Quantum Hall Effect and Non-commutative Geometry

  • Vincent Pasquier
Part of the Progress in Mathematical Physics book series (PMP, volume 53)


Our aim is to introduce the ideas of non-commutative geometry through the example of the Quantum Hall Effect (QHE). We present a few concrete situations where the concepts of non-commutative geometry find physical applications.


Wave Function Coherent State Landau Level Casimir Operator Slater Determinant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    The Quantum Hall Effect, Edited by R.E. Prange and S. Girvin, Springer-Verlag, New York, (1990).Google Scholar
  2. [2]
    Perspectives in Quantum Hall Effects, Edited by S. Das Sarma and A. Pinczuk, Wiley, New-York, (1997).Google Scholar
  3. [3]
    S.M. Girvin, “The Quantum Hall Effect: Novel Excitations and broken Symmetries”, Les Houches Lecture Notes, in Topological Aspects of Low Dimensional Systems, Springer-Verlag, Berlin and Les Editions de Physique, Les Ulis, (1998).Google Scholar
  4. [4]
    B. Doucot and V. Pasquier, Séminaire Poincaré, novembre 2004Google Scholar
  5. [5]
    J. Klauder and B.S. Skagerstam, “Coherent states”, Word Scientific (1984)Google Scholar
  6. [6]
    See the contribution of V. Rivasseau in this volume.Google Scholar
  7. [7]
    See the contribution of J.M. Maillet in this volume.Google Scholar
  8. [8]
    L. Susskind, The Quantum Hall Fluid and Non-Commutative Chern Simons Theory, hep-th/0101029Google Scholar
  9. [9]
    A. Polychronakos, Quantum Hall states as matrix Chern-Simons theory, JHEP 0104 (2001) 011, /hep-th/0103013.MathSciNetGoogle Scholar
  10. [10]
    J.K. Jain, Phys. Rev. Lett. 63 (1989), 199.CrossRefADSGoogle Scholar
  11. [11]
    J. Klauder and B.S. Skagerstam, “Coherent states”, Word Scientific (1984)Google Scholar
  12. [12]
    R.L. Willet, M.A. Paalanen, R.R. Ruel, K.W. West, L.N. Pfeiffer and D.J. Bishop, Phys. Rev. Lett. 54 (1990), 112.CrossRefADSGoogle Scholar
  13. [13]
    B.A. Halperin, P.A. Lee and N. Read, Phys. Rev. B 47 (1993), 7312.CrossRefADSGoogle Scholar
  14. [14]
    N. Read, Semicon. Sci. Tech. 9 (1994), 1859.CrossRefADSGoogle Scholar
  15. [15]
    Y.B. Kim, X.G. Wen, P.A. Lee and A. Furusaki, Phys. Rev. B 50 (1994), 17917.CrossRefADSGoogle Scholar
  16. [16]
    C. Kallin and B. Halperin, Phys. Rev. B 30 (1984), 5655.CrossRefADSGoogle Scholar
  17. [17]
    I.V. Lerner and Yu. E. Lozovik, Zh. Eksp. Theor. Fiz 78 (1978), 1167; [Sov. Phys. JETP 51 (1980), 588].Google Scholar
  18. [18]
    S.M. Girvin, A.H. Macdonald and P.M. Platzman, Phys. Rev. B 33 (1986), 2481.CrossRefADSGoogle Scholar
  19. [19]
    R. Shankar and G. Murthy, Phys. Rev. Lett. 9 (1997), 4437.CrossRefADSGoogle Scholar
  20. [20]
    R.L. Willet, Surf. Sci. 305 (1994), 76; R.L. Willet et al., Phys. Rev. Lett. 71 (1993), 3846.CrossRefADSGoogle Scholar
  21. [21]
    W. Kang et al., Phys. Rev. Lett. 71 (1993), 3850; V.J. Goldman et al., Phys. Rev. Lett. 72 (1994), 2065; H.J. Smet et al., Phys. Rev. Lett. 77 (1996), 2272.CrossRefADSGoogle Scholar
  22. [22]
    R.R. Du, H.L. Stormer, D.C. Tsui, N.L. Pfeiffer, and K.W. West, Phys. Rev. Lett. 70 (1993), 2944. P.T. Colerige, Z.W. Wasilewski, P. Zawadzki, A.S. Sacharajda and H.A. Carmona Phys. Rev. B 52 (1995), 11603.CrossRefADSGoogle Scholar
  23. [23]
    V. Pasquier “Composite Fermions and confinement” (1996) unpublished, Morion proceedings (1999).Google Scholar
  24. [24]
    N. Read, Scholar
  25. [25]
    R. Shankar and G. Murthy, Phys. Rev. Lett. 79 (1997), 4437.CrossRefADSGoogle Scholar
  26. [26]
    Dung-Hai Lee, Phys. Rev. Lett. 80 (1998), 4547.Google Scholar
  27. [27]
    A. Stern, B.I. Halperin, F. von Oppen, S. Simon, Phys. Rev. B in press and condmat/9812135.Google Scholar
  28. [28]
    V. Pasquier, F.D.M. Haldane, Nuclear Physics B 516[FS] (1998), 719.MATHCrossRefADSMathSciNetGoogle Scholar
  29. [29]
    V.J. Goldman, B. Su and J.K. Jain, Phys. Rev. Lett. 72 (1994), 2065.CrossRefADSGoogle Scholar
  30. [30]
    F. Von Oppen, B. Halperin, S. Simon and A. Stern, cond-mat/9903430.Google Scholar
  31. [31]
    S.L. Sondhi, A. Karlhede, S.A. Kivelson and E.H. Rezayi, Phys.Rev.B 47 (1993), 16419.CrossRefADSGoogle Scholar
  32. [32]
    A.A. Belavin and A.M. Polyakov, JETP Let. 22 (1975), 245.ADSGoogle Scholar
  33. [33]
    V. Pasquier, Arxiv preprint hep-th/0007176, 2000.Google Scholar
  34. [34]
    A.H. MacDonald, H.A. Fertig and L. Brey, Phys. Rev. Lett 76 (1996), 2153.CrossRefADSGoogle Scholar
  35. [35]
    V. Pasquier, Phys. Lett. B 490 (2000), 258.MATHCrossRefADSMathSciNetGoogle Scholar
  36. [36]
    F.A. Berezin, Sov. Phys. Usp. 132 (1980), 497.MathSciNetGoogle Scholar
  37. [37]
    A. Connes, “Non-commutative Geometry”, Academic Press (1994).Google Scholar
  38. [38]
    Bigatti and Susskind, Arxiv preprint hep-th/9908056.Google Scholar

Copyright information

© Birkhäuser Verlag Basel 2007

Authors and Affiliations

  • Vincent Pasquier
    • 1
  1. 1.Service de Physique ThéoriqueC.E.A/ SaclayGif-sur-YvetteFrance

Personalised recommendations