Beyond Einstein’s Gravity

  • Ignatios Antoniadis
Part of the Progress in Mathematical Physics book series (PMP, volume 52)


Despite the impotant experimental success of General Relativity, there are several theoretical reasons indicating that gravitational phenomena may change radically from the predictions of Einstein’s theory at very short distances. A main motivation comes from studies of unifying all fundamental forces in the framework of a consistent quantum theory, called string theory. This theory introduces a new physical constant, the string length, under which a new elementary structure shows up, changing drastically all physical laws of nature. In particular, lowering the string scale in the TeV region provides a theoretical framework for solving the so-called mass hierarchy problem: the apparent weakness of gravity can then be accounted by the existence of large internal dimensions, in the submillimeter tegion, and transverse to a braneworld where our obserbed universe is confined. I review the main properties of this scenario and its implications for new travitational phenomena that can be obserbed at both particle colliders, and in non-accelerator experiments searching for new short range forces at submillimeter distaces. I also discuss the warped metric case and possible localization of gravity in the presence of infinite size extra dimensions that cal modify Newton’s law at cosmoligical distance scales.


Extra Dimension Open String Heterotic String Closed String Vacuum Expectation Value 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    C. Angelantonj and A. Sagnotti, Phys. Rept. 371 (2002), 1[Err at urn-ibid. 376 (2003), 339][arXiv:hep-th/0204089].Google Scholar
  2. [2]
    I. Antoniadis, Phys. Lett. B 246 (1990), 377.CrossRefADSMathSciNetGoogle Scholar
  3. [3]
    C. D. Hoyle, D. J. Kapner, B. R. Heckel, E. G. Adelberger, J. H. Gundlach, U. Schmidt and H. E. Swanson, Phys. Rev. D 70 (2004), 042004.CrossRefADSGoogle Scholar
  4. [4]
    N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 429 (1998), 263 [arXiv:hep-ph/9803315]; I. Antomiadis, N. Arkani-Hamed, S. Dimopoulos and G. R. Dvali, Phys. Lett. B 436 (1998), 257 [arXiv:hep-ph/9804398].CrossRefADSGoogle Scholar
  5. [5]
    For a review see, e.g. I. Antoniadis, Prepared for NATO Advanced Study Institute and EC Summer School on Progress in String, Field and Particle Theory, Cargese, Corsica, France (2002); and references therein.Google Scholar
  6. [6]
    J. D. Lykken, Phys. Rev. D 54 (1996), 3693 [arXiv:hep-th/9603133].CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    J. C. Long and J. C. Price, Comptes Rendus Physique 4 (2003), 337; R S. Decca, D. Lopes, H. B. Chan, E. Fischbach, D. E. Krause and C. R. Jamell, Phys. Rev. Lett. 94 (2005), 240401; S. J. Smullin, A. A. Geraci, D. M. Weld, J. Chiaverini, S. Holmes and A. Kapitulnik, arXiv:hep-ph/0508204; H. Abele, S. Haeßler and A. Westphal, in 271th WE-Heraeus-Seminar, Bad Honnef (2002).CrossRefADSGoogle Scholar
  8. [8]
    G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 544 (1999), 3; E. A. Mirabelli, M. Perelstein and M. E Peskin, Phys. Rev. Lett. 82 (1999), 2236; T. Han, J. D. Lykken and R. Zhang, Phys. Rev. D 59 (1999), 105006; K. Cheung and W.-Y. Keung, Phys. Rev. D 60 (1999), 112003; C. Balázs et al., Phys. Rev. Lett. 83 (1999), 2112; L3 Collaboration (M. Acciarri et al.)Phys. Lett. B 464 (1999), 135 and 470 (1999), 281: J. L. Hewett, Phys. Rev. Lett. 82 (1999), 4765.CrossRefADSGoogle Scholar
  9. [9]
    N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D 59 (1999), 086004.CrossRefADSGoogle Scholar
  10. [10]
    S. Cullen and M. Perelstein, Phys. Rev. Lett. 83 (1999), 268; V. Barger, T. Han, C. Kao and R. J. Zhang, Phys. Lett. B 461 (1999), 34.CrossRefADSGoogle Scholar
  11. [11]
    K. Benakli and S. Davidson, Phys. Rev. D 60 (1999), 025004; L. J. Hall and D. Smith, Phys. Rev. D 60 (1999), 085008.CrossRefADSGoogle Scholar
  12. [12]
    S. B. Giddings and S. Thomas, Phys. Rev. D 65 (2002), 056010; S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87 (2001), 161602.CrossRefADSGoogle Scholar
  13. [13]
    I. Antoniadis, C. Bachas, Phys. Lett. B 450 (1999), 83.MATHCrossRefADSMathSciNetGoogle Scholar
  14. [14]
    I. Antoniadis, K. Benakli, A. Laugier and T. Maillard, Nucl. Phys. B 662 (2003), 40 [arXiv:hep-ph/0211409].MATHCrossRefADSMathSciNetGoogle Scholar
  15. [15]
    I. Antoniadis, S. Dimopoulos and G. Dvali, Nucl. Phys. B 516 (1998), 70; S. Ferrara, C. Kounnas and F. Zwirner, Nucl. Phys. B 429 (1994), 589.MATHCrossRefADSMathSciNetGoogle Scholar
  16. [16]
    T. R. Taylor and G. Veneziano, Phys. Lett. B 213 (1988), 450.CrossRefADSGoogle Scholar
  17. [17]
    I. Antoniadis, E. Kiritsis and J. Rizos, Nucl. Phys. B 637 (2002), 92.CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83 (1999), 4690 and Phys. Rev. Lett. 83 (1999), 3370.MATHCrossRefADSMathSciNetGoogle Scholar
  19. [19]
    G. R. Dvali, G. Gabadadze and M. Porrati, Phys. Lett. B 485 (2000), 208.MATHCrossRefADSMathSciNetGoogle Scholar
  20. [20]
    H. Verlinde, Nucl. Phys. B 580 (2000), 264; S. B. Giddings, S. Kachru and J. Polchinski, Phys. Rev. D 66 (2002), 106006.MATHCrossRefADSMathSciNetGoogle Scholar
  21. [21]
    I. Antoniadis, R. Minasian and P. Vanhove, Nucl. Phys. B 648 (2003), 69 [arXiv:hep-th/0209030].MATHCrossRefADSMathSciNetGoogle Scholar
  22. [22] For a recent review see e.g. R. Maartens, Living Rev. Rel. 7 (2004), 7 [arXiv:gr-qc/0312059]; same proceedings and references therein.Google Scholar
  23. [23]
    E. Kiritsis, N. Tetradis and T. N. Tomaras, JHEP 0108 (2001), 012.CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    M. A. Luty, M. Porrati and R. Rattazzi, arXiv:hep-th/0303116.Google Scholar
  25. [25]
    G. R. Dvali and G. Gabadadze, Phys. Rev. D 63 (2001), 065007; G. R. Dvali, G. Gabadadze, M. Kolanovic and F. Nitti, Phys. Rev. D 64 (2001), 084004.CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    S. L. Dubovsky and V. A. Rubakov, Phys. Rev. D 67 (2003), 104014 [arXiv:hep-th/0212222].CrossRefADSGoogle Scholar
  27. [27]
    V. A. Rubakov, arXiv:hep-th/0303125.Google Scholar
  28. [28]
    M. Kolanovic, M. Porrati and J. W. Rombouts, Phys. Rev. D 68 (2003), 064018 [arXiv:hep-th/0304148].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    I. Antoniadis, E. Gava and K. S. Narain, Phys. Lett. B 283 (1992), 209.CrossRefADSMathSciNetGoogle Scholar
  30. [30]
    I. Antoniadis, C. Bachas, C. Fabre, H. Partouche and T. R. Taylor, Nucl. Phys. B 489 (1997), 160; I. Antoniadis, H. Partouche and T. R. Taylor, Nucl. Phys. B 499 (1997), 29.MATHCrossRefADSMathSciNetGoogle Scholar
  31. [31]
    I. Antoniadis, S. Ferrara, R. Minasian and K. S. Narain, Nucl. Phys. B 507 (1997), 571.MATHCrossRefADSMathSciNetGoogle Scholar
  32. [32]
    A. Lue and G. Starkman, Phys. Rev. D 67 (2003), 064002.CrossRefADSGoogle Scholar

Copyright information

© Birdhäuser Verlag Basel 2007

Authors and Affiliations

  • Ignatios Antoniadis
    • 1
  1. 1.Department of Physics CERN-Theory DivisionSwitzerland

Personalised recommendations