Advertisement

Quantum Spaces pp 109-159 | Cite as

Non-commutative Fluids

  • Alexios P. Polychronakos
Part of the Progress in Mathematical Physics book series (PMP, volume 53)

Abstract

We review the connection between non-commutative gauge theory, matrix models and fluid mechanical systems. The non-commutative Chern-Simons description of the quantum Hall effect and bosonization of collective fermion states are used as specific examples.

Keywords

Gauge Theory Gauge Transformation Matrix Model Poisson Bracket Young Tableau 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947), 38.MATHCrossRefADSMathSciNetGoogle Scholar
  2. [2]
    T. Eguchi and H. Kawai, Reduction of dynamical degrees of freedom in the large N gauge theory, Phys. Rev. Lett. 48 (1982), 1063.CrossRefADSGoogle Scholar
  3. [3]
    A. Connes, The action functional in non-commutative geometry, Commun. Math. Phys. 117 (1988), 673; Gravity coupled with matter and the foundation of noncommutative geometry, Commun. Math. Phys. 182 (1996), 155, [arXiv:hep-th/9603053].MATHCrossRefADSMathSciNetGoogle Scholar
  4. [4]
    A. Connes, M.R. Douglas and A.S. Schwarz, Non-commutative geometry and matrix theory: Compactification on tori, JHEP 9802 (1998), 003, [arXiv:hep-th/9711162].CrossRefADSMathSciNetGoogle Scholar
  5. [5]
    N. Seiberg and E. Witten, String theory and non-commutative geometry, JHEP 9909 (1999), 032, [arXiv:hep-th/9908142].CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    J.A. Harvey, Komaba lectures on non-commutative solitons and D-branes, arXiv:hep-th/0102076.Google Scholar
  7. [7]
    M.R. Douglas and N.A. Nekrasov, Non-commutative field theory, Rev. Mod. Phys. 73 (2001), 977, [arXiv:hep-th/0106048].CrossRefADSMathSciNetGoogle Scholar
  8. [8]
    R.J. Szabo, Quantum field theory on non-commutative spaces, Phys. Rept. 378 (2003), 207, [arXiv:hep-th/0109162].MATHCrossRefADSGoogle Scholar
  9. [9]
    CK. Zachos, Deformation quantization: Quantum mechanics lives and works in phase space, Int. J. Mod. Phys. A 17 (2002), [arXiv:hep-th/0110114].Google Scholar
  10. [10]
    H. Groenewold, Physica 12 (1946), 405; J. Moyal, Proc. Camb. Phil. Soc. 45 (1949), 99.MATHCrossRefADSMathSciNetGoogle Scholar
  11. [11]
    J. Madore, S. Schraml, P. Schupp and J. Wess, Gauge theory on non-commutative spaces, Eur. Phys. J. C 16 (2000), 161, [arXiv:hep-th/0001203].CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    C. Klimcik, Gauge theories on the non-commutative sphere, Commun. Math. Phys. 199 (1998), 257, [hep-th/9710153].MATHCrossRefADSMathSciNetGoogle Scholar
  13. [13]
    U. Carow-Watamura and S. Watamura, Differential calculus on fuzzy sphere and scalar field, Int. J. Mod. Phys. A 13 (1998), 3235; [q-alg/9710034]; Non-commutative geometry and gauge theory on fuzzy sphere, Commun. Math. Phys. 212 (2000), 395, [hep-th/9801195].MATHCrossRefADSMathSciNetGoogle Scholar
  14. [14]
    A.P. Polychronakos, Flux tube solutions in non-commutative gauge theories, Phys. Lett. B 495 (2000), 407, [arXiv:hep-th/0007043].MATHCrossRefADSMathSciNetGoogle Scholar
  15. [15]
    D.J. Gross and N.A. Nekrasov, Solitons in non-commutative gauge theory, JHEP 0103 (2001), 044, [arXiv:hep-th/0010090].CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    D.J. Gross, A. Hashimoto and N. Itzhaki, Observables of non-commutative gauge theories, Adv. Theor. Math. Phys. 4 (2000), 893, [arXiv:hep-th/0008075].MATHMathSciNetGoogle Scholar
  17. [17]
    A.P. Polychronakos, Non-commutative Chern-Simons terms and the non-commutative vacuum, JHEP 0011 (2000), 008, [arXiv:hep-th/0010264].CrossRefADSMathSciNetGoogle Scholar
  18. [18]
    S. Deser, R. Jackiw and S. Templeton, Topologically massive gauge theories, Annals Phys. 140 (1982), 372, [Erratum-ibid. 185, 406. 1988 APNYA, 281, 409 (1988 APNYA, 281, 409–449. 2000)].CrossRefADSMathSciNetGoogle Scholar
  19. [19]
    O. Alvarez, Topological Quantization And Cohomology, Commun. Math. Phys. 100 (1985), 279.MATHCrossRefADSGoogle Scholar
  20. [20]
    A.H. Chamseddine and J. Frohlich, The Chern-Simons action in non-commutative geometry, J. Math. Phys. 35 (1994), 5195, [arXiv:hep-th/9406013].MATHCrossRefADSMathSciNetGoogle Scholar
  21. [21]
    T. Krajewski, Gauge invariance of the Chern-Simons action in non-commutative geometry, arXiv:math-ph/9810015.Google Scholar
  22. [22]
    G.H. Chen and Y.S. Wu, One-loop shift in non-commutative Chern-Simons coupling, Nucl. Phys. B 593 (2001), 562, [arXiv:hep-th/0006114]; On gauge invariance of non-commutative Chern-Simons theories, Nucl. Phys. B 628 (2002), 473, [arXiv:hepth/0111109].MATHCrossRefADSGoogle Scholar
  23. [23]
    S. Mukhi and N.V. Suryanarayana, Chern-Simons terms on non-commutative branes, JHEP 0011 (2000), 006. [arXiv:hep-th/0009101].CrossRefADSMathSciNetGoogle Scholar
  24. [24]
    N.E. Grandi and G.A. Silva, Chern-Simons action in non-commutative space, Phys. Lett. B 507 (2001), 345, [arXiv:hep-th/0010113].MATHCrossRefADSMathSciNetGoogle Scholar
  25. [25]
    A. Khare and M.B. Paranjape, Solitons in 2 + 1 dimensional non-commutative Maxwell Chern-Simons Higgs theories, JHEP 0104 (2001), 002, [arXiv:hep-th/0102016].CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    D. Bak, S.K. Kim, K.S. Soh and J.H. Yee, Non-commutative Chern-Simons solitons, Phys. Rev. D 64 (2001), 025018, [arXiv:hep-th/0102137].CrossRefADSMathSciNetGoogle Scholar
  27. [27]
    V.P. Nair and A.P. Polychronakos, On level quantization for the non-commutative Chern-Simons theory, Phys. Rev. Lett. 87 (2001), 030403, [arXiv:hep-th/0102181].CrossRefADSMathSciNetGoogle Scholar
  28. [28]
    D. Bak, K.M. Lee and J.H. Park, Chern-Simons theories on non-commutative plane, Phys. Rev. Lett. 87 (2001), 030402, [arXiv:hep-th/0102188].CrossRefADSMathSciNetGoogle Scholar
  29. [29]
    R. Jackiw, V.P. Nair, S.Y. Pi and A.P. Polychronakos, Perfect fluid theory and its extensions, J. Phys. A 37 (2004), R327, [arXiv:hep-ph/0407101].MATHCrossRefADSGoogle Scholar
  30. [30]
    V. Arnold and B. Khesin, Topological Methods in Hydrodynamics, (Springer, Berlin, 1998).MATHGoogle Scholar
  31. [31]
    S. Bahcall and L. Susskind, Fluid dynamics, Chern-Simons theory and the quantum Hall effect, Int. J. Mod. Phys. B 5 (1991), 2735.CrossRefADSMathSciNetGoogle Scholar
  32. [32]
    D. Bak, K.M. Lee and J.H. Park, Comments on non-commutative gauge theories, Phys. Lett. B 501 (2001), 305, [arXiv:hep-th/0011244].MATHCrossRefADSMathSciNetGoogle Scholar
  33. [33]
    L. Susskind, The quantum Hall fluid and non-commutative Chern-Simons theory, arXiv:hep-th/0101029.Google Scholar
  34. [34]
    R. Jackiw, S.Y. Pi and A.P. Polychronakos, Noncommuting gauge fields as a Lagrange fluid, Annals Phys. 301 (2002), 157, [arXiv:hep-th/0206014].MATHADSMathSciNetGoogle Scholar
  35. [35]
    J. Goldstone, unpublished communication to R. Jackiw; M. Bordemann and J. Hoppe, The Dynamics of relativistic membranes. 1. Reduction to two-dimensional fluid dynamics, Phys. Lett. B 317 (1993), 315, [arXiv:hep-th/9307036]; B. de Wit, J. Hoppe and H. Nicolai, On the quantum mechanics of supermembranes, Nucl. Phys. B 305 (1988), 545; R. Jackiw and A.P. Polychronakos, Fluid dynamical pro-files and constants of motion from d-branes, Commun. Math. Phys. 207 (1999), 107, [arXiv:hep-th/9902024].CrossRefMathSciNetGoogle Scholar
  36. [36]
    H. Liu, *-Trek II: *n operations, open Wilson lines and the Seiberg-Witten map, Nucl. Phys. B 614 (2001), 305, [arXiv:hep-th/0011125].MATHCrossRefADSGoogle Scholar
  37. [37]
    Y. Okawa and H. Ooguri, An exact solution to Seiberg-Witten equation of noncommutative gauge theory, Phys. Rev. D 64 (2001), 046009, [arXiv:hep-th/0104036].CrossRefADSMathSciNetGoogle Scholar
  38. [38]
    A.P. Polychronakos, Abelian Chern-Simons theories in 2 + 1 dimensions, Annals Phys. 203 (1990), 231.MATHCrossRefADSMathSciNetGoogle Scholar
  39. [39]
    G.V. Dunne, R. Jackiw and C.A. Trugenberger, Topological (Chern-Simons) Quantum Mechanics, Phys. Rev. D 41 (1990), 661; G.V. Dunne and R. Jackiw, ‘Peierls substitution’ and Chern-Simons quantum mechanics, Nucl. Phys. Proc. Suppl. 33C (1993), 114, [arXiv:hep-th/9204057].CrossRefADSMathSciNetGoogle Scholar
  40. [40]
    R.B. Laughlin, ‘The Quantum Hall Effect,’ R.E. Prange and S.M. Girvin (Eds), p. 233.Google Scholar
  41. [41]
    J.H. Brodie, L. Susskind and N. Toumbas, How Bob Laughlin tamed the giant graviton from Taub-NUT space, JHEP 0102 (2001), 003, [arXiv:hep-th/0010105]; I. Bena and A. Nudelman, On the stability of the quantum Hall soliton, JHEP 0012 (2000), 017, [arXiv:hep-th/0011155]; S. S. Gubser and M. Rangamani, D-brane dynamics and the quantum Hall effect, JHEP 0105 (2001), 041, [arXiv:hep-th/0012155] L. Cappiello, G. Cristofano, G. Maiella and V. Marotta, Tunnelling effects in a brane system and quantum Hall physics, Mod. Phys. Lett. A 17 (2002), 1281, [arXiv:hepth/0101033].ADSMathSciNetGoogle Scholar
  42. [42]
    A.P. Polychronakos, Quantum Hall states as matrix Chern-Simons theory, JHEP 0104 (2001), 011, [arXiv:hep-th/0103013]; Quantum Hall states on the cylinder as unitary matrix Chern-Simons theory, JHEP 0106 (2001), 070, [arXiv:hepth/0106011].CrossRefADSMathSciNetGoogle Scholar
  43. [43]
    F. Calogero, Solution of the one-dimensional N body problems with quadratic and/or inversely quadratic pair potentials, J. Math. Phys. 12 (1971), 419.CrossRefADSMathSciNetGoogle Scholar
  44. [44]
    B. Sutherland, Exact Results For A Quantum Many Body Problem In One-Dimension, Phys. Rev. A 4 (1971), 2019; Exact Results For A Quantum Many Body Problem In One-Dimension. 2, Phys. Rev. A 5 (1972), 1372.CrossRefADSGoogle Scholar
  45. [45]
    J. Moser, Three integrable Hamiltonian systems connected with isospectral deformations, Adv. Math. 16 (1975), 197.MATHCrossRefADSGoogle Scholar
  46. [46]
    A.P. Polychronakos, Nonrelativistic bosonization and fractional statistics, Nucl. Phys. B 324 (1989), 597; Exchange Operator Formalism For Integrable Systems of Particles, Phys. Rev. Lett. 69 (1992), 703, [arXiv:hep-th/9202057]. Exact anyonic states for a general quadratic Hamiltonian, Phys. Lett. B 264 (1991), 362.CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    L. Brink, T.H. Hansson, S. Konstein and M.A. Vasiliev, The Calogero model: Anyonic representation, fermionic extension and supersymmetry, Nucl. Phys. B 401 (1993), 591, [arXiv:hep-th/9302023].MATHCrossRefADSMathSciNetGoogle Scholar
  48. [48]
    H. Azuma and S. Iso, Explicit relation of quantum Hall effect and Calogero-Sutherland model, Phys. Lett. B 331 (1994), 107, [arXiv:hep-th/9312001]; S. Iso and S.J. Rey, Collective Field Theory of the Fractional Quantum Hall Edge State and the Calogero-Sutherland Model, Phys. Lett. B 352 (1995), 111, [arXiv:hep-th/9406192].CrossRefADSGoogle Scholar
  49. [49]
    S. Ouvry, On the relation between the anyon and Calogero models, arXiv:condmat/9907239.Google Scholar
  50. [50]
    M.A. Olshanetsky and A.M. Perelomov, Classical integrable finite dimensional systems related to Lie algebras, Phys. Rept. 71 (1981), 313, and 94 (1983), 6.CrossRefADSMathSciNetGoogle Scholar
  51. [51]
    A.P. Polychronakos, Integrable systems from gauged matrix models, Phys. Lett. B 266 (1991), 29.CrossRefADSMathSciNetMATHGoogle Scholar
  52. [52]
    For reviews of the Calogero model closest in spirit to the present discussion see A.P. Polychronakos, Generalized statistics in one dimension, published in ‘Topological aspects of low-dimensional systems,’ Les Houches Session LXIX (1998), Springer Ed. [hep-th/9902157]; Physics and mathematics of Calogero particles, J. Phys. A 39 (2006), 12793, [arXiv:hep-th/0607033].Google Scholar
  53. [53]
    R. Gopakumar, S. Minwalla and A. Strominger, non-commutative solitons, JHEP 0005 (2000), 020, [arXiv:hep-th/0003160].CrossRefADSMathSciNetGoogle Scholar
  54. [54]
    D.P. Jatkar, G. Mandal and S.R. Wadia, Nielsen-Olesen vortices in non-commutative Abelian Higgs model, JHEP 0009 (2000), 018, [arXiv:hep-th/0007078].CrossRefADSMathSciNetGoogle Scholar
  55. [55]
    J.A. Harvey, P. Kraus and F. Larsen, Exact non-commutative solitons, JHEP 0012 (2000), 024, [arXiv:hep-th/0010060].CrossRefADSMathSciNetGoogle Scholar
  56. [56]
    X.G. Wen, Gapless boundary excitations in the quantum Hall states and in the chiral spin states, Phys. Rev. B 41 (1990), 12838.CrossRefADSGoogle Scholar
  57. [57]
    S. Iso, D. Karabali and B. Sakita, Fermions in the lowest Landau level: Bosonization, W(infinity) algebra, droplets, chiral bosons, Phys. Lett. B 296 (1992), 143, [arXiv:hepth/9209003].CrossRefADSGoogle Scholar
  58. [58]
    A. Cappelli, C.A. Trugenberger and G.R. Zemba, Infinite symmetry in the quantum Hall effect, Nucl. Phys. B 396 (1993), 465, [arXiv:hep-th/9206027].CrossRefADSMathSciNetGoogle Scholar
  59. [59]
    A.P. Polychronakos, Waves and solitons in the continuum limit of the Calogero-Sutherland model, Phys. Rev. Lett. 74 (1995), 5153, [arXiv:hep-th/9411054].MATHCrossRefADSMathSciNetGoogle Scholar
  60. [60]
    S. Hellerman and M. Van Raamsdonk, Quantum Hall physics equals non-commutative field theory, JHEP 0110 (2001), 039, [arXiv:hep-th/0103179].CrossRefADSGoogle Scholar
  61. [61]
    D. Karabali and B. Sakita, Chern-Simons matrix model: Coherent states and relation to Laughlin wavefunctions, Phys. Rev. B 64 (2001), 245316, [arXiv:hep-th/0106016]; Orthogonal basis for the energy eigenfunctions of the Chern-Simons matrix model, Phys. Rev. B 65 (2002), 075304, [arXiv:hep-th/0107168].CrossRefADSGoogle Scholar
  62. [62]
    B. Morariu and A.P. Polychronakos, Finite non-commutative Chern-Simons with a Wilson line and the quantum Hall effect, JHEP 0107 (2001), 006, [arXiv:hepth/0106072]; Fractional quantum Hall effect on the two-sphere: A matrix model proposal, Phys. Rev. D 72 (2005), 125002, [arXiv:hep-th/0510034].CrossRefADSMathSciNetGoogle Scholar
  63. [63]
    C. Duval and P.A. Horvathy, Exotic Galilean symmetry in the non-commutative plane, and the Hall effect, J. Phys. A 34 (2001), 10097, [arXiv:hep-th/0106089]. P.A. Horvathy, Non-commuting coordinates in vortex dynamics and in the Hall effect, related to ‘exotic’ Galilean symmetry, arXiv:hep-th/0207075.MATHCrossRefADSMathSciNetGoogle Scholar
  64. [64]
    T.H. Hansson, J. Kailasvuori and A. Karlhede, Charge and current in the quantum Hall matrix model, Phys. Rev. B 68 (2003), 035327.CrossRefADSGoogle Scholar
  65. [65]
    Y.X. Chen, M.D. Gould and Y.Z. Zhang, Finite matrix model of quantum Hall fluids on S**2, arXiv:hep-th/0308040.Google Scholar
  66. [66]
    D. Berenstein, A matrix model for a quantum Hall droplet with manifest particle-hole symmetry, Phys. Rev. D 71 (2005), 085001, [arXiv:hep-th/0409115].CrossRefADSGoogle Scholar
  67. [67]
    A. Cappelli and M. Riccardi, Matrix model description of Laughlin Hall states, arXiv:hep-th/0410151.Google Scholar
  68. [68]
    A. Ghodsi, A.E. Mosaffa, O. Saremi and M.M. Sheikh-Jabbari, LLL vs. LLM: Half BPS sector of N = 4 SYM equals to quantum Hall system, arXiv:hep-th/0505129.Google Scholar
  69. [69]
    B. Sakita, Collective variables of fermions and bosonization, Phys. Lett. B 387 (1996), 118, [arXiv:hep-th/9607047].CrossRefADSMathSciNetGoogle Scholar
  70. [70]
    D. Karabali and V.P. Nair, Quantum Hall effect in higher dimensions, Nucl. Phys. B 641 (2002), 533, [arXiv:hep-th/0203264]; The effective action for edge states in higher dimensional quantum Hall systems, Nucl. Phys. B 679 (2004), 427, [arXiv:hepth/0307281]; Edge states for quantum Hall droplets in higher dimensions and a generalized WZW model, Nucl. Phys. B 697 (2004), 513, [arXiv:hep-th/0403111].MATHCrossRefADSMathSciNetGoogle Scholar
  71. [71]
    A.P. Polychronakos, Chiral actions from phase space (quantum Hall) droplets, Nucl. Phys. B 705 (2005), 457, [arXiv:hep-th/0408194]; Kac-Moody theories for colored phase space (quantum Hall) droplets, Nucl. Phys. B 711 (2005), 505, [arXiv:hepth/0411065].MATHCrossRefADSMathSciNetGoogle Scholar
  72. [72]
    F. Bloch, Z. Phys. 81 (1933), 363; S. Tomonaga, Prog. Theor. Phys. 5 (1950), 544. W. Thirring, Ann. Phys. (N.Y.) 3 (1958), 91; J.M. Luttinger, J. Math. Phys. 4 (1963), 1154; D. Mattis and E. Lieb, J. Math. Phys. 6 (1965), 304; S. R. Coleman, Phys. Rev. D 11 (1975), 2088; S. Mandelstam, Phys. Rept. 23 (1976), 307.MATHCrossRefADSGoogle Scholar
  73. [73]
    E. Witten, Nonabelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984), 455.MATHCrossRefADSMathSciNetGoogle Scholar
  74. [74]
    A. Luther, Bosonized Fermions In Three-Dimensions, Phys. Rept. 49 (1979), 261; F.D.M. Haldane, Luttinger’s Theorem and Bosonization of the Fermi Surface, Varenna 1992 Lectures [cond-mat/0505529]; D. Schmeltzer, Bosonization in one and two dimensions, Phys. Rev. B 47 (1993), 11980; A. Houghton and J.B. Marston, Bosonization and fermion liquids in dimensions greater than one, Phys. Rev. B 48 (1993), 7790; A.H. Castro Neto and E. Fradkin, Bosonization of the Low Energy Excitations of Fermi Liquids, Phys. Rev. Lett. 72 (1994), 1393; D.V. Khveshchenko, Geometrical approach to bosonization of D > 1 dimensional (non) Fermi liquids, Phys. Rev. B 52 (1995), 4833.CrossRefADSGoogle Scholar
  75. [75]
    A.P. Polychronakos, Bosonization in higher dimensions via non-commutative field theory, Phys. Rev. Lett. 96 (2006), 186401, [arXiv:hep-th/0502150]; A. Enciso and A.P. Polychronakos, The fermion density operator in the droplet bosonization picture, Nucl. Phys. B 751 (2006), 376, [arXiv:hep-th/0605040].CrossRefADSGoogle Scholar

Copyright information

© Birkhäuser Verlag Basel 2007

Authors and Affiliations

  • Alexios P. Polychronakos
    • 1
  1. 1.Physics DepartmentCity College of New YorkNew YorkUSA

Personalised recommendations