Quantum Spaces pp 203-227 | Cite as

# Non-commutative Geometry and the Spectral Model of Space-time

## Abstract

This is a report on our joint work with A. Chamseddine and M. Marcolli. This essay gives a short introduction to a potential application in physics of a new type of geometry based on spectral considerations which is convenient when dealing with non-commutative spaces, *i.e.*, spaces in which the simplifying rule of commutativity is no longer applied to the coordinates. Starting from the phenomenological Lagrangian of gravity coupled with matter one infers, using the spectral action principle, that space-time admits a fine structure which is a subtle mixture of the usual 4-dimensional continuum with a finite discrete structure *F.* Under the (unrealistic) hypothesis that this structure remains valid (*i.e.*, one does not have any “hyperfine” modification) until the unification scale, one obtains a number of predictions whose approximate validity is a basic test of the approach.

## Keywords

Yukawa Coupling Dirac Operator Spectral Model Adjoint Action Spectral Action## Preview

Unable to display preview. Download preview PDF.

## References

- [1]J. Barrett,
*A Lorentzian version of the non-commutative geometry of the standard. model of particle physics*hep-th/0608221.Google Scholar - [2]C. Bordé,
*Base units of the SI, fundamental constants and modern quantum physics*, Phil. Trans. R. Soc. A 363 (2005), 2177–2201.CrossRefADSGoogle Scholar - [3]A. Chamseddine, A. Connes,
*Universal Formula for Non-commutative Geometry. Actions: Unification of Gravity and the Standard Model*, Phys. Rev. Lett.**77**(1996), 4868–4871.MATHCrossRefADSMathSciNetGoogle Scholar - [4]A. Chamseddine, A. Connes,
*The Spectral Action Principle*, Comm.Math. Phys.**186**(1997), 731–750.MATHCrossRefADSMathSciNetGoogle Scholar - [5]A. Chamseddine, A. Connes,
*Scale Invariance in the Spectral Action*, hep-th/0512169 to appear in Jour. Math. Phys.Google Scholar - [6]A. Chamseddine, A. Connes,
*Inner fluctuations of the spectral action*, hep-th/0605011.Google Scholar - [7]A. Chamseddine, A. Connes, M. Marcolli,
*Gravity and the standard model with neutrino. mixing*, hep-th/0610241.Google Scholar - [8]S. Coleman,
*Aspects of symmetry*, Selected Erice Lectures, Cambridge University Press, 1985.Google Scholar - [9]A. Connes,
*Non-commutative geometry*, Academic Press (1994).Google Scholar - [10]A. Connes,
*Non-commutative geometry and reality*, Journal of Math. Physics**36**no. 11 (1995).Google Scholar - [11]A. Connes,
*Gravity coupled with matter and the foundation of non-commutative geometry*, Comm. Math. Phys. (1995)Google Scholar - [12]A. Connes,
*Non-commutative Geometry and the standard model with neutrino mixing*, hep-th/0608226.Google Scholar - [13]A. Connes, M. Marcolli
*Non-commutative Geometry, Quantum fields and Motives*, Book in preparation.Google Scholar - [14]A. Connes, H. Moscovici,
*The local index formula in non-commutative geometry*, GAFA, Vol.**5**(1995), 174–243.MATHCrossRefMathSciNetGoogle Scholar - [15]L. Dąbrowski, A. Sitarz,
*Dirac operator on the standard Podleśs quantum sphere*, Non-commutative Geometry and Quantum Groups, Banach Centre Publications 61, Hajac, P.M. and Pusz, W. (eds.), Warszawa: IMPAN, 2003, pp. 49–58.Google Scholar - [16]S. Giddings, D. Marolf, J. Hartle,
*Observables in effective gravity*, hep-th/0512200.Google Scholar - [17]J. Gracia-Bondia, B. Iochum, T. Schucker,
*The standard model in non-commutative. geometry and fermion doubling*. Phys. Lett.**B 416**no. 1–2 (1998), 123–128.ADSMathSciNetGoogle Scholar - [18]D. Kastler,
*Non-commutative geometry and fundamental physical interactions: The. Lagrangian level*, Journal. Math. Phys. 41 (2000), 3867–3891.MATHCrossRefADSMathSciNetGoogle Scholar - [19]M. Knecht, T. Schucker
*Spectral action and big desert*hep-ph/065166Google Scholar - [20]O. Lauscher, M. Reuter,
*Asymptotic Safety in Quantum Einstein Gravity: nonperturbative. renormalizability and fractal spacetime structure*, hep-th/0511260.Google Scholar - [21]F. Lizzi, G. Mangano, G. Miele, G. Sparano,
*Fermion Hilbert space and Fermion. Doubling in the Non-commutative Geometry Approach to Gauge Theories*hepth/9610035.Google Scholar - [22]J. Mather,
*Commutators of diffeomorphisms. II*, Comment. Math. Helv. 50 (1975), 33–40.MATHCrossRefMathSciNetGoogle Scholar - [23]R.N. Mohapatra, P.B. Pal,
*Massive neutrinos in physics and astrophysics*, World Scientific, 2004.Google Scholar - [24]M. Rieffel,
*Morita equivalence for C*-algebras and W*-algebras*, J. Pure Appl. Algebra, 5 (1974), 51–96.CrossRefMathSciNetMATHGoogle Scholar - [25]M. Sher,
*Electroweak Higgs potential and vacuum stability*, Phys. Rep. Vol.179 (1989) N.5–6, 273–418.CrossRefADSGoogle Scholar - [26]M. Veltman,
*Diagrammatica: the path to Feynman diagrams*, Cambridge Univ. Press, 1994.Google Scholar