al., ApJ 593 (2003), L31.CrossRefADSGoogle Scholar
  13. [13]
    M. D. Young, R. N. Manchester, S. Johnston, Nature 400 (1999), 848.CrossRefADSGoogle Scholar
  14. [14]
    D. C. Backer, S. R. Kulkarni, C. Heiles, M. M. Davis, W. M. Goss, Nature 300 (1982), 615.CrossRefADSGoogle Scholar
  15. [15]
    J. W. T. Hessels, et al., Science 311 (2006), 1901.CrossRefADSGoogle Scholar
  16. [16]
    M. A. Alpar, A. F. Cheng, M. A. Ruderman, J. Shaham, Nature 300 (1982), 728.CrossRefADSGoogle Scholar
  17. [17]
    M. Kramer, et al., Science in press (2006).Google Scholar
  18. [18]
    T. Damour, J. H. Taylor, Phys. Rev. D 45 (1992), 1840.CrossRefADSGoogle Scholar
  19. [19]
    T. Damour, N. Deruelle, Ann. Inst. H. Poincaré (Physique Théorique) 43 (1985), 107.MATHMathSciNetGoogle Scholar
  20. [20]
    T. Damour, N. Deruelle, Ann. Inst. H. Poincaré (Physique Théorique) 44 (1986), 263.MATHMathSciNetGoogle Scholar
  21. [21]
    M. Burgay, et al., Nature 426 (2003), 531.CrossRefADSGoogle Scholar
  22. [22]
    R. N. Manchester, et al., MNRAS 328 (2001), 17.CrossRefADSGoogle Scholar
  23. [23]
    V. Kalogera, et al., ApJ 601 (2004), L179.CrossRefADSGoogle Scholar
  24. [24]
    A. G. Lyne, et al., Science 303 (2004), 1153.CrossRefADSGoogle Scholar
  25. [25]
    M. A. McLaughlin, et al., ApJ 616 (2004a), L131.CrossRefADSGoogle Scholar
  26. [26]
    M. A. McLaughlin, et al., ApJ 613 (2004b), L57.CrossRefADSGoogle Scholar
  27. [28]
    E. M. Standish, A&A 336 (1998), 381.ADSGoogle Scholar
  28. [29]
    J. M. Cordes, T. J. W. Lazio (2002). astro-ph/0207156.Google Scholar
  29. [30]
    J. M. Weisberg, J. H. Taylor, Binary Radio Pulsars, F. Rasio, I. H. Stairs, eds. (Astronomical Society of the Pacific, San Francisco, 2005), pp. 25–31.Google Scholar
  30. [31]
    I. H. Stairs, S. E. Thorsett, J. H. Taylor, A. Wolszczan, ApJ 581 (2002), 501.CrossRefADSGoogle Scholar
  31. [32]
    J. H. Taylor, A. Wolszczan, T. Damour, J. M. Weisberg, Nature 355 (1992), 132.CrossRefADSGoogle Scholar
  32. [33]
    W. A. Coles, M. A. McLaughlin, B. J. Rickett, A. G. Lyne, N. D. R. Bhat, ApJ 623 (2005), 392.CrossRefADSGoogle Scholar
  33. [34]
    Lorimer, D. R. and Kramer, M., Handbook of Pulsar Astronomy (Cambridge University Press, 2005).Google Scholar
  34. [35]
    M. Kramer, et al., Annalen der Physik 15 (2006), 34.CrossRefADSMathSciNetGoogle Scholar
  35. [36]
    C. Lange, et al., MNRAS 326 (2001), 274.CrossRefADSGoogle Scholar
  36. [37]
    S. M. Ransom, et al., ApJ 609 (2004), L71.CrossRefADSGoogle Scholar
  37. [38]
    J. H. Taylor, Philos. Trans. Roy. Soc. London A 341 (1992), 117.CrossRefADSGoogle Scholar
  38. [39]
    T. Damour, R. Ruffini, Academie des Sciences Paris Comptes Rendus Ser. Scie. Math. 279 (1974), 971.ADSGoogle Scholar
  39. [40]
    B. M. Barker, R. F. O’Connell, ApJ 199 (1975), L25.CrossRefADSGoogle Scholar
  40. [41]
    M. Burgay, et al., ApJ 624 (2005), L113.CrossRefADSGoogle Scholar
  41. [42]
    R. N. Manchester, et al., ApJ 621 (2005), L49.CrossRefADSGoogle Scholar
  42. [43]
    M. Kramer, ApJ 509 (1998), 856.CrossRefADSGoogle Scholar
  43. [44]
    F. A. Jenet, S. M. Ransom, Nature 428 (2004), 919.CrossRefADSGoogle Scholar
  44. [45]
    I. H. Stairs, S. E. Thorsett, R. J. Dewey, M. Kramer, C. McPhee, MNRAS p. in press (2006).Google Scholar
  45. [46]
    T. Damour, J. H. Taylor, ApJ 366 (1991), 501.CrossRefADSGoogle Scholar
  46. [47]
    K. Kuijken, G. Gilmore, MNRAS 239 (1989), 571.ADSGoogle Scholar
  47. [48]
    T. Damour, G. Esposito-Far’ese p. Submitted. (2006).Google Scholar
  48. [49]
    M. Lyutikov, MNRAS 362 (2005), 1078.CrossRefADSGoogle Scholar
  49. [50]
    N. Wex, Class. Quantum Grav. 12 (1995), 983.MATHCrossRefADSMathSciNetGoogle Scholar
  50. [51]
    T. Damour, G. Schäfer, Nuovo Cim. 101 (1988), 127.ADSCrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 2007

Authors and Affiliations

  • Michael Kramer
    • 1
  1. 1.University of ManchesterUK

Personalised recommendations